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Abstract 

High-performance computing (HPC) sites have a mission to help researchers obtain results as 
quickly as possible, but research contracts often require security controls that degrade 
performance. One standard solution is to secure a set of login nodes that mediate access to an 
enclave of lightly monitored compute nodes, referred to as “the soft underbelly of a 
supercomputer” by one DoD representative (National, 2016). Recent advances in the BPF 
subsystem, a Linux tracing technology, have provided a new means to monitor compute nodes 
with minimal performance degradation. Well-crafted BPF traces can detect malicious activity on 
an HPC cluster without slowing down systems or the researchers that depend on them. In this 
paper, a series of low-profile attacks are conducted against a compute cluster under heavy 
computational load, and BPF probes are attached to detect the attacks. The probes successfully 
log all attacks, and performance loss is less than one percent for all benchmarks save for one 
inconclusive set. 
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1. Introduction 

In high-performance computing (HPC), many organizations that facilitate research 

provide a remote shell for writing, compiling, and executing arbitrary code. The code runs on a 

networked cluster of servers with hundreds of thousands of processor cores and has access to 

petabytes of storage. Information security practitioners must secure these environments for 

government research contracts, but any solutions they architect cannot reduce bare-metal cluster 

performance by more than a defined percentage, possibly as low as 1%. These limitations impact 

the security of HPC sites in government agencies, academia, and the private sector. 

Colloquially known as “supercomputers,” HPC clusters handle computational problems 

that are too large or too slow for conventional computers. Cluster sizes range from dozens to tens 

of thousands of “nodes” (HPC parlance for servers). Today, the Summit supercomputer at the 

Department of Energy’s Oak Ridge National Laboratory ranks #1 on the Top500 

Supercomputing list, touting over 2,400,000 processor cores and peaking at 200 petaflops (i.e., 

two hundred quadrillion floating-point operations per second) (TOP500, 2019). 

In practice, large clusters share their resources among many users, including those not 

employed by the host institution. For example, the XSEDE Federation is a cyberinfrastructure 

ecosystem composed of 36 different institutions across the United States, providing HPC 

resources to the science and engineering community as a single coordinated effort (XSEDE, 

n.d.). This author administers an HPC cluster at an academic institution, which serves not only 

the campus community but also collaborators from other organizations across the world. 

A current approach to HPC security is to lock down a few login nodes with required 

security controls and only lightly monitor the army of isolated compute nodes behind them. At a 

NIST Workshop on HPC Security in 2016, a DoD representative described these compute nodes 

as the “soft underbelly” of supercomputing (National, 2016). Detecting malicious activity on the 

compute nodes themselves while maintaining performance requirements was considered an 

unsolved problem. 

Three years ago, Brendan Gregg announced that “superpowers have finally come to 

Linux” in the form of Berkeley Packet Filter (BPF) tracing tools (Gregg, 2017). Although 
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systems administrators and analysts had used BPF to filter network packets for decades, Linux 

kernel developers had both improved its performance and opened it up to general usage through 

a new bpf() syscall. Thus, BPF was no longer a network tracing tool but a system-wide tracing 

tool. Gregg has since demonstrated the value of BPF tracing to security practitioners at 

subsequent conferences (Gregg & Maestretti, 2017). 

This paper has two primary purposes. The first is to introduce BPF as a general tracing 

tool for detecting malicious activity on Linux systems. A summary of recent developments in 

BPF and an explanation of its usage is provided. Example scripts are also included that 

demonstrate tracing open TTYs, network activity, filesystem activity, and Bash commands. 

The second purpose is to evaluate BPF as a security tool for production HPC clusters, 

both from a performance perspective and a detection perspective. A security monitoring agent 

that affects performance by even one or two percent has a low chance of adoption on HPC 

clusters that prioritize fast research results. Should it be adopted, there must be an assurance that 

the agent will not slow down compute nodes and that it will detect the attacks it purports to 

defend against. 

To validate BPF, a series of low-profile attacks are conducted against eight compute 

nodes running a series of benchmarks, both without and with BPF probes attached. Benchmarks 

without BPF probes are compared to benchmarks with BPF probes to determine the performance 

loss. The logs of the BPF trace scripts are compared with attack script logs to determine the 

attack detection rate. 

2. HPC Cluster Architecture 
A brief treatment of HPC cluster architecture helps illustrate the difficulties of monitoring 

compute nodes. 

The complexity of an HPC cluster can range from elementary to mind-boggling. At one 

end of the spectrum, students can interconnect a stack of Raspberry Pis to make a Beowulf 

cluster for educational purposes (Kiepert, 2013). At the other end is the NASA Advanced 

Supercomputing Division, whose Pleiades cluster interconnects eleven thousand compute nodes 

in an 11-dimensional hypercube topology for performance purposes (Chang, Jin & Bauer, 2016). 
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An HPC node provides a multi-compiler and multi-version environment intended to 

support scientific software from many different disciplines. For example, the author administers 

nodes that have eight versions of gcc, two versions of Intel compilers, five versions of CUDA 

libraries, and three versions of Boost C++ libraries, not including additional variations when 

compiled with MPI support. 

Researchers initially authenticate to a “login” node session. From here, they can write, 

compile, and debug arbitrary code. Once a researcher is ready to launch their software on the 

compute nodes, they submit a “job” to the scheduler. The job specifies the resources needed, the 

time required, and the commands to run. The scheduler maintains a queue of all jobs, dispatching 

them to the compute nodes as time, resources, and fair share permit. 

 

Figure 1. Job Submission Process 
 

Compute node operating systems are installed using scalable provisioning technologies 

such as PXE booting, Kickstart for thick provisioning, and read-only root NFS for thin 

provisioning, among others. The nodes are also configured to mount central storage to make data 

available for processing across a large set of nodes, with performance tiers ranging from archival 

tape storage to high-performance parallel filesystems. 
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Figure 2. HPC Provisioning and Storage 
 

Firewalls and network monitors are typically not deployed for compute nodes. With 

network speeds reaching tens of gigabits per second per node, or terabytes per second in 

aggregate, host-based and network-based products can degrade performance and cause job 

failures. Also, the network traffic itself is highly variable. Software may use traditional Ethernet 

or high-bandwidth, low-latency fabrics such as InfiniBand and Omni-Path. The characteristics of 

network traffic differ from software to software and even across the lifetime of a single piece of 

software as it is developed on HPC systems. 

These details highlight the following difficulties for the security practitioner: 

• Compute nodes run arbitrary code;  

• Compute nodes can access centralized research storage; 

• Compute nodes produce highly variable network traffic; 

• Compute nodes have fewer security controls for performance reasons; and 

• Compute nodes produce terabytes of network traffic per second in aggregate. 

 

3. BPF Introduction 
Many security practitioners identify the filter expression of tcpdump as BPF, but this is 

somewhat inaccurate. tcpdump transparently compiles the expression into BPF code. The actual 
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BPF bytecode can be dumped using the –d option. This bytecode is fed into a register-based 

virtual machine that runs in the Linux kernel. 

[root@m7-10-16 tools]# tcpdump -d 'host 192.168.10.1' 
(000) ldh      [14] 
(001) jeq      #0x800           jt 2    jf 6 
(002) ld       [28] 
(003) jeq      #0xc0a80a01      jt 12    jf 4 
(004) ld       [32] 
(005) jeq      #0xc0a80a01      jt 12    jf 13 
(006) jeq      #0x806           jt 8    jf 7 
(007) jeq      #0x8035          jt 8    jf 13 
(008) ld       [30] 
(009) jeq      #0xc0a80a01      jt 12    jf 10 
(010) ld       [40] 
(011) jeq      #0xc0a80a01      jt 12    jf 13 
(012) ret      #262144 
(013) ret      #0 

 

Figure 3. Dump of BPF bytecode from tcpdump 
 

 Originally implemented in 1992, the two-register virtual machine approach of “BSD 

Packet Filter” was twenty to one hundred times faster than its competing packet filters, partly 

because the implementation matched how the underlying RISC CPU operated, and partly 

because of its improved buffer model (McCanne, 1992). 

Support for BPF in Linux was added in the 2.5 development kernel and stayed largely 

untouched for roughly a decade. In the last eight years, however, BPF has changed dramatically, 

burgeoning into its own Linux subsystem. Many new terms have come and gone in that time, so 

the history of those developments is briefly reviewed here to keep the reader current. 

In 2012, Will Drewry was struggling to get code accepted into the Linux kernel. He 

wrote a patch to allow seccomp to filter arbitrary syscalls, but his work was in limbo between a 

prctl() maintainer who suggested using the perf subsystem for filtering, and a perf maintainer 

who suggested using prctl() for filtering, with neither gatekeeper budging (Edge, 2011). In a 

stroke of brilliance, Will found the BPF virtual machine and used it to filter allowed syscalls 

instead of network traffic (Corbet, 2012). 

Two years later, Alexei Starovoitov posted a patch set that greatly improved BPF 

performance. He increased the number of registers from two to ten, added to its instruction set to 

better resemble modern processors, and upgraded its registers to 64 bits (Corbet, 2014 May). His 
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work yielded a four-fold increase in speed (Starovoitov, 2014 March), and importantly, he also 

posted a patch that demonstrated using BPF for tracing filters (Starovoitov, 2014 May). 

A month later, Alexei extended BPF further. He moved BPF out of the network 

subsystem into its own directory, signaling the intention for its general use. He also implemented 

a new bpf() syscall. This allowed users with CAP_SYS_ADMIN privileges (i.e., root) to load 

BPF programs into the kernel to respond to specific events that they defined. An in-kernel 

verifier ensured the safety of the program before loading it (Corbet, 2014 July). 

This improved BPF implementation went through many names. It was first known as 

“internal BPF” (as opposed to “classic BPF”) but was later called extended BPF, or eBPF. 

Today, system maintainers have chosen to simply call the execution engine BPF, without any 

reference to what the acronym originally represented (Gregg, 2020 January). 

3.1. BPF Compiler Collection 
While valuable to kernel developers, the bpf() syscall was impractical to those who didn’t 

keep a copy of the kernel source code lying around. The BPF Compiler Collection (BCC) was 

created in April of 2015 to address this issue. It greatly simplified the process of writing tracing 

tools that could leverage BPF (Fleming, 2017).  

Over the course of a few years, this collection grew into a mature suite of tools that were 

easy for systems administrators to use. There are currently over 100 BCC tools readily available 

for monitoring system calls, language function calls (including php, perl, ruby, and python), 

network events, filesystem performance, database performance, and more. Four basic examples 

of these tools are included below. These examples are not intended to detect sophisticated 

attackers, but rather to demonstrate the potential of the tools. 

The opensnoop tool traces open() and openat() syscalls. In this example, the tool detected 

a user’s failed attempts to list the /root directory and view /etc/shadow: 

# /usr/share/bcc/tools/opensnoop -u 1000 -x 
PID    COMM               FD ERR PATH 
41892  cat                -1   2 /etc/shadow 
41905  ls                 -1   2 /root 

 

Figure 4. Example of “opensnoop” 
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 The execsnoop tool traces new processes via exec() syscalls. This example shows a user 

attempting to run nc, download ncat, and create and run a suspicious python script. 

# /usr/share/bcc/tools/execsnoop 
PCOMM            PID    PPID   RET ARGS 
nc               27530  16339    0 /usr/bin/nc evil.org 4444 
wget             27540  16339    0 /usr/bin/wget https://github.com/andrew-
d/static-binaries/raw/master/binaries/linux/x86_64/ncat 
vim              27642  16339    0 /usr/bin/vim tunnel.py 
chmod            27646  16339    0 /usr/bin/chmod u+x tunnel.py 
tunnel.py        27648  16339    0 ./tunnel.py 

 

Figure 5. Example of “execsnoop” 
 

The ttysnoop tool displays the output of a TTY as if the administrator is sitting at the 

same terminal. The following example shows an administrator snooping /dev/pts/1 and observing 

a user named “billy” exploring the system: 

# /usr/share/bcc/tools/ttysnoop 1 
which nmap 
/usr/bin/which: no nmap in 
(/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin) 
billy@testnode /tmp$ which nc 
/usr/bin/nc 
billy@testnode /tmp$ which ncat 
/usr/bin/ncat 
billy@testnode /tmp$ route -n 
Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use 
Iface 
0.0.0.0         192.168.10.1   0.0.0.0         UG    100    0        0 em1 
billy@testnode /tmp$ for i in 192.168.10.{1..3}; do ping -c1 -w1 $i && echo 
$i is up; sleep 5; done 
ping: socket: Operation not permitted 
ping: socket: Operation not permitted 
ping: socket: Operation not permitted 
billy@testnode /tmp$ 

 

Figure 6. Example of “ttysnoop” 
 

Last is the tcpstates tool, used here for tracing any TCP state changes involving remote 

ports 22, 80, or 443. While the trace was running, a user connected over SSH to a neighboring 

compute node for 10 seconds and then closed the connection. Next, the user attempted to access 

a website with wget and then sent a keyboard-interrupt after three failed connection attempts. 
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# /usr/share/bcc/tools/tcpstates -D 22,80,443 
SKADDR           C-PID C-COMM     LADDR           LPORT RADDR           
RPORT OLDSTATE    -> NEWSTATE    MS 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
CLOSE       -> SYN_SENT    0.000 
ffff9ac37e622f80 0     swapper/12 192.168.10.179 0     192.168.10.178 22    
SYN_SENT    -> ESTABLISHED 0.218 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
ESTABLISHED -> FIN_WAIT1   10899.358 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
FIN_WAIT1   -> FIN_WAIT2   0.066 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
FIN_WAIT2   -> CLOSE       0.003 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    0.000 
ffff9ac3874c8000 0     swapper/12 192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       131001.368 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    1000.312 
ffff9ac3874c8000 0     swapper/12 192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       130071.675 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    2000.533 
ffff9ac3874c8000 0     swapper/12 192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       129071.439 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    3001.378 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       8582.302 

 

Figure 7. Example of “tcpstates” 
  

While easy to use, BCC tools are not necessarily easy to write or maintain. They are 

python scripts with embedded BPF programs written in C. Tools may break when the traced 

code changes, requiring continual maintenance from version to version of the traced software. 

3.2. bpftrace 
An even more intuitive tool came to fruition as a spare-time hobby in December 2016. 

Alastair Robertson started a project built on BCC and BPF called bpftrace, and it offered an 

AWK-like syntax that was already familiar to many systems administrators and security 

practitioners. The project attracted prominent BCC contributors and completed its first set of 

major features in 2018 (Gregg, 2020 January). Today, bpftrace is a full-fledged tracing utility 

that can use a stupendous variety of sources and trigger many types of actions. 

The main downside of the tool is that it requires a minimum Linux kernel version of 4.1 

and recommends version 4.9 to take full advantage of its features. This means that the tool is 
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only available on later versions of Linux distributions such as Red Hat Enterprise Linux 8, 

Debian 9, and Ubuntu 19.04. Even then, the version of bpftrace on these distributions does not 

have all the features available in the latest version. 

For those exploring bpftrace for the first time, two helpful starting points are running 

`bpftrace –l` for a list of static and dynamic probes available for use and `bpftrace –lv 

[tracepoint_name]` for the arguments available to retrieve values from when a probe fires. 

The basic syntax of bpftrace and a few instructive examples are provided. A full 

walkthrough of writing bpftrace scripts is outside the scope of this paper, but readers who wish 

to familiarize themselves with using the tool can review Brendan Gregg’s bpftrace tutorial1.  

bpftrace scripts follow a basic syntax familiar to AWK users: 

#!/usr/bin/bpftrace 
 
probe1 /filter/ { action } 
probe2, probe3 /filter/ { action } 

 

Figure 8. Basic syntax of bpftrace 
 

The following example traces openat() calls by UID 1000: 

#!/usr/bin/bpftrace 
  
BEGIN 
{ 
  printf ("%s\t%s\t%s\n", "COMM", "FILE", "RETVAL"); 
} 
  
tracepoint:syscalls:sys_enter_openat 
/uid == 1000/ 
{ 
  @filename[tid] = str(args->filename); 
} 
  
tracepoint:syscalls:sys_exit_openat 
/uid == 1000 && args->ret < 0/ 
{ 
  printf("%s\t%s\t%d\n", comm, @filename[tid], args->ret); 
  delete(@filename[tid]); 
} 

 

Figure 9. Example Script of Tracing openat() Syscall 
 

 
1 https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md 
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The script prints a header; saves the target filename when UID 1000 enters openat(); and 

prints the command, file, and errno when openat() returns an error. It produced the following 

output when UID 1000 attempted to open /etc/shadow. 

# ./detect_failed_openat.bt  
Attaching 3 probes... 
COMM    FILE    RETVAL 
cat    /etc/shadow    -13 

 

Figure 10. Example Output of Tracing openat() Syscall 
 

Userspace functions can also be traced. The following example script from Brendan 

Gregg (2020 January) traces the readline() function in /bin/bash. Once started, it will trace 

readline() for all current and future invocations of /bin/bash. 

#!/usr/bin/bpftrace 
 
BEGIN 
{ 
  printf("Tracing bash commands... Hit Ctrl-C to end.\n"); 
  printf("%-9s %-6s %s\n", "TIME", "PID", "COMMAND"); 
} 
 
uretprobe:/bin/bash:readline 
{ 
  time("%H:%M:%S  "); 
  printf("%-6d %s\n", pid, str(retval)); 
} 

 

Figure 11. Example Script of Tracing Bash readline() 
 

The script produced the following output, revealing an attempt by a bash session with 

PID 28853 to invoke a cryptocurrency miner: 

# /usr/share/bpftrace/tools/bashreadline.bt  
Attaching 2 probes... 
Tracing bash commands... Hit Ctrl-C to end. 
TIME      PID    COMMAND 
10:08:30  16339  chmod u+x trace_bash_readline.bt  
10:08:31  16339  ./trace_bash_readline.bt  
10:08:54  16339  id 
10:08:59  16339  cd ~ 
10:15:25  28853  ./cgminer -o stratum+tcp://mmpool.org:3333 -u jexotic –p 
tigercoins4LYFE 
10:15:38  16339  vim job.sbatch 

 

Figure 12. Example Output of Tracing Bash readline() 
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Shared libraries can also be traced. This is especially valuable because it allows an 

administrator to place probes that are difficult for an attacker to avoid. The following example 

script places probes in the gethost*() and getaddrinfo() functions of the GNU C library to trace 

DNS queries. It is modified from Brendan Gregg’s gethostlatency.bt script (Gregg, 2018). 

#!/usr/bin/bpftrace 
  
BEGIN 
{ 
  printf("%-8s %-6s %-6s %-16s %s\n", "TIME", "UID", "PID", "COMM", "HOST"); 
} 
  
uprobe:/lib64/libc.so.6:getaddrinfo, 
uprobe:/lib64/libc.so.6:gethostbyname, 
uprobe:/lib64/libc.so.6:gethostbyname2 
{ 
  time("%H:%M:%S "); 
  printf("%-6d %-6d %-16s %s\n", uid, pid, comm, str(arg0)); 
} 

 

Figure 13. Example Script of Tracing GNU C Library 
 

The output shows DNS queries from a user invoking curl and wget on questionable 

websites: 

# ./dnsqueries.bt  
Attaching 4 probes... 
TIME     UID    PID    COMM             HOST 
11:15:59 1000  31854  curl             questionablewebsite.cn 
11:16:00 1000  31857  wget             a2ng98eh2k0c94782hdo.com 

 

Figure 14. Example Output of Tracing GNU C Library 
 

These few examples demonstrated the ability of bpftrace to monitor filesystems, 

processes, user sessions, and network activity. Once installed, the software includes over thirty 

high-quality scripts that cover dozens of system activities. As Brendan Gregg put it, gaining this 

depth and breadth of visibility on a Linux system “can feel like having X-ray vision” (Gregg, 

2020 January). This level of vision is available to any Linux systems administrator who becomes 

adept at using the tools. 
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4. Performance Analysis of BPF in HPC 

The remainder of this paper is dedicated to measuring the performance impact of BPF 

when monitoring compute nodes under heavy load. As crucial as it is to demonstrate the 

effectiveness of a security solution, HPC administrators likewise need assurance that security 

tools will not degrade performance beyond a defined threshold. 

Brendan Gregg targeted a performance loss of less than 1% when using BPF tools and 

scripts in production at Netflix (Gregg & Maestretti, 2017). The expectations in this paper’s 

performance analysis were as follows: 

• Performance loss <1%: BPF probes are widely recommended in HPC 

• Performance loss 1%-3%: BPF probes are recommended in qualified circumstances 

• Performance loss >3%: BPF probes should be revised until performance is acceptable 

 

4.1. Test Environment 
Eight compute nodes with identical hardware were reserved for testing. They were 

connected to an InfiniBand fabric composed of FDR and EDR switches in a CLOS network 

topology (i.e., a fat-tree topology with multiple roots). The nodes’ hardware characteristics were 

as follows: 
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Node 
Model Dell PowerEdge C6320 
Sockets 2 
Processor 
Model Intel Xeon E5-2680 v4 
Codename Broadwell 
Cores 14 
Base Frequency 2.4 GHz 
Turbo Frequency 3.3 GHz 
L2 Cache 14 x 256 KiB 
L3 Cache 35 MiB 
Memory 
Size 128 GB (8 x 16 GB DIMMs) 
Type DDR4 
Speed 2400 MT/s 
Local Disk 
Disk count 1 
Disk Size 1 TB 
Disk Type SATA 
Disk Speed 7200 RPM 
Ethernet 
NIC Model Intel 82599ES Dual-port SFI/SFP+ 
Speed 10GbE 
InfiniBand 
NIC Model Mellanox ConnectX-3 
Speed 56 Gb/sec (4X FDR) 

 

Figure 15. Hardware Specifications for Compute Nodes 
 

A new operating system image was built that supported BPF tools, benchmarking 

software, HPC scheduling, centralized storage, and the InfiniBand fabric. A provisioning server 

presented this image to the compute nodes, which mounted the image as read-only root to ensure 

it was identical and unchangeable across all compute nodes. The provisioning server also 

provided writable partitions that were bind-mounted onto key locations using /etc/rwtab and 

/etc/statetab. 

The operating system included the following software of interest: 
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Software Description Version 
bcc-tools BPF Compiler Collection and Tools 0.8.0-4.el8 
bpftrace BPF Tracer 0.9-3.el8 
gcc GNU Compiler Collection 8.3.1-4.5.el8 
kernel Linux Kernel 4.18.0-147.5.1.el8_1 
libibverbs Libraries for InfiniBand verbs support 22.3 
openblas Linear algebra library 0.3.3-2.el8 
openmpi Message passing library 4.0.1-3.el8 
rdma-core Drivers for InfiniBand support 22.3 
slurmd HPC scheduling client 19.05.0 
HPL High-Performance Linpack Benchmark 2.3 (netlib) 

 

Figure 16. List of Key Software and Versions on Compute Nodes 
 

The Intel cores in these compute nodes were of the Broadwell generation. These were 

touted to have up to 16 floating-point operations per clock cycle because of the new fuse-

multiply-add (FMA) instruction, but real-world runs have shown lower results because the 

instruction wasn’t as generally applicable as other instructions like AVX2. For this analysis, the 

cores were estimated to provide 12 floating-point operations per cycle. 

Each compute node’s theoretical max “flops,” or floating-point operations per second, is 

the product of its total processor cores, clock speed (GHz), and floating-point operations per 

cycle. When estimating 12 operations per cycle, the compute nodes for this analysis had an 

estimated theoretical max of 806 gigaflops per node. 

4.2. Benchmarking Software 
A series of HPL benchmarks were launched on a set of compute nodes, both without and 

with BPF probes attached, to determine to what degree the probes affected performance. 

HPL stands for High-Performance Linpack, and this benchmark is used to calculate the 

top-performing supercomputers in the world. It essentially uses linear algebra techniques to solve 

a series of polynomial equations. The administrator must optimize the software and problem set 

to obtain best results. This can be done through compiler options and HPL parameters such as 

problem size, block size, and process geometry. An in-depth discussion of these optimization 

techniques is outside the scope of this paper, but a reasonable HPL baseline should obtain 75% 

to 85% of the theoretical max flops of a compute node. 
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The HPL parameters and characteristics for each grouping of nodes were as follows: 

Count Prob. Size Blocks P Q Cores Memory Used Theoretical Max GFlops 
1 node 98000 248 4 7 28 76 GB 806.4 
2 nodes 140000 248 7 8 56 156 GB 1612.8 
4 nodes 200000 248 8 14 112 320 GB 3225.6 
8 nodes 280000 248 14 16 224 627 GB 6451.2 

 

Figure 17. HPL Parameters and Characteristics Per Node Grouping 
 

Using the eight compute nodes, the author ran a total of 32 HPL benchmark tests. First, 

each individual compute node ran the benchmark. Next, the nodes were grouped into pairs to run 

the benchmark together. Next, they were grouped into fours. Finally, all eight nodes ran the 

benchmark as a single cluster, twice. These tests were all repeated with BPF probes attached. 

Those repeated tests also ran a script that simulated low-profile attacks that the BPF probes were 

intended to detect. 

4.3. BPF probes 
The BPF execution engine is fast, but it cannot make up for BPF probes that are 

frequently fired or inherently slow. If a probe is attached to an event that fires millions of times 

per second, the overhead will add up. In some cases, tracing malloc() or free() will slow the 

target application tenfold or more (Gregg, 2020 January). In contrast, an ideal BPF probe will 

fire infrequently and provide high-value data. 

Before writing a BPF probe, it is important to determine the question that needs to be 

answered. These are the questions that the probes of this performance analysis were written to 

answer: 

• Are compute nodes attempting to send beacons to external systems? 

• Are compute nodes running cryptocurrency miners? 

• Are compute nodes the source of any suspicious lateral movements? 

• Are compute node processes attempting to escalate privileges? 

• Are compute nodes using an SSH proxy to connect to external systems? 

To this end, four bpftrace scripts were written: dnssnoop.bt, pamsnoop.bt, sshtunnel.bt, 

and tcpconnect_filter.sh. These scripts produced logs in a key-value format for easy parsing. All 
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scripts output the timestamp, script type (dns, pam, sshproxy, tcp) and the PID, UID, and 

command of the process that caused the probe to fire. Each script also output additional data for 

its unique type. 

The first script, dnssnoop.bt, logged DNS queries by tracing the relevant function calls in 

the GNU C library. It took a UID as its first argument on the command line to log only the DNS 

queries of a given user. 

dnssnoop.bt 
#!/usr/bin/bpftrace -Bline 
 
// Trace glibc for any dns queries by the user 
 
uprobe:/lib64/libc.so.6:getaddrinfo, 
uprobe:/lib64/libc.so.6:gethostbyname, 
uprobe:/lib64/libc.so.6:gethostbyname2 
/uid == $1 / 
{ 
  time("%Y-%m-%d %H:%M:%S "); 
  printf("type=dns pid=%d uid=%d comm=%s query=%s\n", pid, uid, comm, 
str(arg0)); 
} 

 

Figure 18. Content of dnssnoop.bt Script 
 

The second script, pamsnoop.bt, detected processes changing from one user to another by 

tracing Linux PAM, the library responsible for handling authentication tasks. Its first argument 

on the command line specified the UID to monitor. It logged both the original user and the new 

user (target) associated with the process. It also logged the return value of the traced function. 

 

 

 

 

 

 

 

 



© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights. 

Securing the Soft Underbelly of a Supercomputer with BPF Probes 18 

 

   
Billy	Wilson,	billy_wilson@byu.edu	

pamsnoop.bt 
#!/usr/bin/bpftrace -Bline 
 
// Trace PAM library to detect when a user changes to another user 
 
uprobe:/lib64/libpam.so.0:pam_modutil_getpwnam 
/uid == $1/ 
{ 
  @seen[tid] = 1; 
  @uid[tid] = uid; 
  @user[tid] = str(arg1); 
} 
 
uprobe:/lib64/libpam.so.0:pam_modutil_getpwnam 
/@seen[tid] && uid != @uid[tid]/ 
{ 
  time("%Y-%m-%d %H:%M:%S "); 
  printf("type=pam pid=%d uid=%d comm=%s ", pid, uid, comm); 
  printf("user=%s target=%s retval=%d\n", @user[tid], str(arg1), retval); 
} 
 
 
END 
{ 
  clear(@seen); 
  clear(@uid); 
  clear(@user); 
}  

 

Figure 19. Content of pamsnoop.bt Script 
 

The third script, sshtunnel.bt, detected when SSH was used to forward TCP ports. TCP 

port forwarding is a built-in SSH feature that allows someone to use an SSH server as a proxy to 

reach external resources. This feature can be disabled on SSH servers with the 

AllowTCPForwarding family of SSH options, but it is on by default and often left that way. 

The script detected port forwarding by tracing the inet_sock_set_state() syscall and 

logging whenever an SSH client changed a socket to a LISTEN state. Note that while SSH 

servers regularly open listening ports, a client opening a listening port is a tell-tale sign of port 

forwarding. 

Specifically, the script detected local or dynamic port forwarding. Local port forwarding 

specifies an SSH server, a remote host and port to connect to, and a local port to open. Any 

network connections to the local port will be forwarded through the SSH server to the remote 

host and port. Dynamic port forwarding turns the SSH client into a SOCKS proxy, allowing 

software to connect to the local port and forward all traffic through an SSH server. 
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sshtunnel.bt 
#!/usr/bin/bpftrace -Bline 
 
// Trace inet_sock_set_state() to detect SSH clients attempting local and 
dynamic port forwarding 
 
tracepoint:sock:inet_sock_set_state 
/comm == "ssh"/ 
{ 
  if (args->newstate == 10 && args->protocol == 6) 
  { 
    time("%Y-%m-%d %H:%M:%S "); 
    printf("type=sshproxy pid=%d uid=%d comm=%s listening_port=%d \n", pid, 
uid, comm, args->sport); 
  } 
} 

 

Figure 20. Content of sshtunnel.bt Script 
 

The final script, tcpconnect_filter.sh, was the most complex of the four. This was because 

the version of bpftrace available on RHEL 8.1 was still missing key functionality for network 

tracing. It lacked features such as integer casting, strncmp(), and an array[] operator, making it 

impossible to retrieve data from some of the most valuable networking data structures. 

Dale Hamel wrote the original tcpconnect.bt, which traced the tcp_connect() kernel 

function to detect all TCP connects (Hamel, 2018). The script was modified for this research, 

which included wrapping it in a Bash script to enable the whitelisting of a subnet. This allowed 

the compute cluster’s subnet to be whitelisted so that only TCP connections to external resources 

would cause probes to fire. 

Also note that this script only traced TCP traffic. Why not trace other protocols like UDP 

in this fashion? Since UDP is a stateless protocol, it will cause the probe to fire on every sent 

message. 
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tcpconnect_filter.sh 
#!/usr/bin/bash 
 
if [ "$#" -ne 2 ]; then 
  echo "Usage: $0 [whitelist-network-address] [whitelist-subnet-mask]" 
  exit 1 
fi 
 
IFS=. read -s n1 n2 n3 n4 <<< $(echo $1) 
IFS=. read -s s1 s2 s3 s4 <<< $(echo $2) 
 
/usr/bin/bpftrace -Bline -e' 
 
#include <net/sock.h> 
 
kprobe:tcp_connect 
{ 
  $sk = ((struct sock *) arg0); 
  $inet_family = $sk->__sk_common.skc_family; 
  $af_inet = 2; 
 
  if ($inet_family == $af_inet) { 
    $daddr = $sk->__sk_common.skc_daddr; 
    $saddr = $sk->__sk_common.skc_rcv_saddr; 
    $sport = $sk->__sk_common.skc_num; 
    $dport = $sk->__sk_common.skc_dport; 
 
    // Destination port is big endian, it must be flipped 
    $dport = ($dport >> 8) | (($dport << 8) & 0x00FF00); 
 
    // Filter Network Address 
    $filter_addr = ($1) + ($2 << 8) + ($3 << 16) + ($4 << 24); 
 
    // Filter Netmask 
    $filter_netmask = ($5) + ($6 << 8) + ($7 << 16) + ($8 << 24); 
 
    if (($daddr & $filter_netmask) != ($filter_addr & $filter_netmask)) { 
 
      time("%Y-%m-%d %H:%M:%S "); 
      printf("type=tcp_connect pid=%d uid=%d comm=%s ", pid, uid, comm); 
      printf("saddr=%s sport=%d daddr=%s dport=%d\n", ntop($af_inet, 
$saddr), $sport, ntop($af_inet, $daddr), $dport); 
    } 
  } 
}' $n1 $n2 $n3 $n4 $s1 $s2 $s3 $s4 

 

Figure 21. Content of tcpconnect_filter.sh Script 
 

These scripts were copied to each compute node and executed at the beginning of 

benchmarks that measured BPF performance impact. Their logs were redirected to files on a 

shared storage system. 
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4.4. Simulating Low-Profile Attacks 
For tests with BPF probes attached, a Bash script was launched on participating nodes 

that simulated low-profile attacks. The script produced a timestamped log for each action it took. 

Every 1 to 15 seconds, it would perform one of the following actions as an unprivileged user: 

• Trigger a DNS query of an external domain 

• Escalate to a privileged user 

• Open an SSH tunnel 

• Attempt a TCP connection to a random private IP 

For DNS queries, the script randomly chose a domain from a list, many of them 

representing common bitcoin mining sites. It then chose from one of five command-line tools to 

trigger the query: curl, wget, python, dig, or host. 

For privilege escalation, the unprivileged user was temporarily given privileges to use 

sudo to escalate to the root user on the compute nodes. The script ran a basic command as root 

after escalation. This simulated an adversary who had obtained control over an account with 

sudo privileges and subsequently escalated to root via regular administrative techniques. It did 

not represent privilege escalation via software flaw exploitations.  

For SSH tunneling, the script randomly chose between local port forwarding and 

dynamic port forwarding. Local port forwards connected to an SSH server in the DMZ and 

opened a tunnel to https://ubuntu.com using a random local port. Dynamic port forwards 

connected to that same server and opened a random local port for SOCKS proxy use. 

For TCP connection attempts, the script used Bash’s built-in /dev/tcp feature. This is not 

an actual device on the filesystem, but a device emulated by Bash for easy interaction with TCP 

sockets. Any I/O to /dev/tcp/[host]/[port] triggers a TCP connection attempt to that host and port. 

The script chose a random host in the 192.168.0.0/16 subnet and a random port, attempting to 

connect to it over TCP. 

The full body of the low-profile attack script can be found in Appendix A. 
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5. Results 
The results of the benchmarks were analyzed both from a performance perspective and a 

detection perspective to show whether BPF tracing scripts can sufficiently detect attacks on 

compute nodes without degrading performance for researchers. 

5.1. Performance Results 
HPL results indicated that the BPF probes had less than 1% impact on compute node 

performance. In many cases, HPL benchmarks with BPF enabled recorded higher gigaflops than 

the non-BPF benchmarks. The author did not interpret these gains to mean that BPF probes 

improve performance, as such a claim for a tracing tool would make no sense. At best, these 

discrepancies suggested that BPF had nearly zero performance impact on compute nodes. 

Perhaps more realistically, the gains may have suggested that other factors besides BPF also 

influenced compute node performance. Possibilities include thermal fluctuations that impact 

Intel Turbo Mode, congestion on the InfiniBand fabric, and normal jitter from system processes. 

Each chart below was scaled based on the theoretical max gigaflops for a node count. 

Thus, the vertical axis for the single-node chart has a maximum of 806.4 gigaflops, while the 

vertical axis for the eight-node chart has a maximum of 6451.2 gigaflops, which is eight times 

greater. Performance percentages are calculated against these maximums. 

For single-node runs, Node 1 suffered a performance loss of 0.41%, the greatest loss of 

all tests apart from a discrepancy with eight-node runs. Node 8 was the only node with no 

performance loss, instead recording a gain of 0.02%. 



© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights. 

Securing the Soft Underbelly of a Supercomputer with BPF Probes 23 

 

   
Billy	Wilson,	billy_wilson@byu.edu	

 

 

Figure 22. Chart of Single Node HPL Gigaflops 
 

For two-node runs, there were no instances of BPF causing performance loss. Node pairs 

[1-2] and [7-8] tied for the smallest gain of 0.12%, while node pair [3-4] had the largest gain of 

0.65%. 

 

 

Figure 23. Chart of Two-Node HPL Gigaflops 
 

The four-node runs likewise recorded small gains for BPF-enabled runs, with nodes [1-4] 

gaining 0.09% and nodes [5-8] gaining 0.13%. 
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Figure 24. Chart of Four-Node HPL Gigaflops 
 

The eight-node HPL results were unusual enough to warrant discussion. These 

benchmarks were run twice, meaning that there were two non-BPF results and two BPF results. 

Depending on how they were paired, the benchmarks either supported that BPF had low 

performance impact or painted a picture of unexplainable performance differences from run to 

run. 

The four eight-node benchmarks can be paired in two ways. The chart on the left below 

in Figure 25 shows the results when the low-performing non-BPF and BPF runs are paired 

together and the high-performing non-BPF and BPF runs are paired together. The chart on the 

right show the results when the non-BPF and BPF runs that ran first are paired together and the 

non-BPF and BPF runs that ran second are paired together. Depending on how the results are 

paired, very different outcomes are seen. 

 

 

Figure 25. Eight-Node HPL Gigaflops, Paired by Performance and Execution Order 
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When paired by lows and highs, enabling BPF caused a performance loss of 0.21% in the 

“low” benchmarks and a gain of 0.05% in the “high” benchmarks. However, when paired 

chronologically, enabling BPF caused a 1.62% loss in the first benchmarks and a 1.46% gain in 

the second benchmarks.  

Put differently, the results of the two non-BPF runs that used identical hardware and 

software had a delta of 100 gigaflops, and likewise for the two runs with BPF enabled. Such a 

delta would only make sense if outside factors such as equipment temperatures or network 

congestion influenced the results. 

Because of these discrepancies, the author found the eight-node results to be 

inconclusive. Perhaps the larger conclusion to be drawn is that BPF traces caused a performance 

change somewhere between a 1.62% loss or 1.46% gain for eight-node runs. Taking the averages 

of the non-BPF and BPF benchmarks, performance loss was only 0.08%. Ultimately, the 

discrepancies are best resolved with further benchmark testing.  

A table of all performance results can be found in Appendix B. 

5.2. Detection Results 
The logs of the four bpftrace scripts were cross-checked against logs from the low-profile 

attack script to determine whether the BPF probes were adequate in detecting unwanted 

behavior. 

 Overall, the author found that while the performance of the bpftrace scripts was 

exemplary, the fidelity of the scripts was hampered by excess noise. Scripts often produced 

multiple logs for a single action of the attack script. They also produced logs that were triggered 

by the benchmark software itself. 

The dnssnoop.bt script created logs not only for domain-based host lookups but also for 

IP-based host lookups, including those handled by the /etc/hosts file. This was especially 

apparent as HPL began IPC communications with itself and other cluster members. Logged 

queries included all participating nodes, as well as domains and IPs that pointed to localhost. 
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dnssnoop.bt Log Excerpt 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-1 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-2 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-2 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-3 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-3 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-4 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-4 
… 
2020-04-27 13:55:13 type=dns pid=24685 uid=12345 comm=xhpl query=node-1 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=localhost 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=192.168.10.11 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=fe80::dead:beef:dead:beef 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=192.168.10.11 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=fe80::dead:beef:dead:beef 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=127.0.0.1 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=::1 

 

Figure 26. Log Excerpt of dnssnoop.bt 
 

When DNS queries involved dig or host commands, the query was obfuscated. The 

author suspects that this was due to the query being routed through systemd-resolved but was 

unable to confirm this. 

Low Profile Attack Log Excerpt 
2020-04-27 15:47:28 type=dns comm=dig url=reuters.com 

dnssnoop.bt Log Excerpt 
2020-04-27 15:47:29 type=dns pid=5997 uid=12345 comm=isc-worker0000 
query=127.0.0.1 
2020-04-27 15:47:29 type=dns pid=5997 uid=12345 comm=isc-worker0000 
query=::1 

 

Figure 27. Correlation of dig Execution with dnssnoop.bt Log 
 
 However, all queries using wget, curl, and python produced one accurate log per action. 
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Low Profile Attack Log Excerpt 
2020-04-27 14:33:11 type=dns comm=wget url=btc.top 
2020-04-27 14:34:28 type=dns comm=python url=nanopool.org 
2020-04-27 14:36:17 type=dns comm=curl url=nanopool.org 

dnssnoop.bt Log Excerpt 
2020-04-27 14:33:13 type=dns pid=1401 uid=12345 comm=wget query=btc.top 
2020-04-27 14:34:30 type=dns pid=1491 uid=12345 comm=python 
query=nanopool.org 
2020-04-27 14:36:19 type=dns pid=1752 uid=12345 comm=curl query=nanopool.org 

 

Figure 28. Correlation of wget, python, and curl with dnssnoop.bt Log 
 
 The pamsnoop.bt script successfully detected sudo attempts, with the caveat that three 

logs were produced per sudo attempt. For every set of triplets, one log had a non-zero return 

value, so it should be possible to reduce log output to one line per successful sudo attempt when 

filtered by the return value. 

Low Profile Attack Log Excerpt 
2020-04-27 16:23:16 type=sudo comm=sudo user=billy 

pamsnoop.bt Log Excerpt 
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root 
retval=0 
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root 
retval=0 
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root 
retval=-810366576 

 

Figure 29. Correlation of sudo Attempt with pamsnoop.bt Log 
 
 The sshtunnel.bt successfully detected all SSH port forwarding connections, but it 

produced two logs per connection. 

Low Profile Attack Log Excerpt 
2020-04-27 14:02:47 type=ssh_proxy comm=ssh port_fwd_options=-D 43323 
2020-04-27 14:02:59 type=ssh_proxy comm=ssh port_fwd_options=-L 
32337:ubuntu.com:443 

sshtunnel.bt Log Excerpt 
2020-04-27 14:02:49 type=sshproxy pid=31319 uid=12345 comm=ssh 
listening_port=43323 
2020-04-27 14:02:49 type=sshproxy pid=31319 uid=12345 comm=ssh 
listening_port=43323 
2020-04-27 14:03:01 type=sshproxy pid=31340 uid=12345 comm=ssh 
listening_port=32337 
2020-04-27 14:03:01 type=sshproxy pid=31340 uid=12345 comm=ssh 
listening_port=32337 

  

Figure 30. Correlation of SSH Port Forwarding Attempt with sshtunnel.bt Log 
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Finally, the tcpconnect_filter.sh script successfully detected all TCP connection attempts 

to resources outside of the compute subnet. The fact that no compute nodes were included in the 

logs suggested that the subnet whitelist worked properly. One oversight was that the script did 

not exclude localhost TCP connections. 

tcpconnect_filter.sh Log Excerpt 
2020-04-27 13:55:12 type=tcp_connect pid=30335 uid=12345 comm=xhpl 
saddr=127.0.0.1 sport=40400 daddr=127.0.0.1 dport=46757 
2020-04-27 13:55:26 type=tcp_connect pid=30712 uid=12345 comm=wget 
saddr=192.168.10.11 sport=48552 daddr=47.254.4.118 dport=80 
2020-04-27 13:55:42 type=tcp_connect pid=30726 uid=12345 comm=curl 
saddr=192.168.10.11 sport=47822 daddr=47.52.122.155 dport=80 
2020-04-27 13:55:57 type=tcp_connect pid=30740 uid=12345 comm=bash 
saddr=192.168.10.11 sport=39408 daddr=192.168.144.84 dport=18044 
2020-04-27 13:56:31 type=tcp_connect pid=30782 uid=12345 comm=bash 
saddr=192.168.10.11 sport=38216 daddr=192.168.228.27 dport=31399 
2020-04-27 13:57:29 type=tcp_connect pid=30894 uid=12345 comm=ssh 
saddr=192.168.10.11 sport=42908 daddr=10.10.10.15 dport=22 

 

Figure 31. Log Excerpt of tcpconnect_filter.sh 
 

The table below provides an aggregated count of the logs across all runs. Each row pairs 

an attack log type with its associated bpftrace script log type. 

The dnssnoop.bt script proved the noisiest. It produced logs for /etc/hosts lookups, 

domain lookups, and IP lookups, as well as DNS queries performed by the attack script. The 

pamsnoop.bt script produced exactly three times as many logs as sudo attempts. The sshtunnel.bt 

script produced twice as many logs as SSH proxy attempts, minus one. For some reason, there 

was a single time when an ssh_proxy attack log produced only one bpftrace log. The 

tcpconnect_filter.sh script detected all TCP connections outside the subnet, including 

connections to the SSH server in the DMZ, but the script also errantly included the many 

localhost communications by HPL. 

Attack Script Type Attack Log Count bpftrace Script Bpftrace Log Count 
dns 1703 dnssnoop.bt 19627 
sudo 1720 pamsnoop.bt 5160 
ssh_proxy 1713 sshtunnel.bt 3425 
tcpconnect 1766 tcpconnect_filter.sh 4902 

 

Figure 32. Count Comparisons of Low-Profile Attack Logs and bpftrace Logs 
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6. Conclusions and Future Work 

The author recommends using BPF probes and specifically the bpftrace tool on HPC 

compute nodes for detecting malicious behavior. This recommendation is based on performance 

comparisons of single-node, two-node, and four-node HPL runs, both without and with BPF 

probes attached. 

In future performance analyses, researchers could control additional factors that cause 

variation in HPL results. One example is disabling Turbo Mode on Intel processors. Researchers 

could also perform HPL runs above four nodes, as the results of the eight-node HPL runs in this 

study were inconclusive.  

Future work should also focus on the improvement of bpftrace scripts, especially as new 

features become available in future Linux distributions. Upcoming features include integer 

casting, the strncmp() function, and the array[] operator2 (Gregg, 2020 April). These can be used 

to simplify the tracing scripts used in this research and reduce the amount of noise produced. 

This will be especially true for using the inet_sock_set_state() syscall. Although this 

syscall was traced for the sshtunnel.bt script, some of its most valuable data in its arguments 

remained unusable due to the lack of an array[] operator. Once the operator is available, for 

example, the tcpconnect_filter.bt script can be entirely rewritten to use this syscall instead of a 

less stable dynamic kernel probe. The sshtunnel.bt will also be able to log remote port 

forwarding in addition to local and dynamic port forwarding. 

The bpftrace scripts in the analysis were limited to TCP. It would be valuable to write 

tracing scripts for other protocols such as ICMP, UDP, and InfiniBand if it can be done without 

producing excessive noise. 

Security practitioners familiar with kernel code can use their knowledge to produce new 

bpftrace scripts catered to detect attack scenarios they see in the wild. As an example, Brendan 

Gregg used bpftrace to detect attempts to exploit a zero-day Docker vulnerability by tracing the 

uncommonly used renameat2() syscall (Gregg, 2020 January). Using the signal() function of 

 
2 Array operator functionality was merged into the master branch of bpftrace on 21 April 2019 and will hopefully 
be available in RHEL 8.2. 
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bpftrace, an administrator today could write tracing scripts that proactively kill processes 

entering syscalls or functions known to be associated with bad behavior. 

The latest bpftrace versions also support cgroups, making it easier to integrate tracing 

tools with HPC scheduler jobs. Using cgroups, a script can potentially filter processes associated 

with specific jobs dispatched by users. 

Other emerging technologies based on BPF should also be investigated. One promising 

patch set is the Kernel Runtime Security Instrumentation, or KRSI. Developed at Google, this 

Linux security module instruments LSM hooks to provide much greater auditing configurability 

than what Linux’s audit subsystem provides (Corbet, 2019). 

The performance and detection results of the trace scripts used in this analysis support 

that BPF tracing tools are ready for use in detecting malicious actors in HPC environments. The 

trace scripts logged activity from all the simulated attacks and did not degrade the performance 

of compute nodes beyond 1%, excluding the discrepancies of the eight-node runs. Further 

refinement of the scripts will eliminate duplicate and innocuous logging, and newly authored 

scripts can target new categories of attacks. These developments will contribute to a high-fidelity 

detection and response solution built into the Linux kernel that protects both the security and 

performance of supercomputers. 

 

 

 

 

 

 

 

 

 

 



© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights. 

Securing the Soft Underbelly of a Supercomputer with BPF Probes 31 

 

   
Billy	Wilson,	billy_wilson@byu.edu	

References 
Chang ,Y. T. S., Jin, H., & Bauer, J. (2016, November). Methodology and Application of HPC 

I/O Characterization with MPIProf and IOT. In 2016 5th Workshop on Extreme-Scale 

Programming Tools (ESPT). IEEE, 2016. 

Corbet, J. (2012, January). Yet another new approach to seccomp. LWN. Retrieved 10 April 2020 

from https://lwn.net/Articles/475043/ 

Corbet, J. (2014, May). BPF: the universal in-kernel virtual machine. LWN. Retrieved 2 

December 2019 from https://lwn.net/Articles/599755/ 

Corbet, J. (2014, July). Extending extended BPF. LWN. Retrieved 2 December 2019 from 

https://lwn.net/Articles/603983/ 

Corbet, J. (2019, December). KRSI — the other BPF security module. LWN. Retrieved 2 May 

2020 from https://lwn.net/Articles/808048/ 

Edge, J. (2011. July). Seccomp filters: No clear path. LWN. Retrieved 10 April 2020 from 

https://lwn.net/Articles/450291/ 

Fleming, M. (2017, December). A thorough introduction to eBPF. LWN. Retrieved 2 December 

2019 from https://lwn.net/Articles/742082/ 

Gregg, B. (2017, January). BPF: Tracing and More. Presented at linux conf au, Hobart, Australia. 

Retrieved 28 March 2020 from https://www.youtube.com/watch?v=JRFNIKUROPE 

Gregg, B. (2018, September). gethostlatency.bt [Computer software]. Retrieved 28 March 2020 

from https://github.com/iovisor/bpftrace/blob/master/tools/gethostlatency.bt 

Gregg, B. (2020, January). BPF Performance Tools: Linux system and Application 

Observability. United States: Addison-Wesley. 

Gregg, B., et al. (2020, April). bpftrace Reference Guide. GitHub. Retrieved 1 May 2020 from 

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md  

Gregg, B., & Maestretti, A. (2017, February). Security Monitoring with eBPF. In BSidesSF 

2017, San Francisco, CA. Retrieved 28 March 2020 from 

https://www.youtube.com/watch?v=44nV6Mj11uw 



© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights. 

Securing the Soft Underbelly of a Supercomputer with BPF Probes 32 

 

   
Billy	Wilson,	billy_wilson@byu.edu	

Hamel, D. (2018, November). tcpconnect.bt [Compute software]. Retrieved 28 March 2020 from 

https://github.com/iovisor/bpftrace/blob/master/tools/tcpconnect.bt 

Kiepert, J. (2013, May). Creating a Raspberry Pi-based Beowulf Cluster. Department of 

Electrical and Computer Engineering, Boise State University, Boise, ID. 

McCanne, S., & Jacobson, V. (1992, December). The BSD Packet Filter: A New Architecture 

for User-level Packet Capture. In 1993 Winter USENIX Conference. San Diego, 1993. 

Retrieved 10 April 2020 from https://www.tcpdump.org/papers/bpf-usenix93.pdf 

National Institute for Standards and Technology. (2016). HPC Security Best Practices: Strengths 

and Weaknesses. In NSCI: High-Performance Computing Security Workshop, 

Gaithersburg, MD. 

Starovoitov, A. (2014, March). net: filter: rework/optimize internal BPF interpreter's instruction 

set. In kernel/git/torvalds/linux.git [software]. Retrieved 10 April 2020 from 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed33

1a275e9bf5a49e6d0fd55dffc551b8 

Starovoitov, A. (2014, May). Tracing: accelerate tracing filters with BPF. In net-next [mailing 

list]. Retrieved 10 April 2020 from https://lwn.net/Articles/598545/ 

TOP500. (2019, November). TOP500 List - November 2019. Retrieved 21 March 2020 from 

https://www.top500.org/list/2019/11/ 

XSEDE. (n.d.). XSEDE Federation. Retrieved March 21, 2020, from 

https://www.xsede.org/web/xsede-old/xsede-federation  



© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights. 

Securing the Soft Underbelly of a Supercomputer with BPF Probes 33 

 

   
Billy	Wilson,	billy_wilson@byu.edu	

Appendix A: Low-Profile Attack Script 
	

low_profile.sh	
#!/usr/bin/bash 
 
MIN_SLEEP=1 
MAX_SLEEP=15 
NONROOT_USER=someuser 
DMZ_IP=10.1.2.3 
URLPOOL_BGN=$(awk '$1 == "###URLPOOL_BGN###" { print NR + 1}' $0) 
URLPOOL_END=$(awk '$1 == "###URLPOOL_END###" { print NR - 1}' $0) 
 
 
dns_request() { 
 
  local urlpool_line=$(shuf -i $URLPOOL_BGN-$URLPOOL_END -n 1) 
  local dns_query=$(awk "NR == $urlpool_line" $0) 
  local choice=$(shuf -i 0-4 -n 1) 
 
  case $choice in 
    0) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=wget url=$dns_query" 
      sudo -u $NONROOT_USER wget -T1 --tries 1 -O /dev/null $dns_query 
>/dev/null 2>&1 
      ;; 
    1) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=curl url=$dns_query" 
      sudo -u $NONROOT_USER curl -m1 $dns_query >/dev/null 2>&1 
      ;; 
    2) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=dig url=$dns_query" 
      sudo -u $NONROOT_USER dig +tries=1 +time=1 $dns_query >/dev/null 2>&1 
      ;; 
    3) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=host url=$dns_query" 
      sudo -u $NONROOT_USER host -W1 $dns_query >/dev/null 2>&1 
      ;; 
    4) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=python url=$dns_query" 
      sudo -u $NONROOT_USER python -c "import socket; 
socket.setdefaulttimeout(1); socket.gethostbyname('$dns_query')" >/dev/null 
2>&1 
      ;; 
  esac 
} 
 
 
run_sudo() { 
  # This test depends on the $NONROOT_USER being 
  # able to sudo without a password 
 
  date +"%Y-%m-%d %H:%M:%S type=sudo comm=sudo user=$NONROOT_USER" 
  sudo -u $NONROOT_USER sudo id >/dev/null 2>&1 
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} 
 
 
tcp_connect_attempt() { 
 
  local o1=192 
  local o2=168 
  local o3=$(shuf -i 0-255 -n 1) 
  local o4=$(shuf -i 0-255 -n 1) 
  local port=$(shuf -i 1-61000 -n 1) 
 
  date +"%Y-%m-%d %H:%M:%S type=tcp_connect comm=bash ip=$o1.$o2.$o3.$o4 
port=$port" 
  timeout 1 sudo -u $NONROOT_USER bash -c "echo 
>/dev/tcp/$o1.$o2.$o3.$o4/$port" 
 
} 
 
 
ssh_proxy() { 
 
  local choice=$(shuf -i 0-1 -n 1) 
  local port=$(shuf -i 10000-60000 -n 1) 
 
  case $choice in 
    0) 
      local port_fwd_opt="-L $port:ubuntu.com:443" 
      ;; 
    1) 
      local port_fwd_opt="-D $port" 
      ;; 
  esac 
 
  date +"%Y-%m-%d %H:%M:%S type=ssh_proxy comm=ssh 
port_fwd_options=$port_fwd_opt" 
  sudo -u $NONROOT_USER ssh -n -o ConnectTimeout=5 -o ConnectionAttempts=1 
$port_fwd_opt $DMZ_IP 'id' >/dev/null 2>&1 
 
} 
 
 
while : 
do 
 
  interval=$(shuf -i $MIN_SLEEP-$MAX_SLEEP -n 1) 
  sleep $interval || exit 1 
 
  choice=$(shuf -i 0-3 -n 1) 
  case $choice in 
  0) 
    dns_request 
    ;; 
  1) 
    run_sudo 
    ;; 
  2) 
    tcp_connect_attempt 
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    ;; 
  3) 
    ssh_proxy 
    ;; 
  esac 
 
done 
 
exit 0 
 
# This script selects a url from the list below. 
# You can add urls, but don't change the tags 
 
###URLPOOL_BGN### 
poolin.com 
f2pool.com 
btc.com 
antpool.com 
viabtc.com 
1thash.top 
slushpool.com 
btc.top 
bitfury.com 
minexmr.com 
nanopool.org 
prohashing.com 
reuters.com 
baidu.com 
google.com 
reddit.com 
###URLPOOL_END### 
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Appendix B: HPL Results 
	

Nodes Non-BPF Run BPF Run Comparison of Non-BPF 
and BPF Run Performance Seconds GFlops Pct Max Seconds GFlops Pct Max 

1 924.45 678.75 84.17% 928.95 675.47 83.76% -0.41% 
2 927.19 676.75 83.92% 928.91 675.49 83.77% -0.16% 
3 921.79 680.71 84.41% 922.81 679.96 84.32% -0.09% 
4 956.43 656.06 81.36% 960.79 653.09 80.99% -0.37% 
5 889.83 705.16 87.45% 890.34 704.76 87.40% -0.05% 
6 911.6 688.32 85.36% 911.69 688.26 85.35% -0.01% 
7 901.95 695.69 86.27% 904.9 693.42 85.99% -0.28% 
8 897.25 699.33 86.72% 897.05 699.49 86.74% 0.02% 
[1-2] 1357.69 1347.40 83.54% 1355.80 1349.30 83.66% 0.12% 
[3-4] 1366.23 1339.00 83.02% 1355.58 1349.50 83.67% 0.65% 
[5-6] 1335.42 1369.90 84.94% 1330.99 1374.00 85.19% 0.25% 
[7-8] 1317.00 1389.00 86.12% 1315.13 1391.00 86.25% 0.12% 
[1-4] 2006.03 2658.70 82.42% 2003.93 2661.50 82.51% 0.09% 
[5-8] 1902.89 2802.80 86.89% 1900.05 2807.00 87.02% 0.13% 
[1-8] 2735.62 5349.70 82.93% NA NA NA NA 
[1-8] 2791.96 5241.80 81.25% NA NA NA NA 
[1-8] NA NA NA 2790.09 5336.10 82.71% NA 
[1-8] NA NA NA 2742.62 5245.30 81.31% NA 
	

 


