
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"SIEM with Tactical Analytics (Security 555)"
at http://www.giac.org/registration/gcda

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcda

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with
BPF Probes

GIAC (GCDA) Gold Certification

Author: Billy Wilson, billy_wilson@byu.edu
Advisor: Sally Vandeven

Accepted: 5/26/2020

Abstract

High-performance computing (HPC) sites have a mission to help researchers obtain results as
quickly as possible, but research contracts often require security controls that degrade
performance. One standard solution is to secure a set of login nodes that mediate access to an
enclave of lightly monitored compute nodes, referred to as “the soft underbelly of a
supercomputer” by one DoD representative (National, 2016). Recent advances in the BPF
subsystem, a Linux tracing technology, have provided a new means to monitor compute nodes
with minimal performance degradation. Well-crafted BPF traces can detect malicious activity on
an HPC cluster without slowing down systems or the researchers that depend on them. In this
paper, a series of low-profile attacks are conducted against a compute cluster under heavy
computational load, and BPF probes are attached to detect the attacks. The probes successfully
log all attacks, and performance loss is less than one percent for all benchmarks save for one
inconclusive set.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 2

Billy	Wilson,	billy_wilson@byu.edu	

1. Introduction

In high-performance computing (HPC), many organizations that facilitate research

provide a remote shell for writing, compiling, and executing arbitrary code. The code runs on a

networked cluster of servers with hundreds of thousands of processor cores and has access to

petabytes of storage. Information security practitioners must secure these environments for

government research contracts, but any solutions they architect cannot reduce bare-metal cluster

performance by more than a defined percentage, possibly as low as 1%. These limitations impact

the security of HPC sites in government agencies, academia, and the private sector.

Colloquially known as “supercomputers,” HPC clusters handle computational problems

that are too large or too slow for conventional computers. Cluster sizes range from dozens to tens

of thousands of “nodes” (HPC parlance for servers). Today, the Summit supercomputer at the

Department of Energy’s Oak Ridge National Laboratory ranks #1 on the Top500

Supercomputing list, touting over 2,400,000 processor cores and peaking at 200 petaflops (i.e.,

two hundred quadrillion floating-point operations per second) (TOP500, 2019).

In practice, large clusters share their resources among many users, including those not

employed by the host institution. For example, the XSEDE Federation is a cyberinfrastructure

ecosystem composed of 36 different institutions across the United States, providing HPC

resources to the science and engineering community as a single coordinated effort (XSEDE,

n.d.). This author administers an HPC cluster at an academic institution, which serves not only

the campus community but also collaborators from other organizations across the world.

A current approach to HPC security is to lock down a few login nodes with required

security controls and only lightly monitor the army of isolated compute nodes behind them. At a

NIST Workshop on HPC Security in 2016, a DoD representative described these compute nodes

as the “soft underbelly” of supercomputing (National, 2016). Detecting malicious activity on the

compute nodes themselves while maintaining performance requirements was considered an

unsolved problem.

Three years ago, Brendan Gregg announced that “superpowers have finally come to

Linux” in the form of Berkeley Packet Filter (BPF) tracing tools (Gregg, 2017). Although

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 3

Billy	Wilson,	billy_wilson@byu.edu	

systems administrators and analysts had used BPF to filter network packets for decades, Linux

kernel developers had both improved its performance and opened it up to general usage through

a new bpf() syscall. Thus, BPF was no longer a network tracing tool but a system-wide tracing

tool. Gregg has since demonstrated the value of BPF tracing to security practitioners at

subsequent conferences (Gregg & Maestretti, 2017).

This paper has two primary purposes. The first is to introduce BPF as a general tracing

tool for detecting malicious activity on Linux systems. A summary of recent developments in

BPF and an explanation of its usage is provided. Example scripts are also included that

demonstrate tracing open TTYs, network activity, filesystem activity, and Bash commands.

The second purpose is to evaluate BPF as a security tool for production HPC clusters,

both from a performance perspective and a detection perspective. A security monitoring agent

that affects performance by even one or two percent has a low chance of adoption on HPC

clusters that prioritize fast research results. Should it be adopted, there must be an assurance that

the agent will not slow down compute nodes and that it will detect the attacks it purports to

defend against.

To validate BPF, a series of low-profile attacks are conducted against eight compute

nodes running a series of benchmarks, both without and with BPF probes attached. Benchmarks

without BPF probes are compared to benchmarks with BPF probes to determine the performance

loss. The logs of the BPF trace scripts are compared with attack script logs to determine the

attack detection rate.

2. HPC Cluster Architecture
A brief treatment of HPC cluster architecture helps illustrate the difficulties of monitoring

compute nodes.

The complexity of an HPC cluster can range from elementary to mind-boggling. At one

end of the spectrum, students can interconnect a stack of Raspberry Pis to make a Beowulf

cluster for educational purposes (Kiepert, 2013). At the other end is the NASA Advanced

Supercomputing Division, whose Pleiades cluster interconnects eleven thousand compute nodes

in an 11-dimensional hypercube topology for performance purposes (Chang, Jin & Bauer, 2016).

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 4

Billy	Wilson,	billy_wilson@byu.edu	

An HPC node provides a multi-compiler and multi-version environment intended to

support scientific software from many different disciplines. For example, the author administers

nodes that have eight versions of gcc, two versions of Intel compilers, five versions of CUDA

libraries, and three versions of Boost C++ libraries, not including additional variations when

compiled with MPI support.

Researchers initially authenticate to a “login” node session. From here, they can write,

compile, and debug arbitrary code. Once a researcher is ready to launch their software on the

compute nodes, they submit a “job” to the scheduler. The job specifies the resources needed, the

time required, and the commands to run. The scheduler maintains a queue of all jobs, dispatching

them to the compute nodes as time, resources, and fair share permit.

Figure 1. Job Submission Process

Compute node operating systems are installed using scalable provisioning technologies

such as PXE booting, Kickstart for thick provisioning, and read-only root NFS for thin

provisioning, among others. The nodes are also configured to mount central storage to make data

available for processing across a large set of nodes, with performance tiers ranging from archival

tape storage to high-performance parallel filesystems.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 5

Billy	Wilson,	billy_wilson@byu.edu	

Figure 2. HPC Provisioning and Storage

Firewalls and network monitors are typically not deployed for compute nodes. With

network speeds reaching tens of gigabits per second per node, or terabytes per second in

aggregate, host-based and network-based products can degrade performance and cause job

failures. Also, the network traffic itself is highly variable. Software may use traditional Ethernet

or high-bandwidth, low-latency fabrics such as InfiniBand and Omni-Path. The characteristics of

network traffic differ from software to software and even across the lifetime of a single piece of

software as it is developed on HPC systems.

These details highlight the following difficulties for the security practitioner:

• Compute nodes run arbitrary code;

• Compute nodes can access centralized research storage;

• Compute nodes produce highly variable network traffic;

• Compute nodes have fewer security controls for performance reasons; and

• Compute nodes produce terabytes of network traffic per second in aggregate.

3. BPF Introduction
Many security practitioners identify the filter expression of tcpdump as BPF, but this is

somewhat inaccurate. tcpdump transparently compiles the expression into BPF code. The actual

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 6

Billy	Wilson,	billy_wilson@byu.edu	

BPF bytecode can be dumped using the –d option. This bytecode is fed into a register-based

virtual machine that runs in the Linux kernel.

[root@m7-10-16 tools]# tcpdump -d 'host 192.168.10.1'
(000) ldh [14]
(001) jeq #0x800 jt 2 jf 6
(002) ld [28]
(003) jeq #0xc0a80a01 jt 12 jf 4
(004) ld [32]
(005) jeq #0xc0a80a01 jt 12 jf 13
(006) jeq #0x806 jt 8 jf 7
(007) jeq #0x8035 jt 8 jf 13
(008) ld [30]
(009) jeq #0xc0a80a01 jt 12 jf 10
(010) ld [40]
(011) jeq #0xc0a80a01 jt 12 jf 13
(012) ret #262144
(013) ret #0

Figure 3. Dump of BPF bytecode from tcpdump

 Originally implemented in 1992, the two-register virtual machine approach of “BSD

Packet Filter” was twenty to one hundred times faster than its competing packet filters, partly

because the implementation matched how the underlying RISC CPU operated, and partly

because of its improved buffer model (McCanne, 1992).

Support for BPF in Linux was added in the 2.5 development kernel and stayed largely

untouched for roughly a decade. In the last eight years, however, BPF has changed dramatically,

burgeoning into its own Linux subsystem. Many new terms have come and gone in that time, so

the history of those developments is briefly reviewed here to keep the reader current.

In 2012, Will Drewry was struggling to get code accepted into the Linux kernel. He

wrote a patch to allow seccomp to filter arbitrary syscalls, but his work was in limbo between a

prctl() maintainer who suggested using the perf subsystem for filtering, and a perf maintainer

who suggested using prctl() for filtering, with neither gatekeeper budging (Edge, 2011). In a

stroke of brilliance, Will found the BPF virtual machine and used it to filter allowed syscalls

instead of network traffic (Corbet, 2012).

Two years later, Alexei Starovoitov posted a patch set that greatly improved BPF

performance. He increased the number of registers from two to ten, added to its instruction set to

better resemble modern processors, and upgraded its registers to 64 bits (Corbet, 2014 May). His

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 7

Billy	Wilson,	billy_wilson@byu.edu	

work yielded a four-fold increase in speed (Starovoitov, 2014 March), and importantly, he also

posted a patch that demonstrated using BPF for tracing filters (Starovoitov, 2014 May).

A month later, Alexei extended BPF further. He moved BPF out of the network

subsystem into its own directory, signaling the intention for its general use. He also implemented

a new bpf() syscall. This allowed users with CAP_SYS_ADMIN privileges (i.e., root) to load

BPF programs into the kernel to respond to specific events that they defined. An in-kernel

verifier ensured the safety of the program before loading it (Corbet, 2014 July).

This improved BPF implementation went through many names. It was first known as

“internal BPF” (as opposed to “classic BPF”) but was later called extended BPF, or eBPF.

Today, system maintainers have chosen to simply call the execution engine BPF, without any

reference to what the acronym originally represented (Gregg, 2020 January).

3.1. BPF Compiler Collection
While valuable to kernel developers, the bpf() syscall was impractical to those who didn’t

keep a copy of the kernel source code lying around. The BPF Compiler Collection (BCC) was

created in April of 2015 to address this issue. It greatly simplified the process of writing tracing

tools that could leverage BPF (Fleming, 2017).

Over the course of a few years, this collection grew into a mature suite of tools that were

easy for systems administrators to use. There are currently over 100 BCC tools readily available

for monitoring system calls, language function calls (including php, perl, ruby, and python),

network events, filesystem performance, database performance, and more. Four basic examples

of these tools are included below. These examples are not intended to detect sophisticated

attackers, but rather to demonstrate the potential of the tools.

The opensnoop tool traces open() and openat() syscalls. In this example, the tool detected

a user’s failed attempts to list the /root directory and view /etc/shadow:

/usr/share/bcc/tools/opensnoop -u 1000 -x
PID COMM FD ERR PATH
41892 cat -1 2 /etc/shadow
41905 ls -1 2 /root

Figure 4. Example of “opensnoop”

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 8

Billy	Wilson,	billy_wilson@byu.edu	

 The execsnoop tool traces new processes via exec() syscalls. This example shows a user

attempting to run nc, download ncat, and create and run a suspicious python script.

/usr/share/bcc/tools/execsnoop
PCOMM PID PPID RET ARGS
nc 27530 16339 0 /usr/bin/nc evil.org 4444
wget 27540 16339 0 /usr/bin/wget https://github.com/andrew-
d/static-binaries/raw/master/binaries/linux/x86_64/ncat
vim 27642 16339 0 /usr/bin/vim tunnel.py
chmod 27646 16339 0 /usr/bin/chmod u+x tunnel.py
tunnel.py 27648 16339 0 ./tunnel.py

Figure 5. Example of “execsnoop”

The ttysnoop tool displays the output of a TTY as if the administrator is sitting at the

same terminal. The following example shows an administrator snooping /dev/pts/1 and observing

a user named “billy” exploring the system:

/usr/share/bcc/tools/ttysnoop 1
which nmap
/usr/bin/which: no nmap in
(/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin)
billy@testnode /tmp$ which nc
/usr/bin/nc
billy@testnode /tmp$ which ncat
/usr/bin/ncat
billy@testnode /tmp$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use
Iface
0.0.0.0 192.168.10.1 0.0.0.0 UG 100 0 0 em1
billy@testnode /tmp$ for i in 192.168.10.{1..3}; do ping -c1 -w1 $i && echo
$i is up; sleep 5; done
ping: socket: Operation not permitted
ping: socket: Operation not permitted
ping: socket: Operation not permitted
billy@testnode /tmp$

Figure 6. Example of “ttysnoop”

Last is the tcpstates tool, used here for tracing any TCP state changes involving remote

ports 22, 80, or 443. While the trace was running, a user connected over SSH to a neighboring

compute node for 10 seconds and then closed the connection. Next, the user attempted to access

a website with wget and then sent a keyboard-interrupt after three failed connection attempts.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 9

Billy	Wilson,	billy_wilson@byu.edu	

/usr/share/bcc/tools/tcpstates -D 22,80,443
SKADDR C-PID C-COMM LADDR LPORT RADDR
RPORT OLDSTATE -> NEWSTATE MS
ffff9ac37e622f80 42979 ssh 192.168.10.179 0 192.168.10.178 22
CLOSE -> SYN_SENT 0.000
ffff9ac37e622f80 0 swapper/12 192.168.10.179 0 192.168.10.178 22
SYN_SENT -> ESTABLISHED 0.218
ffff9ac37e622f80 42979 ssh 192.168.10.179 0 192.168.10.178 22
ESTABLISHED -> FIN_WAIT1 10899.358
ffff9ac37e622f80 42979 ssh 192.168.10.179 0 192.168.10.178 22
FIN_WAIT1 -> FIN_WAIT2 0.066
ffff9ac37e622f80 42979 ssh 192.168.10.179 0 192.168.10.178 22
FIN_WAIT2 -> CLOSE 0.003
ffff9ac3874c8000 42988 wget 192.168.10.179 0 52.2.61.110 80
CLOSE -> SYN_SENT 0.000
ffff9ac3874c8000 0 swapper/12 192.168.10.179 0 52.2.61.110 80
SYN_SENT -> CLOSE 131001.368
ffff9ac3874c8000 42988 wget 192.168.10.179 0 52.2.61.110 80
CLOSE -> SYN_SENT 1000.312
ffff9ac3874c8000 0 swapper/12 192.168.10.179 0 52.2.61.110 80
SYN_SENT -> CLOSE 130071.675
ffff9ac3874c8000 42988 wget 192.168.10.179 0 52.2.61.110 80
CLOSE -> SYN_SENT 2000.533
ffff9ac3874c8000 0 swapper/12 192.168.10.179 0 52.2.61.110 80
SYN_SENT -> CLOSE 129071.439
ffff9ac3874c8000 42988 wget 192.168.10.179 0 52.2.61.110 80
CLOSE -> SYN_SENT 3001.378
ffff9ac3874c8000 42988 wget 192.168.10.179 0 52.2.61.110 80
SYN_SENT -> CLOSE 8582.302

Figure 7. Example of “tcpstates”

While easy to use, BCC tools are not necessarily easy to write or maintain. They are

python scripts with embedded BPF programs written in C. Tools may break when the traced

code changes, requiring continual maintenance from version to version of the traced software.

3.2. bpftrace
An even more intuitive tool came to fruition as a spare-time hobby in December 2016.

Alastair Robertson started a project built on BCC and BPF called bpftrace, and it offered an

AWK-like syntax that was already familiar to many systems administrators and security

practitioners. The project attracted prominent BCC contributors and completed its first set of

major features in 2018 (Gregg, 2020 January). Today, bpftrace is a full-fledged tracing utility

that can use a stupendous variety of sources and trigger many types of actions.

The main downside of the tool is that it requires a minimum Linux kernel version of 4.1

and recommends version 4.9 to take full advantage of its features. This means that the tool is

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 10

Billy	Wilson,	billy_wilson@byu.edu	

only available on later versions of Linux distributions such as Red Hat Enterprise Linux 8,

Debian 9, and Ubuntu 19.04. Even then, the version of bpftrace on these distributions does not

have all the features available in the latest version.

For those exploring bpftrace for the first time, two helpful starting points are running

`bpftrace –l` for a list of static and dynamic probes available for use and `bpftrace –lv

[tracepoint_name]` for the arguments available to retrieve values from when a probe fires.

The basic syntax of bpftrace and a few instructive examples are provided. A full

walkthrough of writing bpftrace scripts is outside the scope of this paper, but readers who wish

to familiarize themselves with using the tool can review Brendan Gregg’s bpftrace tutorial1.

bpftrace scripts follow a basic syntax familiar to AWK users:

#!/usr/bin/bpftrace

probe1 /filter/ { action }
probe2, probe3 /filter/ { action }

Figure 8. Basic syntax of bpftrace

The following example traces openat() calls by UID 1000:

#!/usr/bin/bpftrace

BEGIN
{
 printf ("%s\t%s\t%s\n", "COMM", "FILE", "RETVAL");
}

tracepoint:syscalls:sys_enter_openat
/uid == 1000/
{
 @filename[tid] = str(args->filename);
}

tracepoint:syscalls:sys_exit_openat
/uid == 1000 && args->ret < 0/
{
 printf("%s\t%s\t%d\n", comm, @filename[tid], args->ret);
 delete(@filename[tid]);
}

Figure 9. Example Script of Tracing openat() Syscall

1 https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 11

Billy	Wilson,	billy_wilson@byu.edu	

The script prints a header; saves the target filename when UID 1000 enters openat(); and

prints the command, file, and errno when openat() returns an error. It produced the following

output when UID 1000 attempted to open /etc/shadow.

./detect_failed_openat.bt
Attaching 3 probes...
COMM FILE RETVAL
cat /etc/shadow -13

Figure 10. Example Output of Tracing openat() Syscall

Userspace functions can also be traced. The following example script from Brendan

Gregg (2020 January) traces the readline() function in /bin/bash. Once started, it will trace

readline() for all current and future invocations of /bin/bash.

#!/usr/bin/bpftrace

BEGIN
{
 printf("Tracing bash commands... Hit Ctrl-C to end.\n");
 printf("%-9s %-6s %s\n", "TIME", "PID", "COMMAND");
}

uretprobe:/bin/bash:readline
{
 time("%H:%M:%S ");
 printf("%-6d %s\n", pid, str(retval));
}

Figure 11. Example Script of Tracing Bash readline()

The script produced the following output, revealing an attempt by a bash session with

PID 28853 to invoke a cryptocurrency miner:

/usr/share/bpftrace/tools/bashreadline.bt
Attaching 2 probes...
Tracing bash commands... Hit Ctrl-C to end.
TIME PID COMMAND
10:08:30 16339 chmod u+x trace_bash_readline.bt
10:08:31 16339 ./trace_bash_readline.bt
10:08:54 16339 id
10:08:59 16339 cd ~
10:15:25 28853 ./cgminer -o stratum+tcp://mmpool.org:3333 -u jexotic –p
tigercoins4LYFE
10:15:38 16339 vim job.sbatch

Figure 12. Example Output of Tracing Bash readline()

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 12

Billy	Wilson,	billy_wilson@byu.edu	

Shared libraries can also be traced. This is especially valuable because it allows an

administrator to place probes that are difficult for an attacker to avoid. The following example

script places probes in the gethost*() and getaddrinfo() functions of the GNU C library to trace

DNS queries. It is modified from Brendan Gregg’s gethostlatency.bt script (Gregg, 2018).

#!/usr/bin/bpftrace

BEGIN
{
 printf("%-8s %-6s %-6s %-16s %s\n", "TIME", "UID", "PID", "COMM", "HOST");
}

uprobe:/lib64/libc.so.6:getaddrinfo,
uprobe:/lib64/libc.so.6:gethostbyname,
uprobe:/lib64/libc.so.6:gethostbyname2
{
 time("%H:%M:%S ");
 printf("%-6d %-6d %-16s %s\n", uid, pid, comm, str(arg0));
}

Figure 13. Example Script of Tracing GNU C Library

The output shows DNS queries from a user invoking curl and wget on questionable

websites:

./dnsqueries.bt
Attaching 4 probes...
TIME UID PID COMM HOST
11:15:59 1000 31854 curl questionablewebsite.cn
11:16:00 1000 31857 wget a2ng98eh2k0c94782hdo.com

Figure 14. Example Output of Tracing GNU C Library

These few examples demonstrated the ability of bpftrace to monitor filesystems,

processes, user sessions, and network activity. Once installed, the software includes over thirty

high-quality scripts that cover dozens of system activities. As Brendan Gregg put it, gaining this

depth and breadth of visibility on a Linux system “can feel like having X-ray vision” (Gregg,

2020 January). This level of vision is available to any Linux systems administrator who becomes

adept at using the tools.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 13

Billy	Wilson,	billy_wilson@byu.edu	

4. Performance Analysis of BPF in HPC

The remainder of this paper is dedicated to measuring the performance impact of BPF

when monitoring compute nodes under heavy load. As crucial as it is to demonstrate the

effectiveness of a security solution, HPC administrators likewise need assurance that security

tools will not degrade performance beyond a defined threshold.

Brendan Gregg targeted a performance loss of less than 1% when using BPF tools and

scripts in production at Netflix (Gregg & Maestretti, 2017). The expectations in this paper’s

performance analysis were as follows:

• Performance loss <1%: BPF probes are widely recommended in HPC

• Performance loss 1%-3%: BPF probes are recommended in qualified circumstances

• Performance loss >3%: BPF probes should be revised until performance is acceptable

4.1. Test Environment
Eight compute nodes with identical hardware were reserved for testing. They were

connected to an InfiniBand fabric composed of FDR and EDR switches in a CLOS network

topology (i.e., a fat-tree topology with multiple roots). The nodes’ hardware characteristics were

as follows:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 14

Billy	Wilson,	billy_wilson@byu.edu	

Node
Model Dell PowerEdge C6320
Sockets 2
Processor
Model Intel Xeon E5-2680 v4
Codename Broadwell
Cores 14
Base Frequency 2.4 GHz
Turbo Frequency 3.3 GHz
L2 Cache 14 x 256 KiB
L3 Cache 35 MiB
Memory
Size 128 GB (8 x 16 GB DIMMs)
Type DDR4
Speed 2400 MT/s
Local Disk
Disk count 1
Disk Size 1 TB
Disk Type SATA
Disk Speed 7200 RPM
Ethernet
NIC Model Intel 82599ES Dual-port SFI/SFP+
Speed 10GbE
InfiniBand
NIC Model Mellanox ConnectX-3
Speed 56 Gb/sec (4X FDR)

Figure 15. Hardware Specifications for Compute Nodes

A new operating system image was built that supported BPF tools, benchmarking

software, HPC scheduling, centralized storage, and the InfiniBand fabric. A provisioning server

presented this image to the compute nodes, which mounted the image as read-only root to ensure

it was identical and unchangeable across all compute nodes. The provisioning server also

provided writable partitions that were bind-mounted onto key locations using /etc/rwtab and

/etc/statetab.

The operating system included the following software of interest:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 15

Billy	Wilson,	billy_wilson@byu.edu	

Software Description Version
bcc-tools BPF Compiler Collection and Tools 0.8.0-4.el8
bpftrace BPF Tracer 0.9-3.el8
gcc GNU Compiler Collection 8.3.1-4.5.el8
kernel Linux Kernel 4.18.0-147.5.1.el8_1
libibverbs Libraries for InfiniBand verbs support 22.3
openblas Linear algebra library 0.3.3-2.el8
openmpi Message passing library 4.0.1-3.el8
rdma-core Drivers for InfiniBand support 22.3
slurmd HPC scheduling client 19.05.0
HPL High-Performance Linpack Benchmark 2.3 (netlib)

Figure 16. List of Key Software and Versions on Compute Nodes

The Intel cores in these compute nodes were of the Broadwell generation. These were

touted to have up to 16 floating-point operations per clock cycle because of the new fuse-

multiply-add (FMA) instruction, but real-world runs have shown lower results because the

instruction wasn’t as generally applicable as other instructions like AVX2. For this analysis, the

cores were estimated to provide 12 floating-point operations per cycle.

Each compute node’s theoretical max “flops,” or floating-point operations per second, is

the product of its total processor cores, clock speed (GHz), and floating-point operations per

cycle. When estimating 12 operations per cycle, the compute nodes for this analysis had an

estimated theoretical max of 806 gigaflops per node.

4.2. Benchmarking Software
A series of HPL benchmarks were launched on a set of compute nodes, both without and

with BPF probes attached, to determine to what degree the probes affected performance.

HPL stands for High-Performance Linpack, and this benchmark is used to calculate the

top-performing supercomputers in the world. It essentially uses linear algebra techniques to solve

a series of polynomial equations. The administrator must optimize the software and problem set

to obtain best results. This can be done through compiler options and HPL parameters such as

problem size, block size, and process geometry. An in-depth discussion of these optimization

techniques is outside the scope of this paper, but a reasonable HPL baseline should obtain 75%

to 85% of the theoretical max flops of a compute node.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 16

Billy	Wilson,	billy_wilson@byu.edu	

The HPL parameters and characteristics for each grouping of nodes were as follows:

Count Prob. Size Blocks P Q Cores Memory Used Theoretical Max GFlops
1 node 98000 248 4 7 28 76 GB 806.4
2 nodes 140000 248 7 8 56 156 GB 1612.8
4 nodes 200000 248 8 14 112 320 GB 3225.6
8 nodes 280000 248 14 16 224 627 GB 6451.2

Figure 17. HPL Parameters and Characteristics Per Node Grouping

Using the eight compute nodes, the author ran a total of 32 HPL benchmark tests. First,

each individual compute node ran the benchmark. Next, the nodes were grouped into pairs to run

the benchmark together. Next, they were grouped into fours. Finally, all eight nodes ran the

benchmark as a single cluster, twice. These tests were all repeated with BPF probes attached.

Those repeated tests also ran a script that simulated low-profile attacks that the BPF probes were

intended to detect.

4.3. BPF probes
The BPF execution engine is fast, but it cannot make up for BPF probes that are

frequently fired or inherently slow. If a probe is attached to an event that fires millions of times

per second, the overhead will add up. In some cases, tracing malloc() or free() will slow the

target application tenfold or more (Gregg, 2020 January). In contrast, an ideal BPF probe will

fire infrequently and provide high-value data.

Before writing a BPF probe, it is important to determine the question that needs to be

answered. These are the questions that the probes of this performance analysis were written to

answer:

• Are compute nodes attempting to send beacons to external systems?

• Are compute nodes running cryptocurrency miners?

• Are compute nodes the source of any suspicious lateral movements?

• Are compute node processes attempting to escalate privileges?

• Are compute nodes using an SSH proxy to connect to external systems?

To this end, four bpftrace scripts were written: dnssnoop.bt, pamsnoop.bt, sshtunnel.bt,

and tcpconnect_filter.sh. These scripts produced logs in a key-value format for easy parsing. All

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 17

Billy	Wilson,	billy_wilson@byu.edu	

scripts output the timestamp, script type (dns, pam, sshproxy, tcp) and the PID, UID, and

command of the process that caused the probe to fire. Each script also output additional data for

its unique type.

The first script, dnssnoop.bt, logged DNS queries by tracing the relevant function calls in

the GNU C library. It took a UID as its first argument on the command line to log only the DNS

queries of a given user.

dnssnoop.bt
#!/usr/bin/bpftrace -Bline

// Trace glibc for any dns queries by the user

uprobe:/lib64/libc.so.6:getaddrinfo,
uprobe:/lib64/libc.so.6:gethostbyname,
uprobe:/lib64/libc.so.6:gethostbyname2
/uid == $1 /
{
 time("%Y-%m-%d %H:%M:%S ");
 printf("type=dns pid=%d uid=%d comm=%s query=%s\n", pid, uid, comm,
str(arg0));
}

Figure 18. Content of dnssnoop.bt Script

The second script, pamsnoop.bt, detected processes changing from one user to another by

tracing Linux PAM, the library responsible for handling authentication tasks. Its first argument

on the command line specified the UID to monitor. It logged both the original user and the new

user (target) associated with the process. It also logged the return value of the traced function.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 18

Billy	Wilson,	billy_wilson@byu.edu	

pamsnoop.bt
#!/usr/bin/bpftrace -Bline

// Trace PAM library to detect when a user changes to another user

uprobe:/lib64/libpam.so.0:pam_modutil_getpwnam
/uid == $1/
{
 @seen[tid] = 1;
 @uid[tid] = uid;
 @user[tid] = str(arg1);
}

uprobe:/lib64/libpam.so.0:pam_modutil_getpwnam
/@seen[tid] && uid != @uid[tid]/
{
 time("%Y-%m-%d %H:%M:%S ");
 printf("type=pam pid=%d uid=%d comm=%s ", pid, uid, comm);
 printf("user=%s target=%s retval=%d\n", @user[tid], str(arg1), retval);
}

END
{
 clear(@seen);
 clear(@uid);
 clear(@user);
}

Figure 19. Content of pamsnoop.bt Script

The third script, sshtunnel.bt, detected when SSH was used to forward TCP ports. TCP

port forwarding is a built-in SSH feature that allows someone to use an SSH server as a proxy to

reach external resources. This feature can be disabled on SSH servers with the

AllowTCPForwarding family of SSH options, but it is on by default and often left that way.

The script detected port forwarding by tracing the inet_sock_set_state() syscall and

logging whenever an SSH client changed a socket to a LISTEN state. Note that while SSH

servers regularly open listening ports, a client opening a listening port is a tell-tale sign of port

forwarding.

Specifically, the script detected local or dynamic port forwarding. Local port forwarding

specifies an SSH server, a remote host and port to connect to, and a local port to open. Any

network connections to the local port will be forwarded through the SSH server to the remote

host and port. Dynamic port forwarding turns the SSH client into a SOCKS proxy, allowing

software to connect to the local port and forward all traffic through an SSH server.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 19

Billy	Wilson,	billy_wilson@byu.edu	

sshtunnel.bt
#!/usr/bin/bpftrace -Bline

// Trace inet_sock_set_state() to detect SSH clients attempting local and
dynamic port forwarding

tracepoint:sock:inet_sock_set_state
/comm == "ssh"/
{
 if (args->newstate == 10 && args->protocol == 6)
 {
 time("%Y-%m-%d %H:%M:%S ");
 printf("type=sshproxy pid=%d uid=%d comm=%s listening_port=%d \n", pid,
uid, comm, args->sport);
 }
}

Figure 20. Content of sshtunnel.bt Script

The final script, tcpconnect_filter.sh, was the most complex of the four. This was because

the version of bpftrace available on RHEL 8.1 was still missing key functionality for network

tracing. It lacked features such as integer casting, strncmp(), and an array[] operator, making it

impossible to retrieve data from some of the most valuable networking data structures.

Dale Hamel wrote the original tcpconnect.bt, which traced the tcp_connect() kernel

function to detect all TCP connects (Hamel, 2018). The script was modified for this research,

which included wrapping it in a Bash script to enable the whitelisting of a subnet. This allowed

the compute cluster’s subnet to be whitelisted so that only TCP connections to external resources

would cause probes to fire.

Also note that this script only traced TCP traffic. Why not trace other protocols like UDP

in this fashion? Since UDP is a stateless protocol, it will cause the probe to fire on every sent

message.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 20

Billy	Wilson,	billy_wilson@byu.edu	

tcpconnect_filter.sh
#!/usr/bin/bash

if ["$#" -ne 2]; then
 echo "Usage: $0 [whitelist-network-address] [whitelist-subnet-mask]"
 exit 1
fi

IFS=. read -s n1 n2 n3 n4 <<< $(echo $1)
IFS=. read -s s1 s2 s3 s4 <<< $(echo $2)

/usr/bin/bpftrace -Bline -e'

#include <net/sock.h>

kprobe:tcp_connect
{
 $sk = ((struct sock *) arg0);
 $inet_family = $sk->__sk_common.skc_family;
 $af_inet = 2;

 if ($inet_family == $af_inet) {
 $daddr = $sk->__sk_common.skc_daddr;
 $saddr = $sk->__sk_common.skc_rcv_saddr;
 $sport = $sk->__sk_common.skc_num;
 $dport = $sk->__sk_common.skc_dport;

 // Destination port is big endian, it must be flipped
 $dport = ($dport >> 8) | (($dport << 8) & 0x00FF00);

 // Filter Network Address
 $filter_addr = ($1) + ($2 << 8) + ($3 << 16) + ($4 << 24);

 // Filter Netmask
 $filter_netmask = ($5) + ($6 << 8) + ($7 << 16) + ($8 << 24);

 if (($daddr & $filter_netmask) != ($filter_addr & $filter_netmask)) {

 time("%Y-%m-%d %H:%M:%S ");
 printf("type=tcp_connect pid=%d uid=%d comm=%s ", pid, uid, comm);
 printf("saddr=%s sport=%d daddr=%s dport=%d\n", ntop($af_inet,
$saddr), $sport, ntop($af_inet, $daddr), $dport);
 }
 }
}' $n1 $n2 $n3 $n4 $s1 $s2 $s3 $s4

Figure 21. Content of tcpconnect_filter.sh Script

These scripts were copied to each compute node and executed at the beginning of

benchmarks that measured BPF performance impact. Their logs were redirected to files on a

shared storage system.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 21

Billy	Wilson,	billy_wilson@byu.edu	

4.4. Simulating Low-Profile Attacks
For tests with BPF probes attached, a Bash script was launched on participating nodes

that simulated low-profile attacks. The script produced a timestamped log for each action it took.

Every 1 to 15 seconds, it would perform one of the following actions as an unprivileged user:

• Trigger a DNS query of an external domain

• Escalate to a privileged user

• Open an SSH tunnel

• Attempt a TCP connection to a random private IP

For DNS queries, the script randomly chose a domain from a list, many of them

representing common bitcoin mining sites. It then chose from one of five command-line tools to

trigger the query: curl, wget, python, dig, or host.

For privilege escalation, the unprivileged user was temporarily given privileges to use

sudo to escalate to the root user on the compute nodes. The script ran a basic command as root

after escalation. This simulated an adversary who had obtained control over an account with

sudo privileges and subsequently escalated to root via regular administrative techniques. It did

not represent privilege escalation via software flaw exploitations.

For SSH tunneling, the script randomly chose between local port forwarding and

dynamic port forwarding. Local port forwards connected to an SSH server in the DMZ and

opened a tunnel to https://ubuntu.com using a random local port. Dynamic port forwards

connected to that same server and opened a random local port for SOCKS proxy use.

For TCP connection attempts, the script used Bash’s built-in /dev/tcp feature. This is not

an actual device on the filesystem, but a device emulated by Bash for easy interaction with TCP

sockets. Any I/O to /dev/tcp/[host]/[port] triggers a TCP connection attempt to that host and port.

The script chose a random host in the 192.168.0.0/16 subnet and a random port, attempting to

connect to it over TCP.

The full body of the low-profile attack script can be found in Appendix A.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 22

Billy	Wilson,	billy_wilson@byu.edu	

5. Results
The results of the benchmarks were analyzed both from a performance perspective and a

detection perspective to show whether BPF tracing scripts can sufficiently detect attacks on

compute nodes without degrading performance for researchers.

5.1. Performance Results
HPL results indicated that the BPF probes had less than 1% impact on compute node

performance. In many cases, HPL benchmarks with BPF enabled recorded higher gigaflops than

the non-BPF benchmarks. The author did not interpret these gains to mean that BPF probes

improve performance, as such a claim for a tracing tool would make no sense. At best, these

discrepancies suggested that BPF had nearly zero performance impact on compute nodes.

Perhaps more realistically, the gains may have suggested that other factors besides BPF also

influenced compute node performance. Possibilities include thermal fluctuations that impact

Intel Turbo Mode, congestion on the InfiniBand fabric, and normal jitter from system processes.

Each chart below was scaled based on the theoretical max gigaflops for a node count.

Thus, the vertical axis for the single-node chart has a maximum of 806.4 gigaflops, while the

vertical axis for the eight-node chart has a maximum of 6451.2 gigaflops, which is eight times

greater. Performance percentages are calculated against these maximums.

For single-node runs, Node 1 suffered a performance loss of 0.41%, the greatest loss of

all tests apart from a discrepancy with eight-node runs. Node 8 was the only node with no

performance loss, instead recording a gain of 0.02%.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 23

Billy	Wilson,	billy_wilson@byu.edu	

Figure 22. Chart of Single Node HPL Gigaflops

For two-node runs, there were no instances of BPF causing performance loss. Node pairs

[1-2] and [7-8] tied for the smallest gain of 0.12%, while node pair [3-4] had the largest gain of

0.65%.

Figure 23. Chart of Two-Node HPL Gigaflops

The four-node runs likewise recorded small gains for BPF-enabled runs, with nodes [1-4]

gaining 0.09% and nodes [5-8] gaining 0.13%.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 24

Billy	Wilson,	billy_wilson@byu.edu	

Figure 24. Chart of Four-Node HPL Gigaflops

The eight-node HPL results were unusual enough to warrant discussion. These

benchmarks were run twice, meaning that there were two non-BPF results and two BPF results.

Depending on how they were paired, the benchmarks either supported that BPF had low

performance impact or painted a picture of unexplainable performance differences from run to

run.

The four eight-node benchmarks can be paired in two ways. The chart on the left below

in Figure 25 shows the results when the low-performing non-BPF and BPF runs are paired

together and the high-performing non-BPF and BPF runs are paired together. The chart on the

right show the results when the non-BPF and BPF runs that ran first are paired together and the

non-BPF and BPF runs that ran second are paired together. Depending on how the results are

paired, very different outcomes are seen.

Figure 25. Eight-Node HPL Gigaflops, Paired by Performance and Execution Order

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 25

Billy	Wilson,	billy_wilson@byu.edu	

When paired by lows and highs, enabling BPF caused a performance loss of 0.21% in the

“low” benchmarks and a gain of 0.05% in the “high” benchmarks. However, when paired

chronologically, enabling BPF caused a 1.62% loss in the first benchmarks and a 1.46% gain in

the second benchmarks.

Put differently, the results of the two non-BPF runs that used identical hardware and

software had a delta of 100 gigaflops, and likewise for the two runs with BPF enabled. Such a

delta would only make sense if outside factors such as equipment temperatures or network

congestion influenced the results.

Because of these discrepancies, the author found the eight-node results to be

inconclusive. Perhaps the larger conclusion to be drawn is that BPF traces caused a performance

change somewhere between a 1.62% loss or 1.46% gain for eight-node runs. Taking the averages

of the non-BPF and BPF benchmarks, performance loss was only 0.08%. Ultimately, the

discrepancies are best resolved with further benchmark testing.

A table of all performance results can be found in Appendix B.

5.2. Detection Results
The logs of the four bpftrace scripts were cross-checked against logs from the low-profile

attack script to determine whether the BPF probes were adequate in detecting unwanted

behavior.

 Overall, the author found that while the performance of the bpftrace scripts was

exemplary, the fidelity of the scripts was hampered by excess noise. Scripts often produced

multiple logs for a single action of the attack script. They also produced logs that were triggered

by the benchmark software itself.

The dnssnoop.bt script created logs not only for domain-based host lookups but also for

IP-based host lookups, including those handled by the /etc/hosts file. This was especially

apparent as HPL began IPC communications with itself and other cluster members. Logged

queries included all participating nodes, as well as domains and IPs that pointed to localhost.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 26

Billy	Wilson,	billy_wilson@byu.edu	

dnssnoop.bt Log Excerpt
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-1
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-2
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-2
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-3
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-3
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-4
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-4
…
2020-04-27 13:55:13 type=dns pid=24685 uid=12345 comm=xhpl query=node-1
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=localhost
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl
query=192.168.10.11
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl
query=fe80::dead:beef:dead:beef
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl
query=192.168.10.11
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl
query=fe80::dead:beef:dead:beef
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=127.0.0.1
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=::1

Figure 26. Log Excerpt of dnssnoop.bt

When DNS queries involved dig or host commands, the query was obfuscated. The

author suspects that this was due to the query being routed through systemd-resolved but was

unable to confirm this.

Low Profile Attack Log Excerpt
2020-04-27 15:47:28 type=dns comm=dig url=reuters.com

dnssnoop.bt Log Excerpt
2020-04-27 15:47:29 type=dns pid=5997 uid=12345 comm=isc-worker0000
query=127.0.0.1
2020-04-27 15:47:29 type=dns pid=5997 uid=12345 comm=isc-worker0000
query=::1

Figure 27. Correlation of dig Execution with dnssnoop.bt Log

 However, all queries using wget, curl, and python produced one accurate log per action.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 27

Billy	Wilson,	billy_wilson@byu.edu	

Low Profile Attack Log Excerpt
2020-04-27 14:33:11 type=dns comm=wget url=btc.top
2020-04-27 14:34:28 type=dns comm=python url=nanopool.org
2020-04-27 14:36:17 type=dns comm=curl url=nanopool.org

dnssnoop.bt Log Excerpt
2020-04-27 14:33:13 type=dns pid=1401 uid=12345 comm=wget query=btc.top
2020-04-27 14:34:30 type=dns pid=1491 uid=12345 comm=python
query=nanopool.org
2020-04-27 14:36:19 type=dns pid=1752 uid=12345 comm=curl query=nanopool.org

Figure 28. Correlation of wget, python, and curl with dnssnoop.bt Log

 The pamsnoop.bt script successfully detected sudo attempts, with the caveat that three

logs were produced per sudo attempt. For every set of triplets, one log had a non-zero return

value, so it should be possible to reduce log output to one line per successful sudo attempt when

filtered by the return value.

Low Profile Attack Log Excerpt
2020-04-27 16:23:16 type=sudo comm=sudo user=billy

pamsnoop.bt Log Excerpt
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root
retval=0
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root
retval=0
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root
retval=-810366576

Figure 29. Correlation of sudo Attempt with pamsnoop.bt Log

 The sshtunnel.bt successfully detected all SSH port forwarding connections, but it

produced two logs per connection.

Low Profile Attack Log Excerpt
2020-04-27 14:02:47 type=ssh_proxy comm=ssh port_fwd_options=-D 43323
2020-04-27 14:02:59 type=ssh_proxy comm=ssh port_fwd_options=-L
32337:ubuntu.com:443

sshtunnel.bt Log Excerpt
2020-04-27 14:02:49 type=sshproxy pid=31319 uid=12345 comm=ssh
listening_port=43323
2020-04-27 14:02:49 type=sshproxy pid=31319 uid=12345 comm=ssh
listening_port=43323
2020-04-27 14:03:01 type=sshproxy pid=31340 uid=12345 comm=ssh
listening_port=32337
2020-04-27 14:03:01 type=sshproxy pid=31340 uid=12345 comm=ssh
listening_port=32337

Figure 30. Correlation of SSH Port Forwarding Attempt with sshtunnel.bt Log

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 28

Billy	Wilson,	billy_wilson@byu.edu	

Finally, the tcpconnect_filter.sh script successfully detected all TCP connection attempts

to resources outside of the compute subnet. The fact that no compute nodes were included in the

logs suggested that the subnet whitelist worked properly. One oversight was that the script did

not exclude localhost TCP connections.

tcpconnect_filter.sh Log Excerpt
2020-04-27 13:55:12 type=tcp_connect pid=30335 uid=12345 comm=xhpl
saddr=127.0.0.1 sport=40400 daddr=127.0.0.1 dport=46757
2020-04-27 13:55:26 type=tcp_connect pid=30712 uid=12345 comm=wget
saddr=192.168.10.11 sport=48552 daddr=47.254.4.118 dport=80
2020-04-27 13:55:42 type=tcp_connect pid=30726 uid=12345 comm=curl
saddr=192.168.10.11 sport=47822 daddr=47.52.122.155 dport=80
2020-04-27 13:55:57 type=tcp_connect pid=30740 uid=12345 comm=bash
saddr=192.168.10.11 sport=39408 daddr=192.168.144.84 dport=18044
2020-04-27 13:56:31 type=tcp_connect pid=30782 uid=12345 comm=bash
saddr=192.168.10.11 sport=38216 daddr=192.168.228.27 dport=31399
2020-04-27 13:57:29 type=tcp_connect pid=30894 uid=12345 comm=ssh
saddr=192.168.10.11 sport=42908 daddr=10.10.10.15 dport=22

Figure 31. Log Excerpt of tcpconnect_filter.sh

The table below provides an aggregated count of the logs across all runs. Each row pairs

an attack log type with its associated bpftrace script log type.

The dnssnoop.bt script proved the noisiest. It produced logs for /etc/hosts lookups,

domain lookups, and IP lookups, as well as DNS queries performed by the attack script. The

pamsnoop.bt script produced exactly three times as many logs as sudo attempts. The sshtunnel.bt

script produced twice as many logs as SSH proxy attempts, minus one. For some reason, there

was a single time when an ssh_proxy attack log produced only one bpftrace log. The

tcpconnect_filter.sh script detected all TCP connections outside the subnet, including

connections to the SSH server in the DMZ, but the script also errantly included the many

localhost communications by HPL.

Attack Script Type Attack Log Count bpftrace Script Bpftrace Log Count
dns 1703 dnssnoop.bt 19627
sudo 1720 pamsnoop.bt 5160
ssh_proxy 1713 sshtunnel.bt 3425
tcpconnect 1766 tcpconnect_filter.sh 4902

Figure 32. Count Comparisons of Low-Profile Attack Logs and bpftrace Logs

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 29

Billy	Wilson,	billy_wilson@byu.edu	

6. Conclusions and Future Work

The author recommends using BPF probes and specifically the bpftrace tool on HPC

compute nodes for detecting malicious behavior. This recommendation is based on performance

comparisons of single-node, two-node, and four-node HPL runs, both without and with BPF

probes attached.

In future performance analyses, researchers could control additional factors that cause

variation in HPL results. One example is disabling Turbo Mode on Intel processors. Researchers

could also perform HPL runs above four nodes, as the results of the eight-node HPL runs in this

study were inconclusive.

Future work should also focus on the improvement of bpftrace scripts, especially as new

features become available in future Linux distributions. Upcoming features include integer

casting, the strncmp() function, and the array[] operator2 (Gregg, 2020 April). These can be used

to simplify the tracing scripts used in this research and reduce the amount of noise produced.

This will be especially true for using the inet_sock_set_state() syscall. Although this

syscall was traced for the sshtunnel.bt script, some of its most valuable data in its arguments

remained unusable due to the lack of an array[] operator. Once the operator is available, for

example, the tcpconnect_filter.bt script can be entirely rewritten to use this syscall instead of a

less stable dynamic kernel probe. The sshtunnel.bt will also be able to log remote port

forwarding in addition to local and dynamic port forwarding.

The bpftrace scripts in the analysis were limited to TCP. It would be valuable to write

tracing scripts for other protocols such as ICMP, UDP, and InfiniBand if it can be done without

producing excessive noise.

Security practitioners familiar with kernel code can use their knowledge to produce new

bpftrace scripts catered to detect attack scenarios they see in the wild. As an example, Brendan

Gregg used bpftrace to detect attempts to exploit a zero-day Docker vulnerability by tracing the

uncommonly used renameat2() syscall (Gregg, 2020 January). Using the signal() function of

2 Array operator functionality was merged into the master branch of bpftrace on 21 April 2019 and will hopefully
be available in RHEL 8.2.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 30

Billy	Wilson,	billy_wilson@byu.edu	

bpftrace, an administrator today could write tracing scripts that proactively kill processes

entering syscalls or functions known to be associated with bad behavior.

The latest bpftrace versions also support cgroups, making it easier to integrate tracing

tools with HPC scheduler jobs. Using cgroups, a script can potentially filter processes associated

with specific jobs dispatched by users.

Other emerging technologies based on BPF should also be investigated. One promising

patch set is the Kernel Runtime Security Instrumentation, or KRSI. Developed at Google, this

Linux security module instruments LSM hooks to provide much greater auditing configurability

than what Linux’s audit subsystem provides (Corbet, 2019).

The performance and detection results of the trace scripts used in this analysis support

that BPF tracing tools are ready for use in detecting malicious actors in HPC environments. The

trace scripts logged activity from all the simulated attacks and did not degrade the performance

of compute nodes beyond 1%, excluding the discrepancies of the eight-node runs. Further

refinement of the scripts will eliminate duplicate and innocuous logging, and newly authored

scripts can target new categories of attacks. These developments will contribute to a high-fidelity

detection and response solution built into the Linux kernel that protects both the security and

performance of supercomputers.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 31

Billy	Wilson,	billy_wilson@byu.edu	

References
Chang ,Y. T. S., Jin, H., & Bauer, J. (2016, November). Methodology and Application of HPC

I/O Characterization with MPIProf and IOT. In 2016 5th Workshop on Extreme-Scale

Programming Tools (ESPT). IEEE, 2016.

Corbet, J. (2012, January). Yet another new approach to seccomp. LWN. Retrieved 10 April 2020

from https://lwn.net/Articles/475043/

Corbet, J. (2014, May). BPF: the universal in-kernel virtual machine. LWN. Retrieved 2

December 2019 from https://lwn.net/Articles/599755/

Corbet, J. (2014, July). Extending extended BPF. LWN. Retrieved 2 December 2019 from

https://lwn.net/Articles/603983/

Corbet, J. (2019, December). KRSI — the other BPF security module. LWN. Retrieved 2 May

2020 from https://lwn.net/Articles/808048/

Edge, J. (2011. July). Seccomp filters: No clear path. LWN. Retrieved 10 April 2020 from

https://lwn.net/Articles/450291/

Fleming, M. (2017, December). A thorough introduction to eBPF. LWN. Retrieved 2 December

2019 from https://lwn.net/Articles/742082/

Gregg, B. (2017, January). BPF: Tracing and More. Presented at linux conf au, Hobart, Australia.

Retrieved 28 March 2020 from https://www.youtube.com/watch?v=JRFNIKUROPE

Gregg, B. (2018, September). gethostlatency.bt [Computer software]. Retrieved 28 March 2020

from https://github.com/iovisor/bpftrace/blob/master/tools/gethostlatency.bt

Gregg, B. (2020, January). BPF Performance Tools: Linux system and Application

Observability. United States: Addison-Wesley.

Gregg, B., et al. (2020, April). bpftrace Reference Guide. GitHub. Retrieved 1 May 2020 from

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md

Gregg, B., & Maestretti, A. (2017, February). Security Monitoring with eBPF. In BSidesSF

2017, San Francisco, CA. Retrieved 28 March 2020 from

https://www.youtube.com/watch?v=44nV6Mj11uw

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 32

Billy	Wilson,	billy_wilson@byu.edu	

Hamel, D. (2018, November). tcpconnect.bt [Compute software]. Retrieved 28 March 2020 from

https://github.com/iovisor/bpftrace/blob/master/tools/tcpconnect.bt

Kiepert, J. (2013, May). Creating a Raspberry Pi-based Beowulf Cluster. Department of

Electrical and Computer Engineering, Boise State University, Boise, ID.

McCanne, S., & Jacobson, V. (1992, December). The BSD Packet Filter: A New Architecture

for User-level Packet Capture. In 1993 Winter USENIX Conference. San Diego, 1993.

Retrieved 10 April 2020 from https://www.tcpdump.org/papers/bpf-usenix93.pdf

National Institute for Standards and Technology. (2016). HPC Security Best Practices: Strengths

and Weaknesses. In NSCI: High-Performance Computing Security Workshop,

Gaithersburg, MD.

Starovoitov, A. (2014, March). net: filter: rework/optimize internal BPF interpreter's instruction

set. In kernel/git/torvalds/linux.git [software]. Retrieved 10 April 2020 from

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed33

1a275e9bf5a49e6d0fd55dffc551b8

Starovoitov, A. (2014, May). Tracing: accelerate tracing filters with BPF. In net-next [mailing

list]. Retrieved 10 April 2020 from https://lwn.net/Articles/598545/

TOP500. (2019, November). TOP500 List - November 2019. Retrieved 21 March 2020 from

https://www.top500.org/list/2019/11/

XSEDE. (n.d.). XSEDE Federation. Retrieved March 21, 2020, from

https://www.xsede.org/web/xsede-old/xsede-federation

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 33

Billy	Wilson,	billy_wilson@byu.edu	

Appendix A: Low-Profile Attack Script
	

low_profile.sh	
#!/usr/bin/bash

MIN_SLEEP=1
MAX_SLEEP=15
NONROOT_USER=someuser
DMZ_IP=10.1.2.3
URLPOOL_BGN=$(awk '$1 == "###URLPOOL_BGN###" { print NR + 1}' $0)
URLPOOL_END=$(awk '$1 == "###URLPOOL_END###" { print NR - 1}' $0)

dns_request() {

 local urlpool_line=$(shuf -i $URLPOOL_BGN-$URLPOOL_END -n 1)
 local dns_query=$(awk "NR == $urlpool_line" $0)
 local choice=$(shuf -i 0-4 -n 1)

 case $choice in
 0)
 date +"%Y-%m-%d %H:%M:%S type=dns comm=wget url=$dns_query"
 sudo -u $NONROOT_USER wget -T1 --tries 1 -O /dev/null $dns_query
>/dev/null 2>&1
 ;;
 1)
 date +"%Y-%m-%d %H:%M:%S type=dns comm=curl url=$dns_query"
 sudo -u $NONROOT_USER curl -m1 $dns_query >/dev/null 2>&1
 ;;
 2)
 date +"%Y-%m-%d %H:%M:%S type=dns comm=dig url=$dns_query"
 sudo -u $NONROOT_USER dig +tries=1 +time=1 $dns_query >/dev/null 2>&1
 ;;
 3)
 date +"%Y-%m-%d %H:%M:%S type=dns comm=host url=$dns_query"
 sudo -u $NONROOT_USER host -W1 $dns_query >/dev/null 2>&1
 ;;
 4)
 date +"%Y-%m-%d %H:%M:%S type=dns comm=python url=$dns_query"
 sudo -u $NONROOT_USER python -c "import socket;
socket.setdefaulttimeout(1); socket.gethostbyname('$dns_query')" >/dev/null
2>&1
 ;;
 esac
}

run_sudo() {
 # This test depends on the $NONROOT_USER being
 # able to sudo without a password

 date +"%Y-%m-%d %H:%M:%S type=sudo comm=sudo user=$NONROOT_USER"
 sudo -u $NONROOT_USER sudo id >/dev/null 2>&1

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 34

Billy	Wilson,	billy_wilson@byu.edu	

}

tcp_connect_attempt() {

 local o1=192
 local o2=168
 local o3=$(shuf -i 0-255 -n 1)
 local o4=$(shuf -i 0-255 -n 1)
 local port=$(shuf -i 1-61000 -n 1)

 date +"%Y-%m-%d %H:%M:%S type=tcp_connect comm=bash ip=$o1.$o2.$o3.$o4
port=$port"
 timeout 1 sudo -u $NONROOT_USER bash -c "echo
>/dev/tcp/$o1.$o2.$o3.$o4/$port"

}

ssh_proxy() {

 local choice=$(shuf -i 0-1 -n 1)
 local port=$(shuf -i 10000-60000 -n 1)

 case $choice in
 0)
 local port_fwd_opt="-L $port:ubuntu.com:443"
 ;;
 1)
 local port_fwd_opt="-D $port"
 ;;
 esac

 date +"%Y-%m-%d %H:%M:%S type=ssh_proxy comm=ssh
port_fwd_options=$port_fwd_opt"
 sudo -u $NONROOT_USER ssh -n -o ConnectTimeout=5 -o ConnectionAttempts=1
$port_fwd_opt $DMZ_IP 'id' >/dev/null 2>&1

}

while :
do

 interval=$(shuf -i MIN_SLEEP-MAX_SLEEP -n 1)
 sleep $interval || exit 1

 choice=$(shuf -i 0-3 -n 1)
 case $choice in
 0)
 dns_request
 ;;
 1)
 run_sudo
 ;;
 2)
 tcp_connect_attempt

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 35

Billy	Wilson,	billy_wilson@byu.edu	

 ;;
 3)
 ssh_proxy
 ;;
 esac

done

exit 0

This script selects a url from the list below.
You can add urls, but don't change the tags

###URLPOOL_BGN###
poolin.com
f2pool.com
btc.com
antpool.com
viabtc.com
1thash.top
slushpool.com
btc.top
bitfury.com
minexmr.com
nanopool.org
prohashing.com
reuters.com
baidu.com
google.com
reddit.com
###URLPOOL_END###

	

	 	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Securing the Soft Underbelly of a Supercomputer with BPF Probes 36

Billy	Wilson,	billy_wilson@byu.edu	

Appendix B: HPL Results
	

Nodes Non-BPF Run BPF Run Comparison of Non-BPF
and BPF Run Performance Seconds GFlops Pct Max Seconds GFlops Pct Max

1 924.45 678.75 84.17% 928.95 675.47 83.76% -0.41%
2 927.19 676.75 83.92% 928.91 675.49 83.77% -0.16%
3 921.79 680.71 84.41% 922.81 679.96 84.32% -0.09%
4 956.43 656.06 81.36% 960.79 653.09 80.99% -0.37%
5 889.83 705.16 87.45% 890.34 704.76 87.40% -0.05%
6 911.6 688.32 85.36% 911.69 688.26 85.35% -0.01%
7 901.95 695.69 86.27% 904.9 693.42 85.99% -0.28%
8 897.25 699.33 86.72% 897.05 699.49 86.74% 0.02%
[1-2] 1357.69 1347.40 83.54% 1355.80 1349.30 83.66% 0.12%
[3-4] 1366.23 1339.00 83.02% 1355.58 1349.50 83.67% 0.65%
[5-6] 1335.42 1369.90 84.94% 1330.99 1374.00 85.19% 0.25%
[7-8] 1317.00 1389.00 86.12% 1315.13 1391.00 86.25% 0.12%
[1-4] 2006.03 2658.70 82.42% 2003.93 2661.50 82.51% 0.09%
[5-8] 1902.89 2802.80 86.89% 1900.05 2807.00 87.02% 0.13%
[1-8] 2735.62 5349.70 82.93% NA NA NA NA
[1-8] 2791.96 5241.80 81.25% NA NA NA NA
[1-8] NA NA NA 2790.09 5336.10 82.71% NA
[1-8] NA NA NA 2742.62 5245.30 81.31% NA
	

