
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections
with Python

 GIAC (GCIA) Gold Certification

Author: Gregory Melton, Gregory.Melton@student.sans.edu
Advisor: Clay Risenhoover

Accepted: May 10, 2020

Abstract

Endpoint protection solutions tend to focus on system indicators and known malicious
code to defend both enterprise and Small Office-Home Office (SOHO) users. In the
absence of a Security Operations Center (SOC) or paid antivirus services, there are few
proactive defense options for hobbyists and SOHO owners. A significant problem is how
advanced persistent threat (APT) actors’ Tactics, Techniques, and Procedures (TTPs)
have changed over the years; it is common for advanced actors to exploit poorly defended
subcontractors and seemingly less relevant targets. This brings the Small Office-Home
Office into the picture as a pivotal defense point against advanced attackers. This
research intends to focus on attackers using Shell, terminal, or Remote Access Tool
(RAT) connections to SOHO endpoints. This research seeks to block interactive
connections with system-level network logging and blacklist automation. This method
will recognize malicious connections and automatically block them in near real-time.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

2

Melton, Gregory [USA]

1. Introduction
Meaningful endpoint security against interactive threats is a difficult security

challenge to manage. Typically, if an attacker obtains a Shell or terminal connection, they

have already defeated the system’s security protocols. From a developer’s standpoint, it

may not be worth the effort to wrangle Windows Application Programming Interfaces

(APIs) against the unlikely occurrence of an interactive threat to home or small office

users. Unfortunately, APT groups commonly target smaller entities and search for

backend routes into larger targets by abusing contractor access. By focusing a defensive

posture on network connections as a chokepoint, it may be possible to create a module

that recognizes suspicious IP connections and adds said IP address to the system’s

firewall blacklist. Near real-time connection assessments and automated remediation is

the chosen method to increase endpoint security for SOHO users. This paper will provide

hobbyists and security fledglings an opportunity to understand a major chokepoint in

endpoint security for interactive threats.

To provide measurable evidence of a proposed solution, proper logging of vital

network activity will be implemented. By logging all activity before any preventative

measures are taken, the reality of system communications prior to defensive tampering

will be baselined. Comparing this baseline to system traffic after defense

implementations will provide metrics as to the level of success. Additionally, defensive

modules will record actions, output notifications, and alerts, which can be aggregated to

see how effective they are. Finally, tests will be conducted against the two primary

endpoint market share giants, OSX and Windows 10, to ensure an inclusive solution. The

solution should be simple, affordable, and maintainable with readily available resources

and open source products.

1.1 Endpoints and SOHOs
An endpoint can be defined as any computing device that is the final destination

for data on a network. The most common user examples include tablets, smartphones,

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

3

Melton, Gregory [USA]

desktops, and laptops (Lord 2018). Any internet-connected device, including servers, are

endpoints; however, this research will focus on user workstations in a Small Office/Home

Office (or Single Office/Home Office, or SOHO). A SOHO typically refers to the

category of business that employs anywhere from 1 to 10 workers. In New Zealand, for

example, the Ministry of Business, Innovation, and Employment (MBIE) defines a small

office as 6 to 19 employees and a micro office as 1 to 5 employees.

For this research, a SOHO is defined as an organization with less than ten workers

or a home network (2018 US Legal Inc). Both a small office and home network would

include a Gateway Router, Primary workstation (desktop or laptop), and mobile devices.

The test environment for this research will represent a 'typical' home office network. The

defensive measures proposed are at their core a CIRT methodology and forensics check

to find indications of compromise. With a slight adaptation, the same principles should

work for any workstation, but a SOHO environment is specified because the malicious

indicator will be more evident and actionable.

Figure 1. SOHO Example

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

4

Melton, Gregory [USA]

1.2 Threats to Endpoints
Each year, an increasing number of people work from home, which exposes a vast

number of workstations with potentially sensitive data to the internet. One 2017 report

found at least 2.8% of people in the U.S. workforce work from home at least half the time

(Shepherd 2019). A more staggering statistic claims that as much as 70% of working

professionals work remotely at least one day a week (Browne, 2018). The end-users in

both environments are often seen as low hanging fruit and low barriers to entry for both

cybersecurity professionals, cybercriminals, and APTs alike. Simply put, the largest

threat of organizational breach often occurs at the endpoint level (Murray 2019). End-

user systems are notoriously difficult to defend due to human interaction, which can often

negate technical controls put in place by security measures. Organizations try to mitigate

this risk through compliance requirements, mandatory training, and periodic phishing

email simulations to gauge effectiveness. Both technical controls and user training are

common defenses against such attacks, but since a Small/Home Office lacks this training,

it remains a weak point. With an increasing number of employees working from home

every year, these security concerns are more relevant than ever.

On a positive note, a typical home environment has a relatively small attack

surface. Most home networks are not running internet-connected servers, which cuts

down the number of devices and services that can be exploited from the outside. The

downside may be a less-aware user population that may give little thought to system

security, click malicious links, or download malware in email attachments.

The goal for this research will not be to stop initial compromise but to recognize

when exploitation occurs and automatically shut down the external TCP connection. To

help with such defenses, one must first understand how two primary network protocols

function: DNS and TCP.

2. DNS

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

5

Melton, Gregory [USA]

To understand modern network activity, a person must have a basic understanding

of the Domain Name System (DNS). DNS is one of the most important protocols used to

run the modern internet and is functionally used for most activities the average user

performs when online. When a user wants to load a webpage, a translation must occur

between what a user types into their web browser and the machine-friendly address

necessary to locate a webpage (How DNS works n.d.). In short, DNS is the method by

which systems locate resources on the internet. The details of a DNS request are beyond

the scope of this paper, but a basic example is shown in Figure 2.

Figure 2. Basic Domain Name Resolution

The request and response process in Figure 2 typically occurs over UDP port 53

as the standard. A DNS cache is a log kept by a system or application of the domain-to-IP

mapping resolved by the process shown in Figure 2. This locally cached correlation helps

decrease redundant network traffic and increases the speed for which internet resources

are located by removing the comparably lengthy external resolution process. Different

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

6

Melton, Gregory [USA]

operating systems handle DNS caches in different ways. The Windows operating system,

for example, keeps a cache that a user can view at the command prompt with the

command ipconfig /displaydns.

Figure 3. DisplayDNS

The Windows cache is in addition to the web browser/application DNS cache.

Linux operating systems, on the other hand, do not cache DNS entries and outsource that

job to specific applications. MacOS heavily depends on the Operating System's version.

Since DNS is so pervasive on the internet, it would be relatively uncommon for

an internet connection to be established without having a DNS entry somewhere in the

host operating systems logs, caches, or processes. An internet connection that does not

make a DNS request first is a fundamental indicator for recognizing suspicious

connections. While this principle will be the crux of how automation identifies malicious

connections, it is important to note that not all non-DNS connections are malicious.

Legitimate software may also be hard-coded with IP addresses or may obtain their

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

7

Melton, Gregory [USA]

resource destinations through less standard means. With that in mind, it is still worth

checking up on any connection made that does not have a corresponding DNS entry.

3. TCP Network Connections
Once an internet resource is located by the DNS process as previously described,

the end-user's system will request the now known IP address for that resource. Every

major end-user operating system frequently establishes connections to resources using the

Transmission Control Protocol (RFC-793). TCP is intended to provide a reliable process-

to-process communication service in a multinetwork environment (1981, IETF). In short,

TCP is the primary way in which most modern computer systems transfer data. Due to

the prevalence of this protocol, and its rampant use in end-user systems, the scope of this

research will focus on TCP connections as the primary chokepoint for end-user defense

against interactive threats.

Modern operating systems are in constant communication with various resources

using TCP. Background processes will download system updates, weather applications

will get the latest local forecast, and various third-party applications will constantly

communicate with an abundance of resources. While downloads and updates may be

automated and nearly invisible to the human user, the operating system must be aware of

each connection. All major operating systems can, therefore, be queried, at will

(assuming the right level of user permissions), to request a list of active connections as

shown below with the ‘netstat’ command:

WINDOWS: netstat -na | findstr -i “established”

MACOS: netstat -n | grep -i established

LINUX: netstat -na | grep -i established

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

8

Melton, Gregory [USA]

Figure 4. Windows netstat

With a list of established connections, an analyst, user, or program can take

follow-on actions to verify legitimate connections or notice suspicious connections. An

attacker must exfiltrate data to be considered interactive. Even an automated process to

steal files must connect to an external resource controlled by the malicious actor at some

point. Having both lists for DNS entries and established connections would enable a user

to identify anything suspicious by comparing lists and looking for anomalies. A

suspicious entry, in this case, would be an established connection that does not have a

corresponding DNS entry.

4. Blocking Direct IP Calls as a Theory
Once a suspicious connection is determined to be malicious, a user could then

block access to that external IP address. This concept hinges on the malware making a

connection without creating a DNS entry on exfiltration. Some forms of malware, such as

Emotet (a trojan virus), are hard-coded with a direct connection to the C2 node’s IP

address. A hardcoded IP means the attacker predetermined an internet resource and added

that IP address to the compiled code delivered to the user. Since it is hard-coded, the IP

will not change and does not use DNS to locate the resource. A hard-coded IP address

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

9

Melton, Gregory [USA]

would effectively bypass DNS servers since no name resolution is requested and,

therefore, would not be present in the DNS logs. It is not uncommon to have DNS

protections in place that would automatically deny a connection to known malicious

resources, but hard-coding defeats this protection. Therefore, the logical solution might

be to disallow direct IP calls to external networks.

There are very few reasons an endpoint for a non-technical person would make

connections to external IP addresses without first requesting the resource from a DNS

server. The difficulty lies in how to check connections against the DNS cache effectively.

A higher-level scripting language could manage the tasks necessary to vet connections,

but network latency would be a problem. This research will work toward prevention by

tracking network connections and DNS requests/responses at the host/endpoint level.

Enabling such visibility is the first step toward automating follow-on actions like

blocking malicious connections through the local firewall.

5. Scapy and Python
Most operating systems have third party software available to do the heavy lifting

for greater system visibility. Windows System Internals System Monitor (sysmon) for

example, can be downloaded and configured to keep track of both network traffic and

DNS traffic. Tools like sysmon are certainly viable but require some setup and

configuration, which can be cumbersome to automate. If a user runs a local DNS server,

they have a log of requests on the server. Unfortunately, it is difficult to then compare

those specific DNS logs to network connections by endpoints at the network level. To

maintain scope for this research, it will not be possible to proactively block direct IP

connections for an entire network at the server level. Instead, the focus will be on a

lightweight script/program that will use local resources to recognize and potentially break

suspicious connections.

To generate the necessary data at an endpoint, a system can use a Python module

called “Scapy”. Scapy is a packet manipulation tool and python library which can

perform an abundance of packet production, manipulation and sniffing. The packet

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

10

Melton, Gregory [USA]

sniffing functionality of Scapy’s robust capabilities will allow an endpoint to watch and

record both DNS requests/responses and monitor for established network connections.

Fortunately, Python is a cross-platform language, which means that Scapy’s sniffing

functionality is as well. Such flexibility makes Python and Scapy a good choice to

produce a functional Proof of Concept (POC) with which to work.. The following script

will set up a simple packet sniffer for DNS and TCP related traffic and act as a starting

point for additional packet manipulation.

From scapy.all import *

packets = sniff(filter="tcp[tcpflags] & (tcp-syn) !=0 or port

53", session=IPSession, count=2, prn=lambda x: x.summary())

Figure 5. Scapy Sniffing with PoC Module

 To replicate the code in Figure 5, a Windows system only needs to install

WinPcap, Python/Scapy and have administrator privileges. MacOS and Linux only

require Python, Scapy, and sudo permissions.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

11

Melton, Gregory [USA]

6. Simulation

For this research, an endpoint is assumed to be compromised. The scope of this

research does not include intrusion techniques, as such a process is irrelevant for the

proposed solution. At this point, hardening a network means stopping data exfiltration or

preventing a Command and Control (C2) node from communicating with an endpoint. To

simulate this scenario, the affected system will attempt a connection over SSH to an

external resource.

Proof of Concept Path:

1) Sniff on the primary interface

2) Filter for DNS requests

a. Add IP addresses from DNS response to a list

3) Filter for Syn/Syn-Ack TCP connection initiations

a. Command Scapy to look for Syn-SynAck TCP connections

4) For each connection; if the external IP is not in the DNS list:

a. Create a list of suspicious IP addresses

b. Run system commands to add the external IP to the firewall block list

5) Flush firewall rules at regular intervals to reduce system impact.

Case 1: Control - Connections that will not be discovered:

First, it is vital to understand the primary limitation of this POC. A malicious

connection where an attacker uses a registered domain will not be noticed by the

proposed solution. To illustrate this point, the domain ec2-3-18-104-85.us-east-

2.compute.amazonaws.com represents a malicious C2 node that has gained access to the

test system.

Once configured, the SSH connection will succeed and remain open because it

doesn’t meet the threshold for recognizing a suspicious connection (an established TCP

connection without a DNS entry). When SSH connects to a domain, it will resolve the

domain for the user. This research focuses entirely on threats that specify their IP address

in the payload or through a command injection vulnerability where an IP address is a

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

12

Melton, Gregory [USA]

malicious endpoint. In short, the SSH connection will proceed as normal. The DNS

query, response, and subsequent TCP connection is shown in Figure 6.

Figure 6. DNS process and TCP connection.

 As expected, Figure 7 shows proof that the connection proceeded as

expected due to DNS resolution on the host.

Figure 7. Stable connection to the kali C2 node over SSH successful

Case 2 – Automatic Suspicious IP detection and response:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

13

Melton, Gregory [USA]

The next connection will avoid name resolution by connecting directly to the kali

C2 node’s IP address. This method simulates a piece of malware with a hardcoded IP

address and will, therefore, not have a DNS entry.

Figure 8. Direct IP connection

Once a connection is attempted (Figure 8) with an IP address instead of a domain

name, the DNS protocol is completely bypassed, and the connection proceeds. Notice the

lack of DNS query and response prior to the highlighted TCP connection in Figure 8.

Methods such as DNS blacklists are incapable of preventing or responding to this type of

connection.

At this point, a defensive strategy would depend on proper logging paired with

Incident Response (IR) methodologies to catch the direct connection. Since the SSH

connection in the example used a specific IP address instead of a domain name, the

correct condition triggers, and the IP address can be added to the Firewall block list

(Adams 2018). The manual commands to perform firewall updates for a single IP address

are as follows:

Windows:

netsh advfirewall firewall add rule name="IP Block" dir=in

interface=any action=block remoteip=x.x.x.x

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

14

Melton, Gregory [USA]

MacOS:

sudo echo “block drop from any to x.x.x.x” >> /ect/pf.conf” &&

sudo pfctl -e -f /etc/pf.conf

7. Proof of Concept Walkthrough and Demonstration

 Armed with the knowledge that most TCP connections are preceded by DNS

requests, an analyst can take steps to automate the process of focusing on suspicious IP

addresses. Using the code from Figure 5 as the base sniffing filter, a Python script can be

created to monitor the necessary system communications and isolate rogue IP

connections. The code from Figure 8 is only producing a summary for output, which is

convenient, but incomplete data. It is important to expand further upon the DNS

responses and parse through entries with multiple return values. DNS entries, as seen by

the Scapy sniff function, return data as seen in Figure 9.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

15

Melton, Gregory [USA]

Figure 9. Scapy DNS Response Example with Multiple Entries

 Fortunately, Scapy returns data that can be referenced by name. The ‘ancount’

stands for ‘answer count’ and can be incorporated into the Python code for an accurate

expectation of results. Furthermore, the ‘rdata’ value for a DNS A record will correspond

to the IP address needed for further processing.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

16

Melton, Gregory [USA]

Figure 10. Python Code for DNS Entries and PTR Records

 Using the code in Figure 10, the base lists are primed for comparison. Any data

that is present in TCP connections but not the DNS responses can now be added to a list

of suspicious IPs.

With a collected list of suspicious IP addresses, it is simple to script out system

commands to include in the firewall block list. An example for Windows would look

something like Figure 11, where each IP in the file ‘suspicious.txt’ is added to the

Window’s Firewall as a block rule.

Figure 11. Firewall Loop for Windows

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

17

Melton, Gregory [USA]

As expected, each suspicious IP address has been automatically added to the

Windows firewall block list. The connection to the external server was severed and any

additional attempts to connect to the external C2 node will fail.

Figure 12 PoC success of blocked malicious connection.

 When examining suspicious.txt or the implemented block rules through

automation, there will often be false positives. Not every connection without a DNS entry

will be malicious, and the proposed PoC did not have a method by which to validate each

network node for malicious intent.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

18

Melton, Gregory [USA]

Figure 13. Windows block list after running the PoC

 Figure 13 shows the PoC successfully blocked IPs that did not make a DNS

request, but there is a problem. All but one of the IPs in Figure 13 are legitimate

resources performing normal system operations. Benign programs previously established

connections, and local network resources are all likely to be false positives when strictly

implementing the TCP-without-DNS block rules. Therefore, it is essential to properly vet

IP addresses before blocking them. During the testing phases for the proposed PoC,

Amazon, Google, and Microsoft were the biggest contributors to false positives. To first

ensure a trusted vendor isn’t responsible for the IP address in the suspicious list, a parser

can first be used to look up the IP information. The following PowerShell script is one

example of how a user can automate the lookup process (2006, Snover):

Get-Content suspicious.txt | foreach-object

{[System.Net.Dns]::GetHostbyAddress(“$_”)}

 Once a list of domain-to-IP mappings return, an analyst can often discern benign

domains from malicious domains based solely on their registration information.

Approximately 70% of the false positives returned during the PoC development were the

globally recognized vendors previously discussed (google, yahoo, Microsoft etc) or IPs

of servers run by the developer. The false positives that did not have a domain associated

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

19

Melton, Gregory [USA]

were often a part of legitimate cloud services where the specific IP address was not

associated with a particular domain, but rather an update resource cached by other

programs on the system.

8. Conclusion
Achieving a heightened security posture for an endpoint system begins with

awareness and system visibility. It is certainly possible to take a proactive approach to

endpoint security using freely available tools and techniques, however, it is always more

complicated than it first appears. Benign software on endpoint systems may locate

resources through less common methods not accounted for or that have pre-coded IP

pools that they can use to make external connections. The proposed PoC was successful

in its attempts to block direct IP connections, but it also blocked legitimate resources. The

proposed PoC can help any endpoint achieve greater network visibility by keeping track

of DNS requests, parsing DNS responses, logging TCP connection attempts, and writing

out a shortlist for research. The current implementation, however, is best used for

awareness. The false positives in each trial were typically easy to rule out as malicious,

but even still, the PoC has ample room to grow before it should be used on a productive

endpoint. The results of mismatched connections to DNS entries still requires an analyst

to make judgment calls to avoid some system inefficiencies. Therefore, each operating

system’s firewall is better updated as-needed only after analyst research. While the PoC

provides a good starting point for future automation, the desired result still relies on

human interaction.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

20

Melton, Gregory [USA]

References

Browne, R. (2018, May 30). 70% of people globally work remotely at least once a week, study

says Retrieved 3 September 2019, from CNBC.com. Available at:

https://www.cnbc.com/2018/05/30/70-percent-of-people-globally-work-remotely-at-

least-once-a-week-iwg-study.html

How DNS works. (n.d.). Retrieved August 1, 2019, from

https://www.cloudflare.com/learning/dns/what-is-dns/.

IETF. (1981, September). Transmission Control Protocol. Retrieved April 4, 2020, from

https://tools.ietf.org/html/rfc793

Lord, N. (2018, December 21). What is Endpoint Security Data Protection 101. Retrieved 12

August 2019, from https://digitalguardian.com/blog/what-endpoint-security-data-

protection-101

Murray, K. (2019, April 18). Top Threats to Endpoints and How To Stay Protected. Retrieved

from https://www.brighttalk.com/webcast/288/348505/top-threats-to-endpoints-and-how-

to-stay-protected

Shepherd, Maddie. (2019, July 23)“11 Surprising Working From Home Statistics.” Fundera,

Fundera, 23 July 2019, https://www.fundera.com/resources/working-from-home-statistics

[Accessed 3 Sep. 2019].

Snover, Jeffrey (2006, July). Windows PowerShell One Liner: Name to IP Address. Retrieved

September 9, 2019, from https://devblogs.microsoft.com/powershell/windows-

powershell-one-liner-name-to-ip-address/

Stevens, D. (2019, June 16). Sysmon Version 10: DNS Logging. Retrieved September 19, 2019,

from https://isc.sans.edu/diary/Sysmon+Version+10%3A+DNS+Logging/25036

US Legal, Inc. (2018) Small Office/Home Office [SOHO] Law and Legal Definition. Retrieved

July 14, 2019 from https://definitions.uslegal.com/s/small-office-home-office-soho

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

21

Melton, Gregory [USA]

Appendix A
Python Code:

1) Cross Platform Sniffer

#Must have winPcap installed for windows version to work:
www.winpcap.org

from scapy.all import *

from scapy.utils import PcapWriter

from datetime import *#datetime, timedelta

import os, sys, signal

#Defines then runs a signal handler because the 'while' loop can get
sticky in the console. This helps ctrl-c out nicely.

def signal_handler(signal, frame):

 print("\nprogram exiting gracefully")

 sys.exit(0)

signal.signal(signal.SIGINT, signal_handler)

winplat = ["win32", "win64"]

linux = ["linux","linux2","linux3"]

platform = sys.platform

if platform in winplat:

 print("Windows")

 now = datetime.now()

 stop = now + timedelta(seconds=120) #amount of time the script
will run for. Can do minutes=x or hours=x

 flushdns = os.system("ipconfig /flushdns") # flush out the
windows DNS cache : ipconfig /displaydns to see

 #os.system("pythonw.exe firewallrules.py")

 try:

 while datetime.now() < stop:

 #TCP Syn + SynAck packet capture and DNS port 53
packet capture.

 packets = sniff(filter="tcp[tcpflags] & (tcp-syn)
!=0 or port 53",

 session=IPSession, # defragment on-the-flow

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

22

Melton, Gregory [USA]

 count=2,# 2 packets before the script
continues

 prn=lambda x: x.summary()) #prints out the
tcp syn/synack and DNS req/resp

 #Append to 'sniffed.pcap' all Syn/Ack traffic or
port 53 request/responses.

 # Will create the file if it doesn't already
exist

 pktdump1 = PcapWriter("sniffed.pcap", append=True,
sync=True)

 pktdump1.write(packets)

 pcap = 'sniffed.pcap'

 pkts = rdpcap(pcap)

 UDPipS = []

 TCPipS = []

#Add TCP destination packets to a temp list for follow on comparison

 for packet in pkts:

 if packet.haslayer(TCP):

 TCPipS.append(packet[IP].dst)

DNS parsing for to record multiple DNS entries and extract/normalize
PTR requests

Without this loop only the first DNS entry will be returned and the
PTR records will be missed.

 if packet.haslayer(UDP): # Triggers if a UDP
packet

 UDPipS.append(packet[IP].dst) #Adds the
packet to ta temp list for PCAP incl

 if packet.haslayer(DNSRR): # If there
is a DNS Response

 a_count = packet[DNS].ancount
#Find how many answers returned

 i = a_count + 4

 arp = "arpa"

 while i > 4:

 if
str(packet[0][i].rdata)[0].isnumeric():

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

23

Melton, Gregory [USA]

 #print(packet[0][i].rdata)

 UDPipS.append(packet[0][i].rdata)

 #Useing 'count' to see if
the telltale PTR lookup string is in the rrname field

 elif
packet[0][i].rrname.decode().count("in-addr.arpa")>0:

 #print(packet[0][i].rrname.decode())

 base
=(packet[0][i].rrname.decode())

 chop = base[:-14]

 work =
chop.split('.')

 final =
work[3]+"."+work[2]+"."+work[1]+"."+work[0]

 UDPipS.append(final)

 i -= 1

 inTnotU = list(set(TCPipS)-set(UDPipS))

 with open('suspicious.txt','w+') as f:

 for i in inTnotU:

 f.write(str(i))

 f.write("\n") #Added because the above
line does not allow for iteration. This was a work around.

 f.close()

 except KeyboardInterrupt:

 print('Sniffer turned off!')

elif platform in linux:

 print("Linux")

 now = datetime.now()

 stop = now + timedelta(seconds=120) #amount of time the script
will run for. Can do minutes=x or hours=x

 try:

 while datetime.now() < stop:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

24

Melton, Gregory [USA]

 #TCP Syn + SynAck packet capture and DNS port 53
packet capture.

 packets = sniff(filter="tcp[tcpflags] & (tcp-syn)
!=0 or port 53",

 session=IPSession, # defragment on-the-flow

 count=2,# 2 packets before the script
continues

 prn=lambda x: x.summary()) #prints out the
tcp syn/synack and DNS req/resp

 #Append to 'sniffed.pcap' all Syn/Ack traffic or
port 53 request/responses.

 # Will create the file if it doesn't already
exist

 pktdump1 = PcapWriter("sniffed.pcap", append=True,
sync=True)

 pktdump1.write(packets)

 pcap = 'sniffed.pcap'

 pkts = rdpcap(pcap)

 UDPipS = []

 TCPipS = []

#Add TCP destination packets to a temp list for follow on comparison

 for packet in pkts:

 if packet.haslayer(TCP):

 TCPipS.append(packet[IP].dst)

DNS parsing for to record multiple DNS entries and extract/normalize
PTR requests

Without this loop only the first DNS entry will be returned and the
PTR records will be missed.

 if packet.haslayer(UDP): # Triggers if a UDP
packet

 UDPipS.append(packet[IP].dst) #Adds the
packet to ta temp list for PCAP incl

 if packet.haslayer(DNSRR): # If there
is a DNS Response

 a_count = packet[DNS].ancount
#Find how many answers returned

 i = a_count + 4

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

25

Melton, Gregory [USA]

 arp = "arpa"

 while i > 4:

 if
str(packet[0][i].rdata)[0].isdigit():

 #print(packet[0][i].rdata)

 UDPipS.append(packet[0][i].rdata)

 #Useing 'count' to see if
the telltale PTR lookup string is in the rrname field

 elif
packet[0][i].rrname.decode().count("in-addr.arpa")>0:

 #print(packet[0][i].rrname.decode())

 base
=(packet[0][i].rrname.decode())

 chop = base[:-14]

 work =
chop.split('.')

 final =
work[3]+"."+work[2]+"."+work[1]+"."+work[0]

 UDPipS.append(final)

 i -= 1

 inTnotU = list(set(TCPipS)-set(UDPipS))

 with open('suspicious.txt','w+') as f:

 for i in inTnotU:

 f.write(str(i))

 f.write("\n") #Added because the above
line does not allow for iteration. This was a work around.

 f.close()

 except KeyboardInterrupt:

 print('Sniffer turned off!')

elif platform == "darwin":

 print("MacOS")

 now = datetime.now()

 stop = now + timedelta(seconds=120) #amount of time the script
will run for. Can do minutes=x or hours=x

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

26

Melton, Gregory [USA]

 try:

 while datetime.now() < stop:

 #TCP Syn + SynAck packet capture and DNS port 53
packet capture.

 packets = sniff(filter="tcp[tcpflags] & (tcp-syn)
!=0 or port 53",

 session=IPSession, # defragment on-the-flow

 count=2,# 2 packets before the script
continues

 prn=lambda x: x.summary()) #prints out the
tcp syn/synack and DNS req/resp

 #Append to 'sniffed.pcap' all Syn/Ack traffic or
port 53 request/responses.

 # Will create the file if it doesn't already
exist

 pktdump1 = PcapWriter("sniffed.pcap", append=True,
sync=True)

 pktdump1.write(packets)

 pcap = 'sniffed.pcap'

 pkts = rdpcap(pcap)

 UDPipS = []

 TCPipS = []

#Add TCP destination packets to a temp list for follow on comparison

 for packet in pkts:

 if packet.haslayer(TCP):

 TCPipS.append(packet[IP].dst)

DNS parsing for to record multiple DNS entries and extract/normalize
PTR requests

Without this loop only the first DNS entry will be returned and the
PTR records will be missed.

 if packet.haslayer(UDP): # Triggers if a UDP
packet

 UDPipS.append(packet[IP].dst) #Adds the
packet to ta temp list for PCAP incl

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

27

Melton, Gregory [USA]

 if packet.haslayer(DNSRR): # If there
is a DNS Response

 a_count = packet[DNS].ancount
#Find how many answers returned

 i = a_count + 4

 arp = "arpa"

 while i > 4:

 if
str(packet[0][i].rdata)[0].isdigit():

 #print(packet[0][i].rdata)

 UDPipS.append(packet[0][i].rdata)

 #Useing 'count' to see if
the telltale PTR lookup string is in the rrname field

 elif
packet[0][i].rrname.decode().count("in-addr.arpa")>0:

 #print(packet[0][i].rrname.decode())

 base
=(packet[0][i].rrname.decode())

 chop = base[:-14]

 work =
chop.split('.')

 final =
work[3]+"."+work[2]+"."+work[1]+"."+work[0]

 UDPipS.append(final)

 i -= 1

 inTnotU = list(set(TCPipS)-set(UDPipS))

 with open('suspicious.txt','w+') as f:

 for i in inTnotU:

 f.write(str(i))

 f.write("\n") #Added because the above
line does not allow for iteration. This was a work around.

 f.close()

 except KeyboardInterrupt:

 print('Sniffer turned off!')

else:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

28

Melton, Gregory [USA]

 print("whoknowsman")

2) Windows Firewall Automation Follow on Script

import os, time, signal, sys

import os.path

from os import path

def signal_handler(signal, frame):

 print("\nCleaning firewall rules and exiting gracefully")

 for i in list:

 os.system('netsh advfirewall firewall delete rule
name="{}"'.format(i))

 sys.exit(0)

signal.signal(signal.SIGINT, signal_handler)

while not path.exists("suspicious.txt"): #Just giving the sniffer
script a few seconds to create a pcap and 'suspicious.txt'

 time.sleep(3)

#if suspicious.txt exists, start a loop

while path.exists("suspicious.txt"):

signal.signal(signal.SIGINT, signal_handler)

 list = []

 inTnotU = []

 f = open('suspicious.txt', 'r+')

 for i in f:

 inTnotU.append(i)

 f.close()

 for i in inTnotU:

 i=(i[:-1])

 if i not in list:

 list.append(i)

 for i in list:

 os.system('netsh advfirewall firewall add rule name="{}"
dir=out interface=any action=block remoteip={}'.format(i,i))

 time.sleep(15)

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Recognizing Suspicious Network Connections with Python

29

Melton, Gregory [USA]

 for i in list:

 os.system('netsh advfirewall firewall delete rule
name="{}"'.format(i))

