
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Jeremy Hewlett

GIAC LevelTwo Intrusion Detection In Depth
Practical Assignment for Capitol SANS

December 10 – 15, 2000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 1 – Network Detects, 35 points.

Detect #1:

IDS alert:
00:39:32 [T] 202.135.23.122 x.x.0.227 [IIS:UNICODE2] (tcp,dp=80,sp=4284)

Payload:
GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+c: HTTP/1.0

Source of trace:1.
My network (work), Jan 1st 2001

Detect was generated by:2.
This detect was generated by a Dragon IDS sensor, version 4.2.1. Detect came from the web.lib
ruleset, which was the most current at that date.

The fields are as follows:
| Time | direction of packet. In this case, “T” for to protected net | src host | dst host | alert name | (proto, dst port,
src port) |

The second frame above is the command in the payload that was sent to the web server. This is standard http,
fields are:

| Type of command (GET/PUT/POST/etc) | What to get | http proto version |

Probability the source address was spoofed:3.
It is not very likely this was spoofed. In order for this attack to succeed, the attacker would need to
see the output generated from the GET command. Secondly, in order to initiate the GET command,
the attacker would have to successfully complete the 3-way handshake.

Description of attack:4.
This is the extended Unicode attack for IIS versions 4 and 5. The attack allows attackers read, list or
execute files outside of the web root. Information on this can be found under CVE ID CAN-2000-
0884, Microsoft ID MS00-078 and BugTraq ID 1806. An example of some of the things that can be
done with this can be found at http://www.securityfocus.com/templates/archive.pike?list=82&mid=144710,
which was posted to the Vuln-Dev mailing list hosted at securityfocus.

Attack mechanism:5.
This attack works in much the same way web servers were vulnerable to adding a “../” (dot-dot slash)
into the URL, thus allowing the attacker back out of the web root. Web server vendors applied fixes
to their software, and hence requests with “../” are denied. This type of attack however replaces the
aforementioned characters with the UNICODE translation of / or \.
The commands that could be run would be run under the built-in IUSR_machinename, which is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

basically the equivalent of the ‘nobody’ user that apache typically runs under.
Correlation:6.

Stan Scalsky has had similar probes (http://www.sans.org/y2k/010301.htm) and interestingly enough, also
uses dragon:

Greetings, 1) Monitoring summary from my Dragon sensors at a few of my sites show that the most popular exploit this
holiday period is without a doubt the IIS UTF/UNICODE directory traversal exploit – probes like the following generally
happen on a daily basis on our DMZ. Sometimes this is followed by an attempt to install some trojan program such as
nc.exe via tftp or install a stealth cmd.exe.

GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.1{D}{A}
GET
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+copy%20c:\winnt\system32\cmd.exe%20sensepost.exeHTTP/1.0{D}{A
}

Evidence of active targeting:7.
At first glance this looks like active targeting because this is the only host out of approximately 1024
this person hit with an IIS exploit. This would make me a bit nervous, as this person must have done
some recon first. However, after further analysis, it appears to be an automated script. I say this
because the web server is not IIS, and not even windows. As to why just this one host was targeted, I
can only speculate because its domain name could probably be considered “elite” in the realm of
IRC.

Severity:8.
(system criticality + attack lethality) – (system countermeasures + network countermeasures) =
severity

(4 + 1) – (5 + 2) = -2

System Criticality: 4 -> Web server running.
Attack lethality: 1 -> It’s not windows or IIS. Unlikely to do any damage at all.
System countermeasures: 5 -> I give this a 5 because all of the IIS servers are fully patched, so had
the attack been directed at an IIS box, it would have failed.
Network countermeasures: 2 -> Permissive firewall, no access control.

Defensive recommendation:9.
Defenses here would be to keep all the IIS servers updated and patched, and using an IDS to keep an
eye on them as well as the rest of the network. Since this is a public webserver, using TCP wrappers
or firewalling to certain hosts wouldn’t be feasible. However, one could always deny this person’s
IP. ☺

Write a question that is based on the trace and your analysis with your answer:10.
Based on the packet payload as pasted earlier, what did the attacker hope to accomplish?

Check the existence of cmd.exeA.
Execute the command c+dir+cB.
Get a directory listing of C:C.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a directory listing of /winnt/system32D.

Correct answer, C

Detect #2:

IDS alert:
18:39:08 [T] 62.252.236.70 x.x.208.10 [FTP:CWD-DOS] (tcp,dp=21,sp=3253)

Payload #1:
USER anonymous
PASS guest@here.com
CWD /pub/
MKD 001228004049p
CWD /public/
CWD /pub/incoming/
PORT 216,25,117,6,1,21
CWD
ppp
ppppppppppppppppppppppppppppppppppppp
ppp
pp
ppp
pp
ppp
pp
ppp
pp
ppp
pp
ppp
pp
ppp
pp
ppp
pp
ppp
pp
ppp
pp

Source of trace:1.
My network (work), Dec 27th, 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect was generated by:2.
Dragon IDS sensor, version 4.2.1. Detect came from ftp.lib ruleset, which was the most current at
that date.

The fields are as follows:
| Time | direction of packet. In this case, “T” for to protected net | src host | dst host | alert name | (proto, dst port,
src port) |

In the payload, the commands issued are:
USER is the username
PASS is the password
CWD is “change working directory (cd)”
MKD is “make directory”
PORT is used to initiate a transfer (this is explained in detail later).

Probability the source address was spoofed:3.
Not very high. Since a connection was made to the ftp server and commands issued, a 3-way
handshake has already been completed.

Description of the attack:4.
This detect just kept getting better. The more I investigated the more neat-o things I ran into.
The initial alert that caught my eye was the CWD DoS as pasted above. After looking for
more of this on other machines on the network, I found 3 more:

18:39:08 [T] 62.252.236.70 x.x.208.60 [FTP:CWD-DOS] (tcp,dp=21,sp=3303)
18:39:10 [T] 62.252.236.70 x.x.208.125 [FTP:CWD-DOS] (tcp,dp=21,sp=3368)
18:39:19 [T] 62.252.236.70 x.x.208.250 [FTP:CWD-DOS] (tcp,dp=21,sp=3493)

Looking at the CVE entries (CVE-1999-0219 , CVE-1999-0362 , CAN-2000-0131), this is an
attack for windows based FTP servers such as serv-u, warftpd and ws_ftp. When commands
such as cwd or mkdir are issued with long arguments, a DoS or overflow is the end result.
BugTraq ID 612 says that proftpd (vers 1.2pre1, 1.2pre3 and 1.2pre3) also has a similar buffer
overflow with mkdir. Lastly, BugTraq ID 961 mentions Tiny FTPd (ver .52) has a buffer
overflow problem with the commands “APPE, MKD, RMD, RNFR, RNTO, SIZE, STOR,
XMKD, and XRMD.”

So it would seem that someone wanted to crash/exploit these servers, but wait, there’s more!
Doing a search for this src IP produced the following:

18:39:02 [T] 62.252.236.70 x.x.208.20 [FTP:USER-ANON] (tcp,dp=21,sp=3263)
18:39:02 [T] 62.252.236.70 x.x.208.21 [FTP:USER-ANON] (tcp,dp=21,sp=3264)
18:39:02 [T] 62.252.236.70 x.x.208.24 [FTP:USER-ANON] (tcp,dp=21,sp=3267)
18:39:02 [T] 62.252.236.70 x.x.208.23 [FTP:USER-ANON] (tcp,dp=21,sp=3266)
18:39:02 [T] 62.252.236.70 x.x.208.27 [FTP:USER-ANON] (tcp,dp=21,sp=3270)
18:39:02 [T] 62.252.236.70 x.x.208.10 [FTP:USER-ANON] (tcp,dp=21,sp=3253)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

18:39:03 [T] 62.252.236.70 x.x.208.29 [FTP:USER-ANON] (tcp,dp=21,sp=3272)
18:39:03 [T] 62.252.236.70 x.x.208.25 [FTP:USER-ANON] (tcp,dp=21,sp=3268)
18:39:03 [T] 62.252.236.70 x.x.208.32 [FTP:USER-ANON] (tcp,dp=21,sp=3275)
18:39:03 [T] 62.252.236.70 x.x.208.30 [FTP:USER-ANON] (tcp,dp=21,sp=3273)
18:39:03 [T] 62.252.236.70 x.x.208.35 [FTP:USER-ANON] (tcp,dp=21,sp=3278)
18:39:03 [T] 62.252.236.70 x.x.208.44 [FTP:USER-ANON] (tcp,dp=21,sp=3287)
18:39:03 [T] 62.252.236.70 x.x.208.39 [FTP:USER-ANON] (tcp,dp=21,sp=3282)
18:39:03 [T] 62.252.236.70 x.x.208.41 [FTP:USER-ANON] (tcp,dp=21,sp=3284)
18:39:03 [T] 62.252.236.70 x.x.208.60 [FTP:USER-ANON] (tcp,dp=21,sp=3303)
18:39:03 [T] 62.252.236.70 x.x.208.45 [FTP:USER-ANON] (tcp,dp=21,sp=3288)
18:39:03 [T] 62.252.236.70 x.x.208.47 [FTP:USER-ANON] (tcp,dp=21,sp=3290)
18:39:03 [T] 62.252.236.70 x.x.208.46 [FTP:USER-ANON] (tcp,dp=21,sp=3289)
18:39:04 [T] 62.252.236.70 x.x.208.50 [FTP:USER-ANON] (tcp,dp=21,sp=3293)
18:39:04 [T] 62.252.236.70 x.x.208.53 [FTP:USER-ANON] (tcp,dp=21,sp=3296)
18:39:04 [T] 62.252.236.70 x.x.208.51 [FTP:USER-ANON] (tcp,dp=21,sp=3294)
18:39:04 [T] 62.252.236.70 x.x.208.54 [FTP:USER-ANON] (tcp,dp=21,sp=3297)
18:39:05 [T] 62.252.236.70 x.x.208.61 [FTP:USER-ANON] (tcp,dp=21,sp=3304)
18:39:05 [T] 62.252.236.70 x.x.208.55 [FTP:USER-ANON] (tcp,dp=21,sp=3298)
18:39:05 [T] 62.252.236.70 x.x.208.62 [FTP:USER-ANON] (tcp,dp=21,sp=3305)
18:39:05 [T] 62.252.236.70 x.x.208.58 [FTP:USER-ANON] (tcp,dp=21,sp=3301)
18:39:05 [T] 62.252.236.70 x.x.208.64 [FTP:USER-ANON] (tcp,dp=21,sp=3307)
18:39:05 [T] 62.252.236.70 x.x.208.68 [FTP:USER-ANON] (tcp,dp=21,sp=3311)
18:39:05 [T] 62.252.236.70 x.x.208.71 [FTP:USER-ANON] (tcp,dp=21,sp=3314)
18:39:05 [T] 62.252.236.70 x.x.208.72 [FTP:USER-ANON] (tcp,dp=21,sp=3315)
18:39:05 [T] 62.252.236.70 x.x.208.76 [FTP:USER-ANON] (tcp,dp=21,sp=3319)
18:39:05 [T] 62.252.236.70 x.x.208.81 [FTP:USER-ANON] (tcp,dp=21,sp=3324)
18:39:05 [T] 62.252.236.70 x.x.208.86 [FTP:USER-ANON] (tcp,dp=21,sp=3329)
18:39:05 [T] 62.252.236.70 x.x.208.125 [FTP:USER-ANON] (tcp,dp=21,sp=3368)
18:39:05 [T] 62.252.236.70 x.x.208.89 [FTP:USER-ANON] (tcp,dp=21,sp=3332)
18:39:06 [T] 62.252.236.70 x.x.208.87 [FTP:USER-ANON] (tcp,dp=21,sp=3330)
18:39:06 [T] 62.252.236.70 x.x.208.95 [FTP:USER-ANON] (tcp,dp=21,sp=3338)
18:39:06 [T] 62.252.236.70 x.x.208.96 [FTP:USER-ANON] (tcp,dp=21,sp=3339)
18:39:06 [T] 62.252.236.70 x.x.208.131 [FTP:USER-ANON] (tcp,dp=21,sp=3374)
18:39:06 [T] 62.252.236.70 x.x.208.132 [FTP:USER-ANON] (tcp,dp=21,sp=3375)
18:39:06 [T] 62.252.236.70 x.x.208.101 [FTP:USER-ANON] (tcp,dp=21,sp=3344)
18:39:06 [T] 62.252.236.70 x.x.208.104 [FTP:USER-ANON] (tcp,dp=21,sp=3347)
18:39:06 [T] 62.252.236.70 x.x.208.138 [FTP:USER-ANON] (tcp,dp=21,sp=3381)
[The rest is cut for brevity. You get the idea, a scan over an entire class C network for anonymous
logins.]

So, too much was going on in a very short period of time from this host for this to be considered
normal ftp traffic. The odd thing here is, out of an entire class C (all of those hosts offering ftp
services, and about half offering anonymous) only 4 were subjected to the “CWD DoS.” So,
what else is in store, what are in these other payloads I ask. I found this person issued the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

following commands to every server that allowed anonymous ftp connects.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Payload #2:
230 Guest login ok, access restrictions apply.
PORT 128,178,25,62,132,212
500 Illegal PORT Command
PASV
227 Entering Passive Mode (x,x,208,10,78,148)
STOR 1MB
425 Possible PASV port theft, cannot open data connection.
QUIT
221-You have transferred 0 bytes in 0 files.

So, putting the two payloads together (based on illegal PORT/PASV commands, searching
for incoming directories and attempted file/directory creation) now I get the picture of a warez
(pirated software) pup. How it all goes together and how it works is in the next section.

Attack mechanism:5.
In packet #1, after the person logs in we see him/her first check to see if a directory can be
created. I suspect that whatever program is being used here attempts to find common
incoming directories and attempt to write here as well. I say this because the directories
/public and /pub/incoming do not even exist on the target machines. What’s more, a common
technique among warez pups is to quickly move warez from one server to another, even
when the initiator is on a slow link. The technique is referred to as “FXPing.” The odd PASV
and PORT commands seem to reflect this type of activity. FXP works like so:

“A” is a site that allows anonymous uploads and downloads.
“B” is a site that has warez on it.
“C” is a modem user.

“C” needs to move/copy warez from “B” to “A.” This would be painfully slow over a
modem. An FXP client will connect to server “B” and depending on whether the transfer is
coming or going, issue a PORT command with the IP address of server “A” instead of the
typical address of the requesting IP (“C” in this case) or issue a PASV. The FXP client
basically does the same thing on the other server and starts a transfer. The two servers are
now talking to each other. You’ll notice in the PORT commands above, the IP address listed
are never the same as the initiating IP.

So, this person needs a server that will do one of two things:
Accept PORT commands for arbitrary IP addresses. “FTP port bouncing” works in a 1.

similar way too, however one also needs to also be able to specify ports <1024 in the
command.

Accept PASV commands and allow arbitrary IP addresses to connect. 2.

Just incase you’re confused about the weird looking PORT/PASV commands, they don’t use
periods to separate out the 4 octets of an IP. They use commas. As for the last two numbers,
the port number can be ascertained by multiplying the first number by 256 and adding the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

result to the second number. For example:

PORT 216,25,117,6,1,21

Is 256x1+21=277

Finally, the last thing that tipped me off is the “1MB” file that was attempted to be uploaded
in payload #2. I figure the 1MB file is a 1 meg file that is used to gauge the speed of the site.
Since none of the ftp sites allowed the upload, I couldn’t verify this. So, I did the next best
thing, I asked other people. ☺

Correlations:6.
To verify my theory of warez pups, I asked cmg@edu, an intrusion analyst at a university. He
provided the following snort logs and commentary (These are snort logs.
The format of this is |date-time|[**]alert name[**]|src ip:port|dst ip:port| The stuff
underneath is tcpdump style hex.):

They found a writeable share from one of the isp's ips they store their 1000000 byte 1mb file

1/05-11:53:26.463104 [**] STOR 1MB - possible warez site [**] 62.4.245.154:1807 ->
xxx.xxx.xxxx.xxx:21

11:53:26.463104 adsl-9626.turboline.skynet.be.1807 > xxx.xxx.xxx.xxx.ftp: P
580945497:3580945511(14) ack 1499419871 win 17034 (DF)

4500 0036 3789 4000 7106 4ef4 3e04 f59a
xxxx xxxx 070f 0015 d570 e459 595f 54df
5018 428a 75c4 0000 5354 4f52 2031 4d42
7465 7374 0d0a

Later, they retrieve it twice (possibly another compromised host at
the same isp or DHCP adsl), presumably as a speed test / success test.

01/06-09:10:16.871468 [**] RETR 1MB - possible warez site [**] 62.4.244.66:1071 ->
xxx.xxx.xxx.xxx:21

09:10:16.871468 adsl-9282.turboline.skynet.be.1071 > 138.26.197.139.ftp: P
103710778:103710792(14) ack 2603923748
win 16983 (DF)
 4500 0036 030a 4000 7106 84cb 3e04 f442

xxxx xxxx 042f 0015 062e 803a 9b34 b924
5018 4257 0386 0000 5245 5452 2031 4d42
7465 7374 0d0a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

alert.978796860:01/06-09:28:36.941170 [**] RETR 1MB - possible warez site [**] 62.4.244.66:4446 ->
xxx.xxx.xxx.xxx:21

09:28:36.941170 adsl-9282.turboline.skynet.be.4446 > 138.26.197.139.ftp: P
541055472:541055486(14) ack 2741793853
win 16984 (DF)

4500 0036 3041 4000 7106 5794 3e04 f442
xxxx xxxx 115e 0015 203f d9f0 a36c 743d
5018 4258 bf3d 0000 5245 5452 2031 4d42
7465 7374 0d0a

Over the course of several months, many warez/mp3/vcd sites were
created. Most of these sites had the 1mb file and often the remote
machine was running IIS with a world writeable directories related to
frontpage. Other times it they were unix hosts with insecure
permissions.

When a site was to actually be used, often a directory containing the
phrase "RoboFXP" was created. Probably a customized host to host ftp
transfer program with speed testing options built in.

Evidence of active targeting:7.
This was an entire netblock scan, no specific machine was targeted. However, I still have
an unknown as to what the “CWD DoS” stuff is that was apparently directed to only 4 IPs.
I suspect I’m actually missing some packets, as the particular IDS that caught this has a
problem with dropping packets when the network gets bursty.

Severity:8.
(system criticality + attack lethality) – (system countermeasures + network countermeasures) =
severity

(2 + 2) – (5 + 2) = -3

System Criticality: 2 -> Not terribly important, these are servers that are left over from a network
move.
Attack lethality: 2 -> I give this a 2 because if the intruder had been able to put warez on our
network, all this really could do is max out network bandwidth when the machine makes it to a
warez list.
System countermeasures: 5 -> This gets a 5 because none of the servers allow anonymous
uploading, or arbitrary, illegal PORT/IP addresses.
Network countermeasures: 2 -> Permissive firewall, no access control

Defensive recommendations:9.
Turn off anonymous ftp access on the servers that don’t need it. However, for the rest of
them, due to the nature of anonymous ftp, it would be impossible to limit who can
connect. In this case, keeping the ftp software current and patched is the best defense. If an
anonymous server needs upload access, then the upload directory shouldn’t be readable

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

and should also restrict downloads until the administrator can review what was uploaded
and move it to a publicly available area.

Multiple choice test question:10.
What should be done on the ftp servers now?

Nothing. They’re fine.A.
Check for unauthorized files and directories. Perhaps a server allowed anonymous B.

uploads.
Reinstall.C.
Move the ftp server to a different port to hide it.D.

Correct answer, B.

Detect #3:

IDS Alert:
06:28:34 [T] 193.140.46.97 x.x.65.7 [WEB:MYLOG] (tcp,dp=80,sp=2656)
06:37:06 [T] 193.140.46.97 x.x.65.7 [WEB:MYLOG] (tcp,dp=80,sp=2886)

Payload:
06:28:34
GET /mylog.phtml?screen=/etc/passwd HTTP/1.0
06:37:06
GET /mylog.phtml?screen=/etc/passwd HTTP/1.0

Source of trace:1.
My network (work), Jan 14th , 2001.

Detect was generated by:2.
Dragon IDS sensor, version 4.2.1. Detect came from web.lib ruleset, which was the most current at that
date.

The fields are as follows:
| Time | direction of packet. In this case, “T” for to protected net | src host | dst host | alert name | (proto, dst port, src
port) |

The payload format is of:
| Type of command (GET/PUT/POST/etc) | What to get | http proto version |

Probability the source address was spoofed:3.
Not very high. At this point, the attacker has already made a connection to the server and
requested information. A 3-way handshake must be completed in order to do this. It is a
possibility that the target machine could be a victim of sequence number guessing too. The target
machine, however, is a relatively recent OS with all patches installed, so this type of attack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

shouldn’t be very easy at all. I’m betting my quarter on this not being spoofed.

Description of the attack:4.
This is the “PHP/FI mylog/mlog” attack that will present the password file back to the attacker, if
the script exists and is vulnerable. In the logs above, it looks like the attacker was doing other
things while scanning for this particular exploit. I say this because of the src port the first time the
attacker connected and the src port the second time there was a connection. The difference in src
port numbers suggests there were other connections elsewhere. However, why the person came
back again is a bit of a mystery. Perhaps a script mishap. The machine in question does not have
/etc/passwd, it isn’t even UNIX. CVE gives this vulnerability ID CVE-1999-0346 and BugTraq’s
ID is 713.

Attack mechanism:5.
Much like many other CGI type exploits, the scripts put too much trust in the (ab)user on the
other end. One of the golden rules for scripts of this type is to accept only the characters needed
by the script. Typical examples of things to not accept are things like slashes, dot-dots, pipes, or
generally anything that is a special character to the shell or other program. In this particular case,
no filtering was done on the input of the “screen” variable. So, one could define screen as
“/etc/passwd” and viola, a passwd file.

Correlations:6.
A couple of people made references in their practicals of also being scanned for this type of
vulnerability. Those can be found here:

http://www.sans.org/y2k/practical/EAVazquezJr.html
http://www.sans.org/y2k/practical/Todd_Garrison.html#attack1-source1

Todd Garrison mentions RFP’s whisker web scanner. That does indeed look for this
vulnerability. However, looking at whisker (v1.4), it does not append
“?screen=/etc/passwd” as was in the payload. Also looked at Nessus (v1.0.6), cgichk
(v2.42) and Retina (v2.0, evaluation) and none of these appeared to look for
m[y]log.[p]html. Searches on google returned only discussions of how to use this
vulnerability. Based on how easy this is, I suspect this was done either by hand or some
home-brewed cgi scanner.

Evidence of active targeting:7.
This attack was only directed to this one machine. This is definitely active targeting. However,
there appears to have been no recon done because, as mentioned before, this is not a UNIX box
and therefor has no /etc/passwd. This could be a “fire and forget” scan in the hopes of turning up
something somewhere.

Severity:8.
(system criticality + attack lethality) – (system countermeasures + network countermeasures) = severity

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(4 + 1) – (5 + 2) = -2

System Criticality: 4 -> Web server
Attack lethality: 1 -> This isn’t going to succeed at all.
System countermeasures: 5 -> Up-to-date OS, all patches.
Network countermeasures: 2 -> Permissive firewall, no access control.

Defensive recommendations:9.
Since the mylog scripts are just test scripts, and since test scripts have been known to
occasionally have problems, I recommend going through all the web servers and disabling or
removing any test scripts that are found. Also, I would make sure all the UNIX boxes have
shadowed password files, so in the event a passwd is retrieved no password hashes are also
obtained.

Multiple choice test question:10.
Why would retrieving an /etc/passwd file be beneficial?

Could be used as method of harvesting usernames for Spam bots.A.
Sometimes /etc/passwd will contain password hashes B.
(machine doesn’t use a method of shadowed passwords).
Gives an attacker usernames to brute force a login password from.C.
All of the above. D.

Correct answer, D

Detect #4

IDS alert:
09:45:40 [T] 199.125.96.50 x.x.208.10 [RPC:OVERFLOW] (udp,dp=32774,sp=794)

Payload:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Source of trace:1.
My network (work), Jan 5th 2001.

Detect was generated by:2.
Dragon IDS sensor, version 4.2.1. Detect came from the overflow.lib ruleset, which was the most
current at that date.

The fields are as follows:
| Time | direction of packet. In this case, “T” for to protected net | src host | dst host | alert name | (proto, dst port, src
port) |

The payload above is a snapshot of Dragon in “raw” mode. This includes the ASCII, hex, the alerts generated (the
“event” stuff), protocol, and the src and dst ports/IPs. I figure I’d spice it up a bit and include everything and not just
the application layer. ☺

Probability the source address was spoofed:3.
Unlike the other detects, this attack went over UDP. Remember that UDP is a connectionless
protocol (in other words there is no 3-way handshake, so there is no connection reliability).
Because of this UDP is an easy protocol to spoof. That being said, I don’t believe this to be a
spoof. My reasoning behind this is that the only other packet sent to this machine from this host
was a request to portmapper requesting statd’s port. The attacker would have to have seen the
reply in order to immediately connect again to statd on port 32774. Also, the TTL in the above
hex dump is 47, and on connecting to that machine’s HTTP port returns a syn+ack with a TTL of
52 which is pretty close. The IP ID is 57897 and when compared to the IP ID on the initial
portmap request (seen below in the “question” section), the ID is 57894. Again, that appears to
be correct. More on TTLs can be found at http://www.switch.ch/docs/ttl_default.html

Description of the attack:4.
This attack is an older statd exploit, not like the “format string” statd exploit that’s still very
popular at this time. If this attack works, the inetd parseable line “pcserver stream tcp nowait
root /bin/sh sh -i" would be echoed to “/tmp/bob.” After which another copy of inetd would be
started specifying /tmp/bob as a configuration file. The CERT advisory on this can be found at
http://packetstorm.securify.com/advisories/cert/CA-97.26.statd

Attack mechanism:5.
This mechanics behind this are really simple. In this attack, statd does not have the proper
bounds checking for user input, thus submitting a specially crafted packet an attacker can force
statd to execute the above command. As we all know from using the shell, the semicolon allows
us to specify multiple commands on one line. So, the attacker has added commands to be done
as root (or the user statd is running as). When inetd executes this code, it will start an interactive
shell on port 600 (pcserver) for the attacker to come in on and do whatever else.

Correlations:6.
While searching around and looking at who else has seen this attack, I came across a few others

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

who have seen this problem:

http://www.health.ufl.edu/wss/mail-archives/unix-sec/1999//05//msg00008.html
http://www.securityportal.com/list-archive/firewalls/2000/Mar/0058.html

Interestingly, even though this exploit is old it still continues to be used.

Evidence of active targeting:7.
Definitely active targeting. Out of 4 other class C networks, only this host was hit. After this
initial attack, there was no other evidence that this IP has been back in an attempt to exploit
something else.

Severity:8.
(system criticality + attack lethality) – (system countermeasures + network countermeasures) = severity

(5 + 5) – (5 + 2) = 3

System Criticality: 5 -> Daily operations server for employees, also has access to other parts of
the network.
Attack lethality: 5 -> This attack can provide remote root access.
System countermeasures: 5 -> Up-to-date OS, all patches.
Network countermeasures: 2 -> Permissive firewall, no access control, statd open to the
world.

Defensive recommendations:9.
TCPWrap all services to only those who need them. Firewall the machine to provide the same
sort of ACL. Since statd (and other RPC) services are needed, keep close watch on patches and
stay current.

Multiple choice test question:10.
In the following hex dump of a portmap port request, what sequence of hex represents the
program ID of statd?

45 00 00 54 e2 26 00 00 2f 11 e4 ba c7 7d 60 32 cc fd xx xx E..T.&../....}`2....
03 19 00 6f 00 40 f6 38 3b 5c f8 24 00 00 00 00 00 00 00 02 ...o.@.8;\.$........
00 01 86 a0 00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 b8 00 00 00 01 00 00 00 11
00 00 00 00

00 03 00 00A.
00 01 86 b8B.
3b 5c f8 24C.
c7 7d 60 32D.

Correct answer, B

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 2 – Analyze This, 40 points.

This is an analysis of incomplete snort logs because for one reason or another, such as failed
power or a full disk, logging had been disabled. The below are the results of doing said
analysis for GIAC Enterprises.

Even though it was said that I would be provided with one month’s worth of logs, it appears
the logs I have received encompass more than just one month. There even seem to be some
alert files that are duplicates. For example, SnortA14 and 19 are both of size 88368 and have
no differences. These duplicates were ignored during the actual analysis. Within the archive of
snort logs, there are three types of text files: Alerts, Scan logs, and Packet Dumps. After all
the zips were unpacked and put in a safe place, and a little rearranging of some of the
information within the text files was completed, the total amount of disk space used by the
text files is 56.6M.

The snort alerts start on 09/26 and end on 11/22. Days missing are 09/29, 10/04, 10/10, 10/14,
10/17, 10/20, 10/27, 11/01, 11/06, 11/11, 11/15, 11/18 and 11/21.

First, we’ll start out with a list (via snortsnarf, which can be found at www.snort.org) of alerts
in ascending order. The span of the dates and times is also included:

Earliest alert at 00:00:52.873106 on 09/26
Latest alert at 23:32:20.988483 on 11/22
Signature (click for definition) # Alerts # Sources # Destinations
Happy 99 Virus 2 2 2
site exec - Possible wu-ftpd exploit – GIAC000623 6 4 4
Tiny Fragments - Possible Hostile Activity 7 5 6
SITE EXEC - Possible wu-ftpd exploit – GIAC000623 7 1 4
External RPC call 13 8 3
Probable NMAP fingerprint attempt 15 14 13
connect to 515 from inside 56 2 3
SUNRPC highport access! 60 13 12
NMAP TCP ping! 96 21 20
Queso fingerprint 142 29 58
SMB Name Wildcard 218 33 33
Null scan! 283 204 196
SNMP public access 468 23 1
Back Orifice 1697 40 932
Broadcast Ping to subnet 70 1813 216 1
Attempted Sun RPC high port access 2542 20 33
TCP SMTP Source Port traffic 2893 4 2836
WinGate 1080 Attempt 4802 570 2655
Watchlist 000222 NET-NCFC 8166 45 26
Watchlist 000220 IL-ISDNNET-990517 30998 61 108
SYN-FIN scan! 56250 30 25751

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Based on the information above, the top five source addresses are listed below and ranked by
the number of alerts. I tried including all source addresses, but there were such a large number
of hosts with large amounts of alerts it just wasn’t feasible.

Top Talkers

alerts IP Address Whois Info
7226 160.78.49.191

ema.chim.unipr.it
Centro di Calcolo di Ateneo (NET-PARMANET1)

6660 208.61.4.207
adsl-61-4-
207.mia.bellsouth.net

BellSouth.net Inc. (NETBLK-BELLSNET-BLK7)

4993 209.92.40.32
dslcv1-32.fast.net

FASTNET Corporation (NETBLK-DSL1-
FASTNET) DSL1-FASTNET

3921 63.195.56.20
adsl-63-195-56-
20.dsl.snfc21.pacbell.net

SNFC21 RBACK11 BASIC 63.195.56.0 (NETBLK-
SBCIS39515) SBCIS39515

3886 130.89.229.48
cal032044.student.utwente.nl

University Twente (NET-UTNET)

160.78.49.191

160.78.49.191 performed a very noisy SYN-FIN scan for DNS servers on the networks
using src port 53. Out of all the scans, it seems that the only servers that were sent
anything other than SF were the following:

Sep 30 13:10:40 160.78.49.191:1327 -> 192.168.1.3:53 UDP
Sep 30 13:19:42 160.78.49.191:1337 -> 192.168.109.38:53 UDP
Sep 30 13:19:42 160.78.49.191:1339 -> 192.168.109.41:53 UDP
Sep 30 13:19:46 160.78.49.191:1340 -> 192.168.110.16:53 UDP
Sep 30 13:21:31 160.78.49.191:2773 -> 192.168.130.122:53 SYN **S*****
Sep 30 13:21:31 160.78.49.191:1345 -> 192.168.130.122:53 UDP
Sep 30 13:25:52 160.78.49.191:1348 -> 192.168.181.131:53 UDP
Sep 30 13:27:47 160.78.49.191:1350 -> 192.168.204.30:53 UDP
Sep 30 13:27:50 160.78.49.191:1351 -> 192.168.204.134:53 UDP
Sep 30 13:29:02 160.78.49.191:1352 -> 192.168.218.162:53 UDP

These servers should be checked to see what versions/type of DNS software they are
running and whether the results are vulnerable or not. 122 looks particularly interesting, I’d
start there.

208.61.4.207, 209.92.40.32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The next two hosts in our list, 208.61.4.207, and 209.92.40.32, were likely to be trolling for
already compromised machines. Like the previous machine, this was a noisy SF scan
going all over the network. In other words, the third octet was incremented by one after
rotating through all the ips in the last octet. Src and dst port was 9704. Looking around for
a bit of correlation, most of what I found were just other people asking what this is, or
making note that the scan had happened. It is interesting to note that the SEQ/ACK
numbers do not change very often and the window size is always 0x404, and the ID
number is always 39426. The tool that scans with this signature is Psychoid’s SynScan.
This also was formerly known on the snort mailing list as “Mystery scan tool 11.”

http://www.sans.org/y2k/082000-1100.htm
http://www.sans.org/y2k/081600-1500.htm
http://www.sans.org/y2k/practical/Dale_Ross_GCIA.htm
http://www.sans.org/y2k/practical/william_stearns_gcia.html

As I’ve seen this port before being used on compromised machines, my guess is that (as
stated above) this is a commonly used backdoor port. Some searches from the Incidents
list at securityfocus confirm this.

http://www.securityfocus.com/frames/?content=/templates/archive.pike%3Flist%3D75%26mid%3D78737

The following link suggests a statd worm uses this port:

http://www.securityfocus.com/frames/?content=/templates/archive.pike%3Flist%3D75%26mid%3D142003

Grepping over the snort files showed no other information about this host other than the
scan itself. Following the directions in the link above about grepping inetd for this port
would shed some light on whether or not a particular machine running statd had been
infected or not. Telneting to this port would also work.

63.195.56.20

The next host on our list (surprise surprise) performed another massive SF scan. However,
this time it was a little different – a scan for FTP from src port 21. Everything else, scanner
type and all, is the same… how unimaginative. Grepping through the snort files, there
weren’t any other alerts other than scans for this IP though that doesn’t mean nothing has
happened. Snort might not have had a signature in the rulebase for a particular attack by
this IP. As above, looking over the versions and type of FTP servers running would be an
excellent idea. Some recent CVE entries that may pertain to what this person was looking
for are CAN-1999-0911, and CAN-2000-0573.

130.89.229.48

The last host on our top five list here is more of the same. Like the first host, this is a SF
scan for DNS servers from port 53 to port 53 and using SynScan. Possible CVE entries

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

that may relate to what the scanner is looking for are CVE-2000-0887, CVE-2000-0888 and
CVE-2000-1169. JD Baldwin lists this type of scan in one of the detects at
http://www.sans.org/y2k/practical/JD_Baldwin.html

Alerts

Happy99 Virus•

This alert was triggered two times to (presumably) two of your mail servers on port 25.
This makes sense as one of the methods of propagation for this virus is through email (the
other being through news groups). Information on what this virus does can be found at
http://www.geocities.com/SiliconValley/Heights/3652/SKA.HTM. Looking at a recent snort
signature for happy 99 shows that it matches on the e-mail header of “X-Spanska: Yes.”
This isn’t likely to false alarm much, if at all. It seems pretty specific. Mail logs should be
checked for who the recipient of these viruses was. Andy Siske and Joanne Treurniet also
make note of this in their practicals:

http://www.sans.org/y2k/practical/Andy_Siske_GCIA.htm
http://www.sans.org/y2k/practical/JoanneTreurniet.html

Site exec – Possible wu-ftpd exploit – GIAC000623•
SITE EXEC – Possible wu-ftpd exploit – GIAC000623 (There was a second signature)•

This is a particularly familiar alert for me. I’ve seen this type of alert everywhere. There
have been quite a few wu-ftpd exploits lately. Dale Ross records in his practical
(http://www.sans.org/y2k/practical/Dale_Ross_GCIA.htm) this particular alert, from the same
number of hosts (4) in our alert.

The following hosts were sources of this particular attack:
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total))
208.61.44.215 9 9 2 5
24.31.88.99 2 2 1 1
202.9.188.89 1 1 1 1
63.202.13.20 1 6 1 6

The destinations (lower case site-exec):
Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total))
192.168.221.82 2 3 1 2
192.168.205.94 2 11 2 8
192.168.97.206 1 9 1 8
192.168.100.209 1 2 1 2

The destinations (upper case SITE-EXEC)
Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total))
192.168.130.242 3 5 1 3
192.168.205.94 2 11 1 8
192.168.99.130 1 2 1 2
192.168.130.81 1 3 1 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The first three src IPs didn’t seem to have any other traffic recorded. However the last one
seems to have done a bit of recon work. Perhaps a step above the average script kiddie:

10/04-11:56:00.850049 [**] Queso fingerprint [**] 63.202.13.20:1187 ->
192.168.100.127:21
10/04-11:56:14.289566 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**]
63.202.13.20:1188 -> 192.168.100.209:21
10/04-11:56:27.511836 [**] Queso fingerprint [**] 63.202.13.20:1190 ->
192.168.130.98:21
10/04-11:56:46.630183 [**] Queso fingerprint [**] 63.202.13.20:1192 ->
192.168.163.17:21
10/04-11:57:24.186779 [**] Queso fingerprint [**] 63.202.13.20:1196 ->
192.168.205.94:21
10/04-11:57:46.592127 [**] Queso fingerprint [**] 63.202.13.20:1198 ->
192.168.214.186:21

CERT advisory CA-2000-13 discusses this problem. In fact, the release date is July 7, and
the date above is only about 3 months after. Chances of these servers being vulnerable (if
the admins were not diligent in keeping up to date) are high.

Tiny Fragments – Possible Hostile Activity•

It is possible that this is related to some sort of small DoS, however I think that is unlikely,
based on the small amount of alerts (7). Eric Hacker’s practical has quite a few more of
these alerts, of which I tend to lean towards his opinion of this being an attack in his case:
http://www.sans.org/y2k/practical/Eric_Hacker.html#_Toc490920406

However, still it could be an indication of some malicious intent to crash a machine with
fragmentation re-assembly bugs. One should block and log these strange fragments at the
firewall. In fact I’ve never actually seen a fragment less than 512 bytes in the wild.
Fragments of 512 or less sounds like a good number to block.

External RPC call•

All of these are requests to portmapper. Whether or not they were dumping a list of
services or just requesting the port for a particular services (i.e.; statd) is unknown. This
would require a packet dump. There doesn’t seem to be one with this type of information.
Regardless, this isn’t a good thing to allow into one’s network. There are too many
exploits and too much information to be gleaned from this. This type of traffic needs to
be blocked at the firewall, and if possible bind these services to internal IPs. This idea is
mentioned in http://www.sans.org/infosecFAQ/firewall/blocking_cisco.htm. AKA Top Ten
Blocking Recommendations Using Cisco ACLs.

The following hosts should be checked that they are running RPC services and if they’ve

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

been patched against all the recent vulnerabilities published lately:

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total))
192.168.6.15 9 63 7 9
192.168.100.130 3 8 3 5
192.168.15.127 1 4 1 4

It looks like especially bad news for 192.168.6.15 however, as it was then connected to on
an RPC port:

11/11-11:08:56.576798 [**] SUNRPC highport access! [**]
211.46.110.81:690-> 192.168.6.15:32771

I would start looking for compromised machines on this host. The other two machines
didn’t have any record of SUNRPC highport access. Joanne Treurniet mentions in her
practical (http://www.sans.org/y2k/practical/JoanneTreurniet.html) this type of traffic to the same
IP (192.168.6.15) that had the highport access alert above. This practical is dated
September 22, 2000, so it seems as though perhaps no one has turned off
portmapper/SUNRPC to the world yet.

This brings us straight to another alert of interest.

SUNRPC highport access!•
Attempted Sun RPC high port access (This alert chart not shown, but talked about)•

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total))
192.168.206.222 21 323 2 11
192.168.202.242 20 38 3 5
192.168.212.186 4 7 1 4
192.168.228.62 3 5 1 3
192.168.97.59 3 9 1 3
192.168.53.23 2 5 1 4
192.168.253.114 2 9 1 5
192.168.179.78 1 2 1 2
192.168.140.51 1 1 1 1
192.168.6.15 1 63 1 9
192.168.206.218 1 3 1 3
192.168.53.14 1 3 1 3

Well, this doesn’t look so good for a few of those. Let’s take a closer look.

192.168.206.222:

Most of the connections regarding this alert (and the “Attempted” one) come from
*.icq.aol.com:4000. These can likely be ignored as being ICQ. However, for the truly
paranoid (like myself), Teri Bidwell wrote in his practical,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.sans.org/y2k/practical/Teri_Bidwell_GCIA.doc, while looking over RPC highport
access alerts he came across links such as http://archives.neohapsis.com/archives/bugtraq/1999-
q3/1514.html that detail ICQ worms.

Other connections that set off this alert a lot are from head.rwc.rhns.redhat.com:443
(which does run https, so can be ignored. This alert just matches on TCP to port 32771)
and 216.10.12.30:2078, which is apparently a squid proxy if one were to telnet to that
port.

192.168.202.242:

This IP is the same story as above. Only difference is a src 216.10.12.2:4600, which
doesn’t accept a connection. In fact, it’s mostly the same (after looking a little closer) for
all of the IPs except for the following alerts, which are more suspicious:

10/14-12:29:16.379139 [**] SUNRPC highport access! [**]
195.34.28.117:3191-> 192.168.97.59:32771 – This is a Russian dialup.
There are 3 connections in about 4 minutes.

09/28-13:34:31.092814 [**] SUNRPC highport access! [**]
24.18.90.197:2668-> 192.168.253.114:32771
09/28-13:38:23.094713 [**] SUNRPC highport access! [**]
24.18.90.197:2061-> 192.168.253.114:32771
09/28-13:28:03.304676 [**] SUNRPC highport access! [**]
24.18.90.197:4795-> 192.168.179.78:32771 – A md.home.com user.

10/03-19:01:24.124407 [**] SUNRPC highport access! [**]
129.123.6.14:50000-> 192.168.140.51:32771 – multi.ece.usu.edu. That
src port is bit high as well.

11/11-11:08:56.576798 [**] SUNRPC highport access! [**]
211.46.110.81:690-> 192.168.6.15:32771 – this one was noted above.

10/24-00:28:55.778708 [**] SUNRPC highport access! [**]
24.40.46.225:3486-> 192.168.206.218:32771 – A de.home.com user.

So it’s not as bad as first thought, though the IPs listed above have the greatest chance of
being owned via statd (assuming 32771 is the most common port for statd to use).

Connect to 515 from inside•

Here is what we have to go on:

Sources triggering this attack signature
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total))
192.168.101.142 54 54 1 1
192.168.179.78 2 2 2 2

Destinations receiving this attack signature
Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total))

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

192.168.100.3 54 58 1 5
64.244.202.110 1 1 1 1
64.244.202.66 1 1 1 1

First, if the destination hosts are valid print servers, then we can settle down a bit. I suspect
however this may not be the case. 192.168.100.3 could very well be a legitimate print
spooler, and 192.168.101.142 is using it to print. This is probably true. I’d bet my quarter
on 192.168.179.78 being compromised though. We saw above 192.168.179.78 was visited
by the RPC highport fairy, now we see this very same IP connected to the 64.244.202.x
addresses’ printer port. These are, by the way, mail.healthcite.com and igw.healthcite.com:

11/22-11:24:06.406682 [**] connect to 515 from inside [**]
192.168.179.78:2274-> 64.244.202.110:515
11/22-11:33:56.296324 [**] connect to 515 from inside [**]
192.168.179.78:2707-> 64.244.202.66:515

192.168.179.78 should be looked into immediately. Should the machine prove to be
compromised, getting in touch with healthcite.com would be wise. They may need to have
a look at their own machines now.

NMAP TCP Ping•
Null scan!•

Nmap being so popular, it’s not surprising there are so many alerts such as “TCP Ping”
(96 total) and “NULL scan” (283). These pings are all mostly standard technique. Port 80 -
> 80, 80 -> 53, 53 -> 53, or some variant thereof. Most places allow src port 80/53 into
their networks for obvious reasons, so these are good src ports to chose from.
There are significantly more Null scans. According to the ruleset I have, a null scan is
triggered when the SEQ/ACK/FLAGS are NULL. Fair enough… After looking at the
scans, it could be caused by Napster users. The use of src ports 6699 and 6688 and IPs
that are cable, dsl, dorm rooms, or otherwise fast connections seems to confirm this.
http://www.sans.org/y2k/100200.htm has similar examples, as well as
http://www.sans.org/y2k/060400.htm. The policy on MP3 sharing of course is up the people
who make the site policies. According to “wc” and “sort” there are 124 unique
192.168.x.x addresses that match this pattern. If this type of activity is not permitted then
a policy should be drawn up stating specifically how people are allowed to use company
resources. Firewalling connections to those ports could also be effective as well.

As for the rest of the scan, there really is no method to the madness, it appears mostly
random. However, right off I recognize some packet mangling (mangling, not crafting). A
couple examples:

I’ve seen this one quite a bit.

11/10-17:46:25.867116 [**] Null scan! [**] 62.252.4.220:18245 -> 192.168.204.38:21504

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

As stated on various lists, some Nortel boxes mangling TCP headers are causing this
oddball packet. To wit, 18245 is 4745 in HEX, which is GE in ASCII. 21504 is 5400,
which is “T” in ASCII. Put it together and we have “GET.” What is happening is the TCP
data is getting translated as header and leading to the goofy stuff shown above. The actual
list mail can be found at http://www.securityfocus.com/templates/archive.pike?list=75&mid=161200
I’ve also seen similar oddities on my own network, where normal web traffic will be
doing its thing, then a munged up packet (i.e.; src and dst port 0) and then normal traffic
again. Which I also see src and dst port 0 traffic in some of these NULL alerts.

Probable NMAP fingerprint attempt•
(The top five)

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total))
24.95.192.51 2 2 1 1
24.180.134.156 1 3 1 1
193.231.207.72 1 1 1 1
128.54.203.218 1 1 1 1
24.9.64.57 1 1 1 1

Queso fingerprint•
(The top five)

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total))
24.3.161.193 45 45 2 2
195.115.7.2 22 22 1 1
129.242.219.27 19 24 18 22
64.80.63.121 15 15 9 9
24.163.42.82 8 8 1 1

SYN-FIN scan!•
(The top five)

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total))
160.78.49.191 7199 7199 7199 7199
208.61.4.207 6635 6635 6635 6635
209.92.40.32 4967 4967 4967 4967
63.195.56.20 3897 3897 3897 3897
130.89.229.48 3860 3860 3860 3860

In the last three bullets, we see the top five scanning hosts for each type of recon that was
performed on the network. Fortunately, these were all incoming, and no scans of these
types going out.

Again in there are some false positives. As in the NMAP fingerprint alerts, we have
several alerts probably caused by Napster. If one follows the Snort mailing list, there are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

occasionally many alerts of this sort that are set off by Napster users. For example:

11/05-13:41:42.659984 [**] Probable NMAP fingerprint attempt [**]
128.54.203.218:6699-> 192.168.218.162:2803 – t8kim.resnet.ucsd.edu

Then there’s the Queso false alarms:

09/26-07:07:58.389135 [**] Queso fingerprint [**] 24.3.161.193:32866-
> 192.168.145.9:110
09/26-07:17:58.400199 [**] Queso fingerprint [**] 24.3.161.193:32867-
> 192.168.145.9:110
09/26-07:27:58.275507 [**] Queso fingerprint [**] 24.3.161.193:32868-
> 192.168.145.9:110

This type of traffic happens like the above on a regular basis. In the snippet we see every
10 minutes someone checking his or her mail. The source ports also increments by one
each time. This tells me that this machine is doing nothing else that would cause it to
‘expend’ another ephemeral port, so it is quiet, except for the occasional mail check.

There are however, a very large amount of real scans. Most of them aimed at ports 21, 23,
53, 9704, 27374, and 109.

21 and 53 have had numerous exploits published. 23 has had a couple problems, however
this may also just be a check to see if telnet is open for a banner grab later, or perhaps just
a check to see if the admin(s) are security conscious (i.e.; don’t think about running ssh
and turning off telnet). 9704 is as stated earlier looking for an already compromised
machine from a statd attack. 27374 is again, another open port that indicates a machine
that is compromised. For a reference of this trojan (and others)
http://www.simovits.com/nyheter9902.html is a good start. That site lists port 27374 as Bad
Blood, SubSeven, SubSeven 2.1 Gold, or Subseven 2.1.4 DefCon 8. It just also happens
to be the distribution port of the Ramen worm that is now popular and affecting RedHat
boxes. I’m not quite sure what scanning for pop2 (109) will show the attacker. Pop2 is a
mostly abandoned protocol. My guess at first was they might be searching for older
machines/installations. The existence of pop2 would confirm this. After a bit of searching
I found a pop2 exploit referenced at http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-
0920, that’s probably what they’re after.

After these types of scans and recon has been performed, one should check the network
to see if any of these ports answer back, this is especially true for new and unusual scans
for ports that haven’t been seen before and one isn’t sure if that port could be listening.
Adding snort rules that match on outgoing SYN+ACK or ACK (for TCP) on these well-
known trojan ports would also shed some light on whether or not they are being used.

SMB Name Wildcard•

This is common traffic for Windows machines when trying to determine NetBIOS names

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

when all that is available to go on is an IP address. Information that could be obtained
from this is users logged in, domain names, workstation names, etc. This alert alerts quite
a bit on my network and others too when the traffic is benign. As an example, a colleague
of mine was once sent an email about his web server “hacking” a government machine
via NetBIOS. In actuality, this web server was trying to resolve host names, and one of
the ways in which it would attempt this is with name-query probes. According to
http://www.whitehats.com/info/IDS177 this type of traffic is “background noise” and should
only be considered when there is other forensic evidence that points to a problem. This
port (and 138,139) should be filtered both in and out of the network. After looking at
these alerts, I then proceeded to look to see what was talking on 139. IPs
192.168.221.82 and 192.168.224.150 seem to be acting unusual.

192.168.221.82:

On Oct 16 18:34:04 to Oct 16 19:17:13 this host scanned 2668 hosts within
192.168.x.x on port 139. Chances of this host having a NetBIOS worm are high. Looking
through the snort logs for events that happened near this date are:

From the scan log…
Oct 16 11:01:44 212.34.32.91:1131 -> 192.168.221.82:22 SYN **S*****
Oct 16 11:01:44 212.34.32.91:1132 -> 192.168.221.82:23 SYN **S*****
Oct 16 11:01:44 212.34.32.91:1135 -> 192.168.221.82:79 SYN **S*****
Oct 16 11:01:45 212.34.32.91:1145 -> 192.168.221.82:443 SYN **S*****
Oct 16 11:01:45 212.34.32.91:1144 -> 192.168.221.82:224 SYN **S*****
Oct 16 11:01:45 212.34.32.91:1155 -> 192.168.221.82:8080 SYN **S*****
Oct 16 11:01:46 212.34.32.91:1150 -> 192.168.221.82:1524 SYN **S*****
Oct 16 11:01:48 212.34.32.91:1164 -> 192.168.221.82:60665 SYN **S*****
Oct 16 11:01:47 212.34.32.91:1151 -> 192.168.221.82:3128 SYN **S*****
Oct 16 11:01:47 212.34.32.91:1160 -> 192.168.221.82:26405 SYN **S*****
Oct 16 11:01:48 212.34.32.91:1165 -> 192.168.221.82:60666 SYN **S*****
Oct 16 18:34:04 192.168.221.82:3057 -> 192.168.0.3:139 SYN **S*****
Oct 16 19:17:13 192.168.221.82:4925 -> 192.168.255.238:139 SYN **S*****

And from the alert log…

10/16-16:55:26.342617 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**]
24.31.88.99:62275 -> 192.168.221.82:21
10/16-16:57:49.491247 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**]
24.31.88.99:62281 -> 192.168.221.82:21

Chances of 192.168.221.82 being owned just got significantly higher. This machine
should be investigated immediately. If the machine is a Windows box, a recent
virus/worm scanner is a must.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

192.168.224.150:

This IP is behaving mostly the same. Massive scans of port 139 on 192.168.x.x from Nov
2 16:13:52 to Nov 2 16:18:57, scanning 2980 hosts.

Events occurring around this time are:

Oct 29 10:39:01 63.88.175.201:3901 -> 192.168.224.150:21 SYN **S*****
Nov 1 05:39:26 24.115.67.96:1653 -> 192.168.224.150:27374 SYN **S*****

Similar actions should be taken as above. An exploit for 21 that snort didn’t pick up could
have compromised this box, or this box may be commandeered with SubSeven.

SNMP public access•

This signature generated 468 alerts, and all came from and to the 192.168.x.x address
space (23 srcs and 1 dst of 192.168.101.192). The SNMP string of “public” should be
changed to some hard-to-guess word. If anyone should connect to any SNMP enabled
machine and use the public string, then they would be able to get a great amount of recon
info with very little effort. Likewise, this port should be blocked in and out at the firewall.
If 192.168.101.192 shouldn’t be doing SNMP things, then this warrants some
investigation. http://www.sans.org/topten.htm gives some information about SNMP and how to
secure it. There is a good article at http://www.sans.org/newlook/resources/IDFAQ/SNMP.htm
called “Using SNMP for Reconnaissance” that details the many ways an attacker can
utilize SNMP public/private strings. Also, Lenny Zeltser makes note of the same
192.168.101.192 IP doing SNMP traffic in his practical at
http://www.sans.org/y2k/practical/Lenny_Zeltser.htm. His practical is dated 15 August 2000, so
apparently the advice of changing the community string from “public” to something else
has fallen on deaf ears.

Back Orifice•

Information on this can be found at
http://www.networkice.com/advice/Phauna/RATs/Back_Orifice/default.htm and at
http://www.sans.org/infosecFAQ/malicious/back_orifice.htm. The large number of hosts scanned
makes it impossible to paste them all here; it would make this document insanely huge.
An overview of the scanning src hosts show that these scans were sequential increments
of each octet. Thus, it doesn’t appear that anyone came back later. Still, it would be wise
to scan the network on port 31337 looking for open ports. A look at the current ruleset I
have for snort shows that all rules related to back orifice are content based. However, I do
not have a rule named “Back Orifice” as in your ruleset, so what your particular signature
alerts on is unknown. If rules with content searching are also within your rule base, then
there hasn’t been any successful SubSeven action going on, as none of those rules
alerted. An example of a content-based rule for back orifice can be found at

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.sans.org/y2k/practical/Marc_Bayerkohler_GCIA.html.

Broadcast Ping to subnet 70•

There are several things associated with this alert that immediately come to mind. First,
this could have been an attacker gathering network information such as which hosts are
alive. Sending one ping to the broadcast network, all (Unix) machines will respond with
an echo reply. Secondly, this subnet could have been used in a denial of service attack
against others on the internet. Similarly to how hosts will respond to a broadcast ping, a
ping that is a spoofed via an attacker to your subnet makes the machines on the
192.168.70.x subnet reply to the spoofed person (victim). This is commonly called a
Smurf. Information on that can be found at www.cert.org/advisories/CA-1998-01.html. If the
network is responding to pings directed at broadcasts, this should be immediately
disabled by blocking ICMP to broadcast and network addresses, or disabling “IP-directed
broadcasts” at your router.

TCP SMTP Source Port traffic•

As mentioned earlier, many people scan from well known low ports like 80 and 53
because those are typically allowed into one’s network. This is more of the same, except
the source port is 25. Many scanners/people typically scan from the same src port as the
port they’re scanning. One example would be a scan from port 25 to port 25. This isn’t
naturally occurring in the wild, so this is a dead give away that screams scan. These scans
alerted here are all of src port 25 to dst port 25. Any mail servers active on the network
need to be checked for allowing anyone to relay mail through them. Getting put on
SPAM lists isn’t a Good Thing. Information on preventing SPAM/relaying can be found
at www.sendmail.org and http://mail-abuse.org.There are also a number of SMTP related
problems. Going to http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword= and dropping keywords like
“sendmail” or “smtp” reveals a number of results.

WinGate 1080 Attempt•

Without actually seeing the snort ruleset used, it’s impossible to determine at this point
whether these attempts yielded anything useful to the prober and how many are false
positives.

Looking at the current rule set that I have, I see the following:

alert tcp !53 -> 1080 (msg:"MISC-WinGate-1080-Attempt";flags:S;)

Which would probably false alert a good many times. Think of a passive ftp session
where 1080 is picked, or another type of transaction that would pick this ephemeral port.

Based on the sheer number of alerts, the majority of these alerts are likely to be real scans.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The top 5 are listed below.

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total))
63.193.210.208 1883 1883 1837 1837
208.194.161.155 222 222 104 104
198.63.2.192 179 179 9 9
204.117.70.5 157 157 36 36
64.86.5.250 137 137 68 68

63.193.210.208 - adsl-63-193-210-208.dsl.snfc21.pacbell.net:

This host was rather noisy, scanning a large portion of the network. So many IPs/ports in
such a short time is unlikely to be a false positive. This scan started at 10/05-18:58:22
and ended at 10/05-19:03:42. Sending a note to pacbell about this large scan is a
good idea. In my dealings with pacbell on such things they’ve been quick to respond,
communicate the problem with their user, and give them time to “straighten up” before
canceling the account.

208.194.161.155 - proxy.monitor.twisted.ma.us.dal.net:
This is a real positive, but also false. This network has IRC users (again, this is a site
policy issue). The particular dal.net server is checking if the connecting user has an open
socks port. Abusers of IRC will use such proxies to hide behind and flood users, take
over channels, etc. Checking for the existence of such an open proxy at the user’s
connection attempt to the IRC network is a quick way to stop this type of abuse before it
happens.

198.63.2.192 – UNKNOWN (Verio, Inc. (NET-VRIO-198-063))

Verio looks like a “business to business” company, perhaps 198.63.2.192 is a customer of
theirs that is misbehaving or has been compromised. What’s interesting is that this IP
connects to 9 different hosts, then focuses on 192.168.206.118. It makes approximately
170 connects from 11/19-06:57:36 to 11/19-15:38:03.That ought to be looked
into quickly for what they were doing. If it turns out to be abusive/unauthorized, dropping
a note to Verio letting them know of a potential cracked into or abusive client would be a
good idea.

204.117.70.5 - security.enterthegame.com:

This is pretty much the same as the dal.net alert. Their web page reads:

When you connect to ETG, our Security server will check its database of known clean connections. If
you¹ve connected on a clean (secure) connect before, you will have a "lease" in the database. These are
good for a specified period of time from the initial connect. If Security detects a connect that it either has
not scanned before or a potentially unsecure connect, it will attempt to connect directly to you, in order to
make sure you¹re not operating off an unlimited wingate or an unsecure proxy or bounce. Security will
check two ports on your machine - port 23 (telnet port, checks for a wingate telnet bounce) and port 1080
(socks/wingate port) for an unsecured SOCKS4 and SOCKS5 proxy. If it finds a wingate telnet bounce on

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

port 23 or if it finds an unsecured SOCKS4 or SOCKS5 Proxy, you will be killed for an unsecure connect.

This IP can also be found in a “detects analyzed” post at http://www.sans.org/y2k/072100.htm,
although there’s really nothing much said about it other than it being included in a list of
other IPs.

64.86.5.250 - proxy3.monitor.dal.net:

And once again, a dal.net check is performed on connecting IRC users.

As with all of the alerts, since real scans have been done it would be wise to re-evaluate
what machines have SOCKS proxies and verify they are not open to the world. Having
“bad guys” parading around on the net from 192.168.x.x is a Bad Thing. Others, such as
Eric Hacker (http://www.sans.org/y2k/practical/Eric_Hacker.html), have noticed similar scans and
also came to my conclusion that since there is no content analysis it is impossible to
determine if actual WinGate/SOCKS activity has occurred.

Watchlist 000222 NET-NCFC•

This alert group has 45 sources and 26 destinations and none of the sources are from the
192.168.x.x network. Since I don’t have access to the snort rulebase that was used, I can
only assume that this rule matches on any connection from 159.226.x.x, as that’s what
appears in the list of alerts produced by snortsnarf.

Registry information for this netblock is

The Computer Network Center Chinese Academy of Sciences (NET-NCFC)
P.O. Box 2704-10,
Institute of Computing Technology Chinese Academy of Sciences
Beijing 100080, China

Netname: NCFC
Netblock: 159.226.0.0 - 159.226.255.255

A few statistics for the highest number of connections TO 192.168.x.x:

connects HOST:PORT # connects PORT # connects HOST

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5723 192.168.6.7:25
1251 192.168.100.230:25
457 192.168.253.43:25
183 192.168.253.41:25
152 192.168.253.42:25
70 192.168.99.51:40627
57 192.168.6.7:113
53 192.168.100.81:43879
37 192.168.100.230:113
32 192.168.145.9:25
14 192.168.6.7:23
13 192.168.6.34:25
11 192.168.6.47:25

7842 25
108 113
70 40627
53 43879
14 23
11 443
10 25459

5801 192.168.6.7
1299 192.168.100.230
461 192.168.253.43
186 192.168.253.41
155 192.168.253.42

It would seem that port 25 is a popular target. The mail servers should be checked for open
relays (and software versions as well, as noted earlier about SMTP exploits). Interestingly,
113 has been connected to 108 times. That’s a bit scary in and of itself. The majority of these
connects are going to 192.168.6.7 with 57. Based on how ident works, this suggests that
192.168.6.7 is connecting out to various 159.226.x.x addresses. The ports that it is connecting
to are requesting who the connection is being made as, thus sending that request to
192.168.6.7’s identd daemon. Other IPs that have activity on identd are 192.168.100.230 at 37,
192.168.253.53 at 8, 192.168.253.52 at 2 and 192.168.253.51 at 4. The activities of these
machines should be watched, as it is probable they are participating in activities that they
shouldn’t be. It is also possible that the attacker is using the ident protocol to figure out what
processes are running as who.

Disturbingly, there are also 103 connects from port 23 from 159.226.x.x, as well as 6 from 21.
Ick, if my idea of how the snort signature looks is correct, then those incoming packets from
those ports probably have the SYN+ACK bit set so 192.168.x.x has been connecting out to
places it probably shouldn’t be. There is unfortunately no data in the snort dumps to verify
what TCP flags are set. So, what we have here is:

159.226.22.55 was ftp’d to three times by 192.168.130.185.
159.226.113.1 was ftp’d to three times by 192.168.154.27.
159.226.41.166 was telneted to seventy times by 192.168.99.51.
159.226.41.166 was telneted to fifty-three times by 192.168.100.81.

It’s also interesting that 192.167.6.7 was telneted to 14 times. I’d bet my quarter on these
machines being compromised. There are also a large number of connects to a couple IPs on
some high numbered ports (from the charts above). This should be investigated to see what is
listening, if anything.

Watchlist 000220 IL-ISDNNET-990517•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This alert group has significantly more destinations than the previous one. Here we have
61 sources and 108 destinations, according to snortsnarf. Also, I’m assuming the same
sort of snort rule as defined above, so it looks like this rule will be alerting on traffic from
212.179.x.x. This is registered to

inetnum: 212.179.0.0 - 212.179.1.255
netname: AREL-NET
descr: arel-net
country: IL
admin-c: TP1233-RIPE
tech-c: TP1233-RIPE
status: ASSIGNED PA
notify: hostmaster@isdn.net.il
changed: hostmaster@isdn.net.il 19990624
source: RIPE

IL is Israel. The list below is again, the higher numbers of connections TO 192.168.x.x.

connects HOST:PORT # connects PORT # connects HOST
4810 192.168.211.146:4922
3938 192.168.223.98:6699
3913 192.168.206.90:4619
1638 192.168.203.142:4619
1459 192.168.218.142:4990
1353 192.168.214.170:6699
950 192.168.202.22:6699
796 192.168.201.174:6688
667 192.168.214.74:6688
648 192.168.209.106:1069
625 192.168.223.254:1255
609 192.168.211.178:6699
589 192.168.221.146:6699
579 192.168.15.215:1476
564 192.168.227.190:6699
505 192.168.203.206:6688

9692 6699
5733 4619
4811 4922
3255 6688
1459 4990
648 1069
625 1255
579 1476
437 6346
418 4968
366 6700
308 25

4810 192.168.211.146
3938 192.168.223.98
3916 192.168.206.90
1638 192.168.203.142
1459 192.168.218.142

From the looks of things, the majority of traffic appears to be Napster related (port 6688
and 6699) which is again, a site policy thing. There seem to be a good deal of unknown
ports such as 4619, 4922, etc. Checking with http://www.simovits.com/nyheter9902.html, only
one port, 1255, is used for a trojan (Scarab). Without further packet data, there really is no
good way to determine what this is. Since there are large amounts of Napster traffic going
on, I tried a little experiment. Using Napster and starting some downloads I noticed traffic
like:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Remote:6688 -> me:3184
Remote:7847 -> me:3193

So, it looks like this odd port traffic above could very well be related to Napster. Still,
further packet analysis is the best option to be sure. There isn’t any indication of what this
might be in the packet dumps provided with these snort logs unfortunately.

The high volume of SMTP traffic is a concern as well

141 connections to 192.168.253.41:25
124 connections to 192.168.253.43:25
25 connections to 192.168.6.47:25
11 connections to 192.168.253.42:25
7 connections to 192.168.110.150:25

These servers should be checked in the same way that the SMTP servers were checked
above. Outgoing traffic to this 212.179.x.x network seems to be like the incoming, i.e.:
seemingly odd ports. Since there seems to be large amounts of incoming traffic to a large
number of odd ports, I recommend installing a decent (preferably stateful) firewall and to
be on the safe side, scanning the network for trojans.

Summary:

Based on the aggregate data, there were many things that should be looked into immediately.
There are a couple machines that are compromised for sure, and several more that have a
higher than average probability. A firewall should be put up and configured with a default
deny statement, as well as configuring the router/firewall to reject odd fragments and
broadcast traffic. Machines that are compromised should be taken off-line, reinstalled,
patched and brought back on line. This should be done at the same time, no sense in putting a
newly installed machine back on the network when other cracked machines are still lying
around. Machines that are compromised are:

192.168.179.78. This was attempting to connect to lpd on remote sites after an alert was
triggered via an RPC highport rule earlier.

192.168.221.82, 192.168.224.150. These were doing massive NetBIOS scans. There is
something definitely fishy with that.

192.168.130.185, 192.168.154.27, 192.168.99.51, 192.168.100.81. These machines were
communication via ftp and telnet to the Watchlist 000222 addresses. If there is no reason for
this, these machines have been compromised. Also remember that 192.168.6.7 was
communicating a lot with something on the remote hosts that was requesting identd
information from it. This IP was also telneted to many times from the remote hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Machines that could be compromised:
192.168.221.82, 192.168.205.94, 192.168.97.206, 192.168.100.209, 192.168.130.242,
192.168.205.94, 192.168.99.130, 192.168.130.81. In other words, those machines subjected to
the wu-ftpd site exec exploit.

192.168.6.15, after the RPC call, it was connected to on an RPC port. 192.168.100.130,
192.168.15.127 were also probed with an RPC call, but didn’t appear to have any other
connections afterwards. They should be investigated anyway to be safe.
Other RPC high port access machines that should be checked include 192.168.87.59,
192.168.253.114, 192.168.179.78, 192.168.140.51, and 192.168.206.218. Keep in mind the
signature for these alerts was (according to my snort rules here) match on connections to
32771, so there may be false positives here.

There are also the recipients of the Happy99 virus that should be looked at. If network usage
should not be consumed by chat protocols and Mp3 trading protocols, this needs to be
addressed via a policy and firewalling. Other various high port connections should be looked
into via a packet sniffer or something similar to better accurately determine what it is.

I would also in the future suggest using a tightly secured, central syslogd server for log
verification and the use of a host based ID, such as Tripwire (www.tripwire.org) Access lists on
such publicly available services (like SOCKS, mail relay) should be checked for sanity.

Assignment 3 - Analysis Process, (30 Points)
After downloading the three sets of snort files, snorta.zip, snorts.zip and OOS.zip I created
three directories for each set, “snorta” for alerts, “snorts” for scans and “OOS” for the packet
dumps. This left me with a parent directory of “snort_data” with the aforementioned
directories contained within. This parent directory is where I used most of my command line
tools. I figured as I moved along looking through snort logs I was going to forget what I had
done. So, my solution to this was to use a tool called “script.” Script will record to a file all
input and output that traverses a terminal. Now at assignment #3, all I really have to do is look
over this “log file” to know what I’ve done, what command line tools were used, and what
the output was.

At first glance of the files I was a bit confused on the file naming conventions (such as
snorta54.txt), I needed something a little easier on the eye. In order to rectify this, I decided
that using the dates contained inside the logs would be a good way to categorize the files. So,
the following command line would accomplish this (use color=no for GNU ls, otherwise
you’ll get crazy ANSI characters and nothing will work).

for i in `ls --color=no *.txt`; do mv -v $i `tail -n 2 $i|head -1|cut -f 1 -d\-|sed s\|/\|\|`-$i; done

The preceding line lists the .txt files and cuts out a line of each file. I used “2” instead of “1”
so that tail will get the last two lines of text and not risk get a blank line or new line out of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

logs. The line returned would be something like

11/20-01:16:14.001989 [**] SMB Name Wildcard [**] 141.157.99.21:137 ->
MY.NET.6.15:137

It focuses on “11/20” (see line above) because I used field 1 for cut, cutting on the –
character. The / is replaced with nothing and then renames the file with the date of 1120
prefixed in front. Hence, files are now named like 1120-snorta54.txt. Now tail a file to be sure
I have the right dates corresponding with the file name:

11/20-22:37:00.425112 [**] spp_portscan: portscan status from 24.200.168.131: 1
connections across 1 hosts: TCP(1), UDP(0) STEALTH [**]
11/20-22:37:01.896124 [**] spp_portscan: End of portscan from 24.200.168.131 (TOTAL
HOSTS:1 TCP:1 UDP:0) [**]
11/20-23:03:12.739585 [**] SUNRPC highport access! [**] 216.10.12.30:2078 ->
MY.NET.206.222:32771

MY.NET needs to be digits so that snortsnarf won’t be confused:

for i in `ls --color=no *.txt`; do cat $i | sed 's/MY.NET/192.168/g' >$i.ips; done
tail -n 6 1104-snorta43.txt.ips

This is mostly the same as above. The only real difference is that each file, one by one, is
cat’d and piped through sed, which replaces MY.NET with 192.168 and writes out to a new
file of the same name with a “.ips” extension.

Now files named like 1120-snorta54.txt.ips have 192.168.x.x addresses. Now I did another tail
to verify the operation worked, and removed the old .txt files.

11/04-23:27:55.495339 [**] WinGate 1080 Attempt [**] 207.114.4.46:1753 ->
192.168.217.42:1080
11/04-23:40:38.961739 [**] Attempted Sun RPC high port access [**] 205.188.153.108:4000 -
> 192.168.221.246:32771

Before starting any analysis, I just thumbed through the data by hand to get a feel of what is
to come. After I felt comfortable with what I was looking at, and had an idea of who was
doing the most talking, I identified possibly problematic ports where intruders could have
come in on. It was now time to look at something a little more tangible. Since I’m already
familiar with snortsnarf I figured that’d be a good place to start. Unfortunately, running
snortsnarf on all of these files caused my box to run out of memory. So, I did another “for i
in” loop like above, but substituting the command to be run as snortsnarf on each file
individually. This proved semi useful to me as it broke out the data for each day into its own
directory structure. I also wanted something that could aggregate the data so I could have a
bird’s eye view, which is easier for me to see what’s going on “from a distance.” So, I copied
the “.ips” files to a Sun Ultra10 and ran snortsnarf from there. After a long time crunching,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

and no “memory exhausted” errors, I got my results without any problems. After looking
over the snortsnarf info, I began the analysis.

Since snortsnarf had already made a pretty listing of what alerts occurred, I didn’t need to do
that. What I did need to do is make a list of what IPs were most frequent in both src and dst
networks, and what ports were connected to most often. This would serve as an overview of
potentially suspicious activity and something to keep an eye out for. As used above, similar
command line tool methods were applied here. All that is really required to do this is to break
out the snort alert logs (or any snort log for that matter) into easily parseable fields. As an
example, to get a list of dst IPs, the line,

09/26-00:00:52.873106 [**] WinGate 1080 Attempt [**] 208.194.161.155:3718 ->
192.168.97.206:1080

can be broken into two parts with the > character (and again with the : char to break out hosts
and ports):

find ./snorta -type f -exec grep "\[**\]" {} \;|grep -v portscan|cut -d \> -f 2|cut -d : -f
1|sort|uniq -c|sort -r|less

Now I have looked at the alerts and uniq will count the number of occurrences.
Sort -r will list them in descending order. Typical output would be something like

5808 192.168.6.7
4814 192.168.211.146
3940 192.168.223.98
3918 192.168.206.90

I then proceeded to get a list of ports in much the same way, but using the second field in the
second “cut.” I continued on this type of trend listing the most connects to a certain port, src
hosts, dst hosts, etc until I had all the statistics I needed before going into analysis with
snortsnarf. After this point everything else was mostly a more refined method based on the
alert that I was currently looking at with snortsnarf. For example, while looking into the “SMB
Name Wildcard” alerts, snortsnarf gave a good representation broken down into src and dst IPs.
However, there are too many IPs to click on every one. So I used “find” and grepped for the
specific alert, breaking up the fields based on hosts to see who the specific hosts were talking
to. Then I swapped it up a bit and grepped for hosts that were the chattiest for this alert. This
showed everything that IP had done, and since the parent directory I was working from
contained all three snort log types, the find+grep looked through everything. If I found
something interesting, I could thumb through the specific file by hand. However, in order to
know what file the match was found in, I had to add an extra command to “find” after the
grep. The command which was used is “-exec ls {} \;” This lists the filename after the
match(es). Using “find” helped out a good deal for situations where there were events that
didn’t get fed into snortsnarf, such as SYN scan alerts. Knowing that connections to port 137

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

are often followed by connections to port 139, doing another find+grep and looking for
192\.168\. and :139 helped me to see an odd amount and quickly moving number of
connections to NetBIOS ports from a couple machines.

This pattern of systematically going through each alert group and armed with the statistics of
“hosts/ports that have large amounts of traffic” from when I first started gathering statistics
helped to create what eventually became a breadcrumb trail of IPs. I often found correlation
with one IP from an earlier event when looking at the current alert in my list of alerts. There
were also at times some activity or packet dumps that I was unclear about. This is where
having a few browsers open to places like www.google.com, www.securityfocus.com, and
http://cve.mitre.org were a big help answering those lingering questions of “what is this I’m
looking at?” Old mailing list archives that are searchable such as Incidents and Vuln-Dev (at
securityfocus) were also helpful.

