
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts

GIAC (GCIA) Gold Certification

Author: Doug Burks, doug.burks@gmail.com
Advisor: Joel Esler

Accepted: April 17th 2009

Abstract

Snort is a free and open source Intrusion Detection Systems (IDS). The next generation

of Snort, version 3.0, is currently available in beta form. This paper will demonstrate

how analysts can begin experimenting with Snort 3.0 today by manually compiling the

source code or by simply downloading a preconfigured bootable CD. This paper will

also discuss the design of Snort 3.0 and its new features, such as multithreading, native

inline bridging, dynamic reconfiguration, and native IPv6 support.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 2

Doug Burks, doug.burks@gmail.com

Introduction

In order to understand the future of Snort, one must first understand its past. The

original version of Snort was written by Marty Roesch in 1998. The current production

version as of this writing (April 2009) is 2.8.4. Over the course of a decade and all of the

releases in between, the evolution of Snort can be seen as part of the escalating arms race

with those who would cause harm to our networks. As intruders find new methods of

IDS evasion, Snort evolves to resist those methods. As attackers find new ways into our

networks, Snort is pushed into service in increasingly complex configurations which may

or may not have been envisioned by Marty Roesch back in 1998. As networks get bigger

and faster, so do the attacker’s botnets and the amount of attack traffic that they can send.

As a consequence, the Snort developers must constantly come up with new ways of

increasing the speed and efficiency at which Snort is able to analyze packets. Snort’s

ability to keep up with the rapidly changing threat landscape has resulted in it becoming

quite popular.

As Snort has grown more and more popular and the number of installations

worldwide has grown, so has the number of complex configurations and the increased

demands on the core feature set. Though Snort has so far been successful in evolving to

fulfill the needs that are placed upon it by the IDS community, there have been some

long-standing limitations which could prevent Snort from being successful in the future.

The first limitation of the Snort 2.x series is that it is single-threaded and, therefore,

unable to take advantage of multiple cores/processors. Furthermore, if one part of the

Snort process has to wait, then Snort will drop packets. An example of this is logging to

a database. If Snort is configured to log directly to a database, then it has to wait for the

database write to complete before it can go back to its real job of sniffing packets. This is

currently avoided by configuring Snort to output to unified/unified2 format and then

using a separate utility like barnyard to process the unified output and perform the

database inserts. On a multiprocessor box, the Snort thread can operate on one processor

with the barnyard thread operating on another, effectively imitating a multithreaded

application.

The second limitation of Snort 2.x is that it was not originally designed to run

inline. A separate project called Snort Inline was created for this capability. The inline

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 3

Doug Burks, doug.burks@gmail.com

functionality was eventually merged into the mainline Snort in Snort 2.3.0 RC1.

However, this was still limited in that it relied on IPTables instead of libpcap and thus

would only work on operating systems that support IPTables (Sturges, 2009).

Additionally, Snort 2.x cannot be reconfigured dynamically. Configuring Snort is

accomplished via the snort.conf configuration file. Any changes to the snort.conf file

require a restart of the Snort process to take effect. This is especially problematic when

running inline considering that a restart would cause packet loss.

These limitations are the impetus for Snort 3.0, which is currently in development

and available in beta form. Snort 3.0 Beta 3 was released on April 1, 2009. Snort 3.0 is a

framework which can take advantage of today’s multi-core processors, run inline, and be

reconfigured on the fly without requiring a restart. To understand how Snort 3.0

implements these new features, let’s examine its design.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 4

Doug Burks, doug.burks@gmail.com

1. Snort 3.0 Architecture

Figure 1-1: Snort 3.0 Architecture Diagram (Roesch, 2008c)

Figure 1-1 is Marty Roesch’s diagram of the Snort 3.0 Architecture. Note that the

Snort 3.0 Architecture consists of the Snort Security Platform (SnortSP) and engines that

connect to that platform via the Snort Abstraction Layer. The Snort 3.0 Beta 3 tarball

downloaded from the Snort website contains both SnortSP and a detection engine based

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 5

Doug Burks, doug.burks@gmail.com

on Snort 2.8.3.1. The Snort 2.8.3.1 detection engine is currently the only analytics

module available for SnortSP and is being used to help bridge the gap from Snort 2.x to

Snort 3.0. It allows users to implement their existing Snort configuration on top of

SnortSP. Expect to see more analytics modules when Snort 3.0 is released in final form.

Since Snort 3.0 is multithreaded by default, each of the modules can simultaneously

process the same traffic. This allows Snort 3.0 to take advantage of multiple

cores/processors for increased speed and efficiency. It should be noted that the SnortSP

Development Team performed exhaustive performance testing between Beta 2 and Beta

3 and consequently tweaked the multithreaded model (Roesch, 2009). Expect to see

more changes and better performance by the final release of Snort 3.0.

Next, notice the module labeled "Snortd & Command Shell". Snort 3.0 includes a

command shell based on the Lua scripting engine. This command shell can be used for

dynamic reconfiguration. In terms of IDS tuning, Snort 2.x required a restart after any

changes to the snort.conf file. This is still true in the current Snort 3.0 Beta when using

the Snort 2.8.3.1 Detection Engine (the only detection engine currently available). Once

Snort 3.0 native detection engines are available, then the analyst will have the ability to

reconfigure them dynamically via the Lua console or by using snortsp_tool to connect to

the socket interface.

Further enhancing the dynamic capabilities of SnortSP are pluggable Data

Acquisition (DAQ) modules (seen in the Data Source module of the Architecture

diagram). There are three DAQ modules currently available: file, pcap, and afpacket.

This paper will demonstrate the use of the file DAQ module for reading pcap files, the

pcap DAQ module for a traditional single Ethernet interface configuration, and the

afpacket DAQ module to enable the new inline bridging functionality.

Now that we have a basic understanding of the design of Snort 3.0, let’s begin

experimenting with it to see how that design has been implemented.

2. Snort 3.0 LiveCD

Snort 3.0 has been integrated into a custom bootable CD that allows analysts to

very easily experiment with Snort 3.0 and many other packet/security tools. The CD is

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 6

Doug Burks, doug.burks@gmail.com

called the Security Onion LiveCD and it should be available at the Snort website in the

near future. Once available, an analyst can simply download the ISO image and boot it in

a virtual machine, or burn it to a CD and reboot the computer with the CD in the drive.

Figure 2-1: Security Onion LiveCD Boot Menu

Figure 2-1 shows the boot menu. Pressing Enter at the boot menu will start the

operating system and then load the graphical environment.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 7

Doug Burks, doug.burks@gmail.com

Figure 2-2: Security Onion LiveCD Desktop

Since Snort 3.0 has already been compiled and installed, an analyst can simply

execute snortsp from the terminal (as shown in Figure 2-2) or by double-clicking the

SnortSP-Sguil desktop shortcut. The SnortSP-Sguil desktop shortcut executes SnortSP

and the Snort 2.8.3.1 detection engine, outputting alerts into Sguil as described later in

this paper.

Also notice the desktop icon labeled "Install". This icon will launch the Ubuntu

Ubiquity Installer which can be used to install the Security Onion LiveCD to a hard drive

for a quick IDS installation. Full installation instructions can be found in the README

file on the desktop.

For more information about the Security Onion LiveCD, please see Appendix A.

Those planning on using the Security Onion distribution instead of manually compiling

Snort 3.0 should still read through the following section. Doing so will aid in the

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 8

Doug Burks, doug.burks@gmail.com

understanding of not only how Snort 3.0 was compiled and installed in the Security

Onion distribution, but also in how the components of Snort 3.0 itself fit together.

3. Compiling and Installing Snort 3.0
Before Snort 3.0 can be compiled and installed, the analyst must ensure that all

dependencies are met. The dependencies for Snort 3.0 are as follows: Lua 5.1.1 or

better, Libdnet 1.10 or higher, a recent Libpcap, and a UUID library (Roesch, 2008b).

Many modern Linux distributions will have these available in their repositories for easy

installation. Installing these prerequisites on Ubuntu 8.04 is as easy as:

sudo -i

aptitude update

aptitude -y install build-essential \

libdumbnet1 libdumbnet-dev \

uuid uuid-dev \

libncurses5 libncurses5-dev \

libreadline5 libreadline5-dev \

libpcap0.8 libpcap0.8-dev \

libpcre3 libpcre3-dev \

liblua5.1-0 liblua5.1-0-dev \

flex bison

Once all dependencies have been satisfied, Snort 3.0 can be compiled. As

mentioned in the previous section, the Snort 3.0 Beta 3 tarball contains the SnortSP

framework and the Snort 2.8.3.1 detection engine. Note that an analyst could install the

SnortSP framework by itself and skip the Snort 2.8.3.1 detection engine if they weren't

planning on using Snort 2.x rules and alerts. However, since Snort 2.8.3.1 is the only

detection engine currently available for SnortSP, installing just the SnortSP framework

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 9

Doug Burks, doug.burks@gmail.com

would result in a sniffer with no alerting capability. Therefore, most analysts will want to

compile and install both the SnortSP framework and the Snort 2.8.3.1 detection engine.

First, we’ll download the tarball and unpack it:

cd /usr/local/src/

wget http://www.snort.org/dl/prerelease/3.0.0b3/\

snortsp-3.0.0b3.tar.gz

tar zxvf snortsp-3.0.0b3.tar.gz

cd snortsp-3.0.0b3/

We’re almost ready to begin compiling, but some systems may experience libtool

problems during the compilation process. This can occur if /bin/sh is symlinked to

/bin/dash instead of /bin/bash. We can fix this with a quick one-liner:

rm /bin/sh && ln -s /bin/bash /bin/sh

Now that we’ve satisfied libtool, we’ll install SnortSP using the traditional

"./configure; make; make install". SnortSP is multi-threaded by default so just running

"./configure" will configure for multi-threaded mode. As mentioned in the

RELEASE.NOTES file, SnortSP can be configured for single-threaded mode with the "--

enable-single-threaded" option.

./configure

make

make install

SnortSP has some new configuration files that we’ll copy to /etc/snortsp/:

mkdir /etc/snortsp/

cp etc/* /etc/snortsp/

Next, we move on to the Snort 2.8.3.1 detection engine:

cd src/analysis/snort/

./configure \

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 10

Doug Burks, doug.burks@gmail.com

--with-platform-includes=/usr/local/include \

--with-platform-libraries=/usr/local/lib

make

make install

Finally, Ubuntu installations need to update their shared libraries:

ldconfig

Now that installation is complete, let’s examine the binaries that were installed in

/usr/local/bin/:

Figure 3-1: Snort 3.0 Binaries

Of course, snortsp is the core executable that we’re interested in. Executing it

with no options will start the SnortSP framework and the Lua command shell, but

running it with the "-C" or "-D" options just starts the SnortSP framework with no

command shell. In these modes, snortsp_tool can be used to connect to the socket

interface and send configuration commands to the running SnortSP. The next tool is

sspiffy.sh, a script used to convert existing Snort 2.x snort.conf files to be used with

SnortSP and the Snort 2.8.3.1 detection engine. The sspiffy.sh script outputs two files: a

new snort.conf file for the Snort 2.8.3.1 detection engine and a snort.lua file that will

configure SnortSP to instantiate the Snort 2.8.3.1 detection engine using that newly

created snort.conf file. The final executable is u2boat, a tool used to convert the new

unified2 output to a standard pcap file format.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 11

Doug Burks, doug.burks@gmail.com

In this section, we covered how to compile and install SnortSP. Now that

SnortSP is installed, let’s see it in action!

4. SnortSP Data Acquisition (DAQ) Modules
To see SnortSP in action, we need to get some packets into it. As discussed in the

Architecture section, this is done using data acquisition (DAQ) modules. We're going to

look at all three of the currently available DAQ modules: file, pcap, and afpacket. To do

this, we first need to start snortsp and have it load the Lua configuration file that was

copied to /etc/snortsp/ during installation:

snortsp -L /etc/snortsp/snort.lua

SnortSP will load its modules, execute the snort.lua file, and then start the Lua

command shell, as shown in Figure 4-1.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 12

Doug Burks, doug.burks@gmail.com

Figure 4-1: SnortSP Lua Shell

Next, let's get a listing of the supported DAQ modules by typing the following in

the Lua shell:

 dsrc.list_daq_modules()

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 13

Doug Burks, doug.burks@gmail.com

Figure 4-2: Output of dsrc.list_daq_modules()

In Figure 4-2, we can see the currently supported DAQ modules (pcap, file, and

afpacket) and a description of each.

4.1. "file" DAQ module
Let's begin our tour of DAQ modules by using the "file" DAQ module. Please see

Appendix E for a full listing of the default snort.lua file and notice the runfile() function.

This function instantiates the "file" DAQ module and reads from a standard packet

capture file. At the snortsp Lua shell, call the runfile() function and give it the name of

the pcap file to be processed:

runfile("ping.pcap")

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 14

Doug Burks, doug.burks@gmail.com

Figure 4-3: Example Output of runfile("ping.pcap")

In Figure 4-3, we see SnortSP instantiating the "file" DAQ module and reading

the file ping.pcap which contains a single ICMP Echo Request.

4.2. "pcap" DAQ module
Next, let's look at the "pcap" DAQ module. snort.lua contains a function called

sniff() which will instantiate a "pcap" DAQ module on the interface that is specified as a

parameter. Type the following to start sniffing packets (replacing "lo" with the interface

to capture traffic from):

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 15

Doug Burks, doug.burks@gmail.com

sniff("lo")

SnortSP is now capturing packets but not displaying them since that would

interfere with the Lua shell. To see the packets, perform the following steps:

• Type the following:

eng.set_display({engine="e1", display="none"})

• Press the up arrow to retrieve the last command and change "none" to "classic".

• Watch the traffic.

• When finished, press the up arrow twice to retrieve the "none" command and

press Enter.

Figure 4-4: SnortSP displaying IPv6 packets in classic mode

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 16

Doug Burks, doug.burks@gmail.com

Figure 4-4 shows SnortSP capturing packets on lo (the loopback interface). These

packets were created by running the following command:

ping6 ip6-localhost

This command will send ICMPv6 Echo Request packets to the loopback interface

over IPv6. This highlights another important feature of Snort 3.0: native support for

IPv6.

We've examined the two DAQ modules that are exposed in the default snort.lua

file, so let's terminate the existing SnortSP session by typing the following:

ssp.shutdown()

4.3. "afpacket" DAQ module
We're going to complete our tour of the three currently available DAQ modules

by implementing the afpacket DAQ module to enable inline bridging mode. Let's briefly

discuss why an analyst would want to run in inline bridging mode.

Traditionally, an IDS such as Snort receives traffic via network tap or a span port

on a switch, as illustrated in Figure 4-5.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 17

Doug Burks, doug.burks@gmail.com

Figure 4-5: SnortSP in Traditional IDS Architecture Example

In Figure 4-5, all traffic from the Internet to the web server is copied to SnortSP.

If an attacker sends an exploit to the web server and the Snort 2.8.3.1 detection engine

has a rule that matches the attack, then SnortSP will alert. The IDS analyst can then see

that an attack took place. If the IDS were actually in front of the web server (inline), and

the attack matched one of the attack rules, then it could drop the traffic before it reached

the web server. Thus, the Intrusion Detection System becomes an Intrusion Prevention

System (IPS), as depicted in Figure 4-6.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 18

Doug Burks, doug.burks@gmail.com

Figure 4-6: SnortSP Inline Example

As mentioned in the History section, the Snort 2.x series can run inline, but it

requires IPTables. Snort 3.0, on the other hand, has native support for running inline via

the afpacket DAQ module. Let's create a new file in the /etc/snortsp/ directory called

bridge.lua and add the code as seen in Appendix F. Let's examine the bridge() function

itself:

function bridge (interface1, interface2)

if interface2 == nil then

error("Two interface strings must be specified")

end

dsrc1 = {name="src1",

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 19

Doug Burks, doug.burks@gmail.com

type="afpacket",

intf=interface1..":"..interface2,

flags=10,

snaplen=1514,

display="none",

tcp={maxflows=262144, maxidle=30, flow_memcap=10000000},

other={maxflows=131072, maxidle=30, flow_memcap=1000000},

cksum_mode=0x0,

}

dsrc.new(dsrc1)

eng.new({name="e1"})

eng.link({engine="e1", source="src1"})

eng.start("e1")

end

The bridge() function is based on the sniff() function that we used earlier, so they

are very similar. There are some differences, however. The first difference is the

function definition itself—-the bridge() function takes two parameters (two interfaces)

instead of just one. The second difference is in the data source declaration (dsrc1). Here,

dsrc1 instantiates an afpacket DAQ module that creates an inline bridge (flags=10) from

the two ethernet interfaces passed as parameters to the function. The afpacket intf

variable is of the form "eth0:eth1" (Roesch, 2008b). Therefore, we construct our intf

variable using the first interface parameter (interface1), the Lua concatenation operator

(".."), a colon (":"), another Lua concatenation operator (".."), and the second interface

parameter (interface2).

Now that we understand bridge.lua, start SnortSP and have it read the file using

the following command:

snortsp -L /etc/snortsp/bridge.lua

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 20

Doug Burks, doug.burks@gmail.com

SnortSP will start up, execute bridge.lua, and then start the SnortSP Lua shell.

Type the following, replacing "eth0" and "eth1" with the interfaces to be bridged:

bridge("eth0", "eth1")

Once the bridge is up and running, SnortSP can be configured to display packets

traversing the bridge:

• Type the following:

eng.set_display({engine="e1", display="none"})

• Press the up arrow to retrieve the last command and change "none" to

"classic".

• Watch the traffic.

• To stop viewing the traffic, press the up arrow twice to retrieve the "none"

command and press Enter.

When finished with SnortSP, shut it down with the following command:

ssp.shutdown()

To test the inline bridging functionality, consider a SnortSP machine and two

separate machines. The SnortSP machine has a management interface (eth0) and two

interfaces with no IP addresses (eth1 and eth2). One of the test machines (test1) is

configured with IP address 192.168.1.1 and is connected to eth1 of the SnortSP machine.

The other test machine (test2) is configured with IP address 192.168.1.2 and is connected

to eth2 of the SnortSP machine. On test2, ICMP Echo Requests were sent to test1 until

three ICMP Destination Unreachable messages were received. The bridge("eth1",

"eth2") function was then executed and 12 pings were allowed to cross the bridge.

Finally, the bridge was taken down with a "ssp.shutdown()", and ICMP Destination

Unreachable messages then began appearing (see Figure 4-7).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 21

Doug Burks, doug.burks@gmail.com

Figure 4-7: ICMP Echo Requests and Replies across SnortSP Bridge

Also, the SnortSP statistics in Figure 4-8 report that Snort 3.0 counted 24 ICMP

packets (12 ICMP Echo Requests and 12 ICMP Echo Replies):

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 22

Doug Burks, doug.burks@gmail.com

Figure 4-8: SnortSP Inline Bridge Statistics

In this section, we explored the three DAQ modules that are currently available in

Snort 3.0. These DAQ modules were demonstrated by interacting with the command

shell built into snortsp. Another way to interact with snortsp is to connect to its socket

interface using snortsp_tool.

5. Controlling SnortSP using snortsp_tool
In a root terminal, start SnortSP by typing the following:

snortsp

In another root terminal, type the following to connect to the socket interface of

snortsp:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 23

Doug Burks, doug.burks@gmail.com

snortsp_tool

Snortsp_tool will connect to the socket interface of the running snortsp process

and allow the analyst to configure SnortSP. However, snortsp_tool isn't aware of the Lua

file that was loaded at snortsp startup. So to use, for example, the sniff() function in the

default snort.lua, the analyst will need to copy/paste that function into the snortsp_tool

terminal before calling the sniff() function.

Figure 5-1: snortsp sniffing as directed by snortsp_tool

In Figure 5-1, snortsp is running in the left window and snortsp_tool is running in

the right window. Snortsp_tool has connected to the running instance of snortsp, and the

sniff() function has been copied from the default snort.lua file into the snortsp_tool

window. The sniff("lo") function is then executed and snortsp begins sniffing on the

loopback interface. When finished, snortsp_tool is used to send the ssp.shutdown()

command to shut down SnortSP, after which snortsp_tool exits.

In this section, we demonstrated SnortSP receiving commands from snortsp_tool

via socket. Ultimately, when running in production, snortsp would be started with the "-

D" option to daemonize itself and then all runtime configuration would be performed

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 24

Doug Burks, doug.burks@gmail.com

with snortsp_tool. If we're going to run in production, though, we don't just want to run a

sniffer; we want to run in Intrusion Detection mode.

6. Snort 3.0 Intrusion Detection Mode
In Intrusion Detection mode, SnortSP captures packets and hands them off to the

Snort 2.8.3.1 detection engine for analysis and alerting. The best open source tool to

manage Snort alerts is Sguil and the easiest way to install Sguil is with NSMnow.

6.1. Installing Sguil using NSMnow
NSMnow automatically installs and configures barnyard2 (compatible with the

Snort 3.0 unified2 output format), sancp, Sguil, and Snort 2.x. We're going to replace

NSMnow's snort 2.x alert process with Snort 3.0. The first step is to download NSMnow

and run it as follows:

mkdir /usr/local/src/NSMnow

cd /usr/local/src/NSMnow

wget http://www.securixlive.com/\

download/nsmnow/NSMnow-1.3.5.tar.gz

tar zxvf NSMnow-1.3.5.tar.gz

./NSMnow -i -y

Since Ubuntu uses AppArmor by default, AppArmor must be configured to allow

MySQL to read the alert data that is produced by the Snort 2.8.3.1 detection engine:

if ! grep "/nsm/server_data/server1/load" \

/etc/apparmor.d/usr.sbin.mysqld > /dev/null

then

sed -i 's|}| /nsm/server_data/server1/load/* r,|g' \

/etc/apparmor.d/usr.sbin.mysqld

echo "}" >> /etc/apparmor.d/usr.sbin.mysqld

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 25

Doug Burks, doug.burks@gmail.com

fi

/etc/init.d/apparmor restart

Next, start all NSM services, but skip the Snort 2.x alert process (since we're

going to use SnortSP's 2.8.3.1 detection engine in its place):

/usr/local/sbin/nsm --server --start

/usr/local/sbin/nsm_sensor_ps-start --skip-snort-alert

The output of these commands should look like Figure 6-1.

Figure 6-1: Output of Sguil services startup

6.2. Converting snort.conf using sspiffy.sh
Let's copy the NSMnow snort.conf file and rules files to a new directory called

/etc/snortsp_alert/:

mkdir /etc/snortsp_alert

cd /etc/snortsp_alert

cp -R /etc/nsm/sensor1/* .

mv snort.conf snort_orig.conf

We're ready to process the NSMnow snort.conf file with sspiffy.sh, creating a

snort.lua file. However, there is a bug in this release of sspiffy.sh: when specifying an

interface like eth0, sspiffy.sh configures the data source to use the "file" DAQ module.

As we saw in the DAQ section, the "file" DAQ module can only read from packet capture

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 26

Doug Burks, doug.burks@gmail.com

files, not live interfaces. To capture from eth0, we need to change the data source to use

the "pcap" DAQ module. We can facilitate this situation in one of two ways:

-Use the broken sspiffy.sh and then fix the resulting snort.lua with a quick one-

liner:

sspiffy.sh /usr/local -c snort_orig.conf -i eth0

sed -i 's|type="file"|type="pcap"|g' snort.lua

-OR-

-Fix the source of the problem by applying the sspiffy.sh patch found in Appendix

G. (Thanks to Russ Combs of the SnortSP Development Team for confirming the bug

and supplying this patch.) Save the contents of Appendix G into a file called

sspiffy.patch and run the following commands:

cd /usr/local/bin/

patch -p0 < sspiffy.patch

cd /etc/snortsp_alert

sspiffy.sh /usr/local -c snort_orig.conf -i eth0

In either case, the output of sspiffy.sh should look like Figure 6-2.

Figure 6-2: Output of sspiffy.sh

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 27

Doug Burks, doug.burks@gmail.com

sspiffy.sh should have created two new files: snort.lua and a modified copy of

snort_orig.conf called snort.conf. For reference, the final snort.lua and snort.conf can be

seen in Appendices H and I, respectively. The /etc/snortsp_alert/ directory should look

like Figure 6-3.

Figure 6-3: /etc/snortsp_alert/ directory listing

 Next, we do some rule cleanup:

grep -v "sameip" rules/bad-traffic.rules > \

rules/bad-traffic.rules.2

rm -f rules/bad-traffic.rules

mv rules/bad-traffic.rules.2 rules/bad-traffic.rules

Finally, we start snortsp using the newly created snort.lua file. This snort.lua file

configures snortsp to instantiate the Snort 2.8.3.1 detection engine using its new

snort.conf file:

snortsp -C -L snort.lua

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 28

Doug Burks, doug.burks@gmail.com

SnortSP is now capturing packets on eth0 and analyzing them with the Snort

2.8.3.1 detection engine. Let's verify that now. Launch the Sguil client by opening a new

terminal and typing the following:

sguil.tk

When prompted, login to Sguil using the default credentials:

Username: sguil

Password: password

Figure 6-4: Sguil Login Window

Next, create some alerts by opening a browser and going to:

http://www.testmyids.com

The Sguil console should now display two new alerts with a source IP of

82.165.50.118 (the IP address of www.testmyids.com).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 29

Doug Burks, doug.burks@gmail.com

Figure 6-5: Sguil Console showing SnortSP/2.8.3.1 alerts

This demonstrates that SnortSP is capturing packets, analyzing them with the

Snort 2.8.3.1 detection engine, and outputting in unified2 format, which is then read by

Barnyard2 and inserted into the Sguil database.

When finished, close the Sguil console, return to the SnortSP window, and press

Ctrl-c to terminate the SnortSP process. Then type the following to terminate all

NSMnow processes:

/usr/local/sbin/nsm --all --stop

NSMnow uses Barnyard2 to process the unified2 output, but another method of

extracting data from the unified2 output would be to use the u2boat utility to convert to

the pcap format.

6.3. Converting unified2 output using u2boat
NSMnow configures Snort to output its alerts in unified2 format to the

/nsm/sensor_data/sensor1/ directory. Let's go to that directory and process a unified2-

formatted file using the u2boat utility included in Snort 3.0. Finally, we'll verify the

resulting pcap using tcpdump:

cd /nsm/sensor_data/sensor1

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 30

Doug Burks, doug.burks@gmail.com

u2boat snort.unified2.* test.pcap

tcpdump –nr test.pcap

Figure 6-6: u2boat converting unified2 output to pcap file

Figure 6-6 shows u2boat converting snort.unified2.1238815188 to a pcap file

called test.pcap. tcpdump is then used to verify that test.pcap contains two records with

source address 82.165.50.118 and destination address 10.0.2.15 (the same as the alerts

that were displayed in the Sguil console).

In this section, we experienced Snort 3.0 in Intrusion Detection mode using the

Snort 2.8.3.1 detection engine. This detection engine still requires configuration in

snort.conf and reconfiguration still requires a restart of the detection engine. In the

future, Lua will be used to build various traffic analysis applications, as evidenced by the

commented-out lsniff() function found in the default snort.lua file in Appendix E. Once

these Lua-based detection engines are available, analysts will be able to use the Lua shell

to perform all SnortSP configuration and tuning without requiring a restart.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 31

Doug Burks, doug.burks@gmail.com

7. Conclusion
In this paper, we have demonstrated the architectural changes in Snort 3.0 and the

reason for these changes. We have also illustrated SnortSP's new features, such as native

IPv6 support, multithreading, native inline bridging, and dynamic configuration using the

Lua scripting language. However, these features are merely a glimpse of the future of

Snort. In the near future, the Snort 3.0 development team will be hosting a public CVS

server, with future beta releases introducing native Snort 3.0 detection engines and a new

TCP stream management subsystem (Roesch, 2009). Analysts can, and should,

contribute to the Snort community by thoroughly testing the beta releases and providing

feedback to the Snort 3.0 development team.

8. References
Roesch, M (2007). Snort 3.0 Architecture Series Part 1: Overview. Retrieved January 2,

2009, from Security Sauce Web Site:

http://securitysauce.blogspot.com/2007/11/snort-30-architecture-series-part-

1.html

Roesch, M (2008). SnortSP Introduction. Retrieved April 6, 2009, from Snort Web Site:

http://www.snort.org/dl/snortsp/

Roesch, M (2008). SnortSP README. Retrieved April 6, 2009, from Snort Web Site:

http://www.snort.org/dl/snortsp/README.txt

Roesch, M (2008). Snort 3.0 Architecture Series Part 2: Changes and Betas. Retrieved

January 2, 2009, from Security Sauce Web site:

http://securitysauce.blogspot.com/2008/08/snort-30-architecture-series-part-

2.html

Roesch, M (2008). Snort 3.0 Architecture Series Part 3: The command shell. Retrieved

January 2, 2009, from Security Sauce Web Site:

http://securitysauce.blogspot.com/2008/08/snort-30-architecture-series-part-

3.html

Roesch, M (2009). Snort 3.0 Beta 3 Released. Retrieved April 6, 2009, from Security

Sauce Web Site: http://securitysauce.blogspot.com/2009/04/snort-30-beta-3-

released.html

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 32

Doug Burks, doug.burks@gmail.com

Sturges, S (2009). Snort 2.8.3.2 Manual. Retrieved March 1, 2009, from Snort Web

Site:

http://www.snort.org/docs/snort_htmanuals/htmanual_2832/node11.html

Appendix A: Building a Snort 3.0 LiveCD
The Security Onion LiveCD is based on Ubuntu 8.04 (plus all available updates)

and includes Snort 3.0 Beta 3, Snort 2.8, Sguil, sancp, and many other packet/security

tools. The ISO image was built using Reconstructor (http://reconstructor.aperantis.com/).

Reconstructor makes it easy for analysts to build their own custom LiveCD. It uses

modules to programmatically add and configure the software installed in the ISO image.

(These modules are essentially just shell scripts with a few special variables.) The

Reconstructor module used for installing/configuring Snort 3, NSMnow, and the

Snort3/Sguil integration can be found in Appendices B, C, and D (respectively). For

those who wish to build their own Snort 3.0 LiveCD, here's a brief overview:

• Download the Ubuntu 8.04 ISO image from:

http://www.ubuntu.com/

• Use the ISO image to install Ubuntu 8.04. This installation of Ubuntu will

be the "build" machine for building the LiveCD. Do not delete the ISO

image as we will need it later.

• Boot into the Ubuntu 8.04 installation. Download the latest version of

Reconstructor (currently 2.8.1) from:

http://reconstructor.aperantis.com/index.php?option=com_remositor

y&Itemid=33&func=select&id=5

• Decompress the Reconstructor tarball and then copy the three

Reconstructor modules in the following Appendices to the modules

directory.

• Launch Reconstructor with the following command:

sudo python reconstructor.py

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 33

Doug Burks, doug.burks@gmail.com

• Follow the prompts and have Reconstructor import Ubuntu 8.04 from the

ISO image.

• Use the Reconstructor root terminal to remove any unnecessary packages

from the LiveCD and free up space.

• Have Reconstructor apply the three Snort 3 modules to the LiveCD in the

following order. (Note that Internet access is required so that the modules

can download packages from the Internet.)

1. SnortSP

2. NSMnow

3. SnortSP/Sguil integration

• Perform any other LiveCD customization desired.

• Build the new ISO image.

For more detailed information on the Reconstructor build process, please see the

comprehensive documentation on the Reconstructor website:

http://reconstructor.wiki.sourceforge.net/

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 34

Doug Burks, doug.burks@gmail.com

Appendix B: mod-install-snortsp.rmod
#!/bin/sh

Reconstructor Module - Install SnortSP
Copyright (c) 2006 Reconstructor Team <http://reconstructor.aperantis.com>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

RMOD_ENGINE=1.0
RMOD_CATEGORY='Software'
RMOD_SUBCATEGORY='Networking'
RMOD_NAME='SnortSP'
RMOD_AUTHOR='Doug Burks'
RMOD_VERSION=0.1
RMOD_DESCRIPTION='Downloads, compiles, and installs SnortSP'
RMOD_RUN_IN_CHROOT=True
RMOD_UPDATE_URL='http://reconstructor.aperantis.com/update/modules/'

install snortsp
VER="3.0.0b3"
echo Running $RMOD_NAME...
rm /bin/sh && ln -s /bin/bash /bin/sh
aptitude update
aptitude -y install build-essential \
libdumbnet1 libdumbnet-dev \
uuid uuid-dev \
libncurses5 libncurses5-dev \
libreadline5 libreadline5-dev \
libpcap0.8 libpcap0.8-dev \
libpcre3 libpcre3-dev \
liblua5.1-0 liblua5.1-0-dev \
flex bison

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 35

Doug Burks, doug.burks@gmail.com

cd /usr/local/src/
wget http://snort.org/dl/prerelease/$VER/snortsp-$VER.tar.gz
tar zxvf snortsp-$VER.tar.gz
rm -f snortsp-$VER.tar.gz
cd snortsp-$VER
./configure
make
make install
mkdir -p /etc/snortsp/
cp etc/* /etc/snortsp/
cd src/analysis/snort
./configure \
--with-platform-includes=/usr/local/include \
--with-platform-libraries=/usr/local/lib
make
make install
ldconfig
cd /usr/local/src/
rm -rf snortsp-$VER

clean cache
aptitude clean
aptitude autoclean
echo $RMOD_NAME Finished...
exit 0

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 36

Doug Burks, doug.burks@gmail.com

Appendix C: mod-install-NSMnow.rmod
#!/bin/sh

Reconstructor Module - Install NSMnow
Copyright (c) 2006 Reconstructor Team <http://reconstructor.aperantis.com>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

RMOD_ENGINE=1.0
RMOD_CATEGORY='Software'
RMOD_SUBCATEGORY='Networking'
RMOD_NAME='NSMnow'
RMOD_AUTHOR='Doug Burks'
RMOD_VERSION=0.1
RMOD_DESCRIPTION='Installs NSMnow'
RMOD_RUN_IN_CHROOT=True
RMOD_UPDATE_URL='http://reconstructor.aperantis.com/update/modules/'

Install the new version
VER="1.3.5"
FOLDER="NSMnow-$VER"
FILE="$FOLDER.tar.gz"
echo Running $RMOD_NAME...
aptitude update
aptitude -y install libclass-std-perl libconfig-std-perl \
libdigest-sha1-perl oinkmaster
mkdir -p /usr/local/src/$FOLDER/
cd /usr/local/src/$FOLDER/
wget http://www.securixlive.com/download/nsmnow/$FILE
tar zxvf $FILE
rm -f $FILE
./NSMnow -i -y

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 37

Doug Burks, doug.burks@gmail.com

clean cache
aptitude clean
aptitude autoclean
echo $RMOD_NAME Finished...
exit 0

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 38

Doug Burks, doug.burks@gmail.com

Appendix D: mod-install-snortsp-sguil.rmod
#!/bin/sh

Reconstructor Module - Configure SnortSP/Sguil integration
Copyright (c) 2006 Reconstructor Team <http://reconstructor.aperantis.com>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

RMOD_ENGINE=1.0
RMOD_CATEGORY='Software'
RMOD_SUBCATEGORY='Networking'
RMOD_NAME='SnortSP/Sguil Integration'
RMOD_AUTHOR='Doug Burks'
RMOD_VERSION=0.1
RMOD_DESCRIPTION='Configures SnortSP/Sguil integration'
RMOD_RUN_IN_CHROOT=True
RMOD_UPDATE_URL='http://reconstructor.aperantis.com/update/modules/'

Configure SnortSP/Sguil integration
echo Running $RMOD_NAME...
rm -rf /etc/snortsp_alert
mkdir /etc/snortsp_alert
cd /etc/snortsp_alert
cp -R /etc/nsm/sensor1/* .
mv snort.conf snort_orig.conf
sspiffy.sh /usr/local -c snort_orig.conf -i eth0
sed -i 's|type="file"|type="pcap"|g' snort.lua
grep -v "sameip" rules/bad-traffic.rules > rules/bad-traffic.rules.2
rm -f rules/bad-traffic.rules
mv rules/bad-traffic.rules.2 rules/bad-traffic.rules

echo $RMOD_NAME Finished...

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 39

Doug Burks, doug.burks@gmail.com

exit 0

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 40

Doug Burks, doug.burks@gmail.com

Appendix E: Default snort.lua
require "eng"
require "dsrc"

_PROMPT='snort> '

-- This function will instantiate a data source and an engine, link
-- them and start sniffing. The only argument is the interface name
-- upon which to sniff specified as a string. For example:
--
-- snort> sniff("eth0")
function sniff (interface)
 if interface == nil then
 error("An interface string must be specified (e.g. sniff(\"eth0\"))")
 end
 -- Setup an array with the parameters required to instantiate a data source
 dsrc1 = {name="src1",
 type="pcap",
 intf=interface,
 flags=2,
 snaplen=1514,
 display="none",
 tcp={maxflows=262144, maxidle=30, flow_memcap=10000000},
 other={maxflows=131072, maxidle=30, flow_memcap=1000000},
 cksum_mode=0x0,
 }
 -- Instantiate a data source using the parameter array you just defined
 dsrc.new(dsrc1)
 -- Instantiate a new engine named "e1"
 eng.new({name="e1"})
 -- Link the new engine to the data source. Note that I'm using an array
 -- here to be explicit about what needs to be passed.
 eng.link({engine="e1", source="src1"})
 -- Start engine "e1". You won't see packets on the screen until you
 -- issue an eng.set_display() command for the "e1" engine at the command
 -- shell.
 eng.start("e1")
end

-- This function will instantiate a data source and an engine, link
-- them and start sniffing. Arguments are the interface to sniff on
-- and a BPF filter to apply to the session (if any). To send a
-- "NULL" string as the BPF filter simply specify "" as the filter.
function fsniff (interface, bpf)
 if interface == nil then
 error("An interface string must be specified (e.g. sniff(\"eth0\"))")

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 41

Doug Burks, doug.burks@gmail.com

 end
 dsrc2 = {name="src2",
 type="pcap",
 intf=interface,
 flags=2,
 command=bpf,
 snaplen=1514,
 display="max",
 tcp={maxflows=262144, maxidle=30, flow_memcap=10000000},
 other={maxflows=131072, maxidle=30, flow_memcap=1000000},
 cksum_mode=0x0,
 }
 dsrc.new(dsrc2)
 eng.new({name="e2"})
 eng.link({engine="e2", source="src2"})
 eng.start("e2")
end

-- This function will instantiate a data source and an engine, link
-- them and start sniffing. The only argument is the interface name
-- upon which to sniff specified as a string. This function will also
-- load a Lua script file called snort-funcs.lua and call the function within
-- that file named "lua_analyzer" which just hexdumps the packet payload.
-- Use your imagination for applications of this lua-based traffic analysis
-- capability. Example:
--
-- snort> lsniff("eth0")
--function lsniff (interface)
-- if interface == nil then
-- error("An interface string must be specified (e.g. sniff(\"eth0\"))")
-- end
-- dsrc3 = {name="src3",
-- type="pcap",
-- intf=interface,
-- flags=2,
-- snaplen=1514,
-- display="max",
-- tcp={maxflows=262144, maxidle=30, flow_memcap=10000000},
-- other={maxflows=131072, maxidle=30, flow_memcap=1000000},
-- cksum_mode=0x0,
-- }
-- dsrc.new(dsrc3)
-- eng.new({name="e3"})
-- eng.link({engine="e3", source="src3"})
-- eng.lua_setup("e3", "./etc/snort_funcs.lua", "lua_analyzer")
-- eng.start("e3")

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 42

Doug Burks, doug.burks@gmail.com

--end

function gtp_test(pcapfile)
 if pcapfile == nil then
 error("A filename string must be specified (e.g. gtp_test(\"gtp_test.pcap\"))")
 end
 dsrc4 = {name="src4",
 type="file",
 intf="file",
 filename=pcapfile,
 flags=1,
 snaplen=1514,
 max_count=6,
 display="max",
 tcp={maxflows=262144, maxidle=30, flow_memcap=10000000},
 other={maxflows=131072, maxidle=30, flow_memcap=1000000},
 cksum_mode=0x0,
 }
 gtp_support="enable",
 dsrc.new(dsrc4)
 eng.new({name="e4"})
 eng.link({engine="e4", source="src4"})
 eng.run_file("e4", pcapfile)
end

--function lua_engine_test(interface)
-- luaconf = {script = "etc/lua_eng.lua",
-- instance_name = "luaflow1",
-- type = flow}
--
-- lua_analytics1 = analytics.new("lua", "1.0", luaconf)
-- eng.new({name="e3"})
-- eng.link_analytics("e4", lua_analytics)
--
--end

function runfile(pcapfile)
 if pcapfile == nil then
 error("A filename string must be specified (e.g. gtp_test(\"gtp_test.pcap\"))")
 end
 dsrc3 = {name="src3",
 type="file",
 intf="file",
 filename=pcapfile,
 flags=1,
 snaplen=1514,

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 43

Doug Burks, doug.burks@gmail.com

 display="max",
 tcp={maxflows=262144, maxidle=30, flow_memcap=10000000},
 other={maxflows=131072, maxidle=30, flow_memcap=1000000},
 cksum_mode=0x0,
 }
 dsrc.new(dsrc3)
 eng.new({name="e3"})
 eng.link({engine="e3", source="src3"})
 eng.run_file("e3", pcapfile)
-- eng.unlink("e3")
-- eng.delete("e3")
-- dsrc.delete("src3")
end

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 44

Doug Burks, doug.burks@gmail.com

Appendix F: bridge.lua
require "eng"
require "dsrc"

_PROMPT='snort> '

function bridge (interface1, interface2)
if interface2 == nil then
error("Two interface strings must be specified")
end
dsrc1 = {name="src1",
type="afpacket",
intf=interface1..":"..interface2,
flags=10,
snaplen=1514,
display="none",
tcp={maxflows=262144, maxidle=30, flow_memcap=10000000},
other={maxflows=131072, maxidle=30, flow_memcap=1000000},
cksum_mode=0x0,
}
dsrc.new(dsrc1)
eng.new({name="e1"})
eng.link({engine="e1", source="src1"})
eng.start("e1")
end

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 45

Doug Burks, doug.burks@gmail.com

Appendix G: sspiffy.patch

diff -u -B -b -r1.26 sspiffy.sh
--- sspiffy.sh 3 Dec 2008 22:54:33 -0000 1.26
+++ sspiffy.sh 6 Apr 2009 15:54:21 -0000
@@ -43,7 +43,7 @@
 PREFIX=""
 POLICY=""

-LOG_LEVEL="critical"
+LOG_LEVEL="info"

 #-----------------------------------
 # capture command line arguments
@@ -619,10 +619,17 @@
 end
 end
 --
-function init_src (it, fn, fl)
+function init_src (ty, nm, fl)
+ if (ty=="file") then
+ it=ty
+ fn=nm
+ else
+ it=nm
+ fn=""
+ end
 dsrc.new({
 name=src,
- type="file", snaplen=$SNAP,
+ type=ty, snaplen=$SNAP,
 intf=it, flags=fl,
 filename=fn, max_count=$MAXC,
 tcp={maxflows=$STREAM5_TCP, maxidle=$STREAM5_TCP_TO,
@@ -680,7 +687,7 @@
 --
 function run_live ()
 init(nan)
- init_src("$INTF", "", $FLAG)
+ init_src("pcap", "$INTF", $FLAG)
 eng.start(egn)
 end
 --

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 46

Doug Burks, doug.burks@gmail.com

Appendix H: NIDS-mode snort.lua
egn="e1"
ani="an"
src="s1"
nan=1
--
snort="/usr/local/lib/snort/snort.so"
opttab={ dynamic_preprocessor_lib_dir="/usr/local/lib/snort/snort_preproc",
dynamic_engine_lib="/usr/local/lib/snort/sf_engine.so", conf="snort.conf"}
fragtab={max_trackers=65536, policy="first"}
--
pcaps={}

--
function init (num)
eng.new({name=egn, cpu=0})
for i=1,num do
--opttab["Z"] = "now" .. i
eng.add_analyzer({
engine=egn,
analyzer=ani .. i,
order=1,
module=snort,
data=opttab,
bpf="",
-- this cpu is ignored for single threaded builds
cpu=2,
--lb={total=num, index=i-1}
})
end
end
--
function init_src (it, fn, fl)
dsrc.new({
name=src,
type="pcap", snaplen=1514,
intf=it, flags=fl,
filename=fn, max_count=0,
tcp={maxflows=8192, maxidle=30,
flow_memcap=10000000},
other={maxflows=131072, maxidle=30,
flow_memcap=1000000},
defrag=fragtab,

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 47

Doug Burks, doug.burks@gmail.com

cksum_mode=0x3f,
display="none"
})
eng.link({engine=egn, source=src})
end
--
function term (num)
for i=1,num do
eng.rm_analyzer({
engine=egn,
analyzer=ani .. i
})
end
ssp.shutdown()
end
--
function term_src ()
eng.unlink(egn)
dsrc.delete(src)
end
--
function ana_cmd (op)
for i=1,nan do
ana=ani .. i
eng.cfg_analyzer({engine=egn, analyzer=ana, data={cmd=op}})
end
end
--
function run_test ()
analyzer.cfgtest({order=1, module=snort, data=opttab})
ssp.shutdown()
end
--
function run_file (pcap)
init_src("file", pcap, 2)
eng.test(egn)

term_src()
end
--
function run_files ()
init(nan)
for i,pcap in ipairs(pcaps) do
run_file(pcap)
end
term(nan)

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 48

Doug Burks, doug.burks@gmail.com

end
--
function run_live ()
init(nan)
init_src("eth0", "", 2)
eng.start(egn)
end
--
function stats ()
ana_cmd("stats")
end
--
function reset ()
ana_cmd("reset")
end
--
function stop ()
eng.stop(egn)
term_src()
term(nan)
end
--
ssp.set_log_level("critical")
run_live()

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 49

Doug Burks, doug.burks@gmail.com

Appendix I: NIDS-mode snort.conf
snort.conf: auto-generated by NSMnow Administration on Mon Jan 26 12:34:53 EST
2009
var HOME_NET any
var EXTERNAL_NET any
var DNS_SERVERS $HOME_NET
var SMTP_SERVERS $HOME_NET
var HTTP_SERVERS $HOME_NET
var SQL_SERVERS $HOME_NET
var TELNET_SERVERS $HOME_NET
var SNMP_SERVERS $HOME_NET
portvar HTTP_PORTS 80
portvar SHELLCODE_PORTS !80
portvar ORACLE_PORTS 1521
var AIM_SERVERS
[64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/
24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,20
5.188.248.0/24]
var RULE_PATH ./rules
var PREPROC_PATH ./preproc_rules
config logdir: /nsm/sensor_data/sensor1
#SSP - set in lua: dynamicpreprocessor directory
/usr/local/lib/snort_dynamicpreprocessor/
#SSP - set in lua: dynamicengine /usr/local/lib/snort_dynamicengine/libsf_engine.so
#SSP - deleted: preprocessor frag3_global: max_frags 65536
preprocessor frag3: detect_anomalies
#SSP - changed: preprocessor frag3_engine: policy first detect_anomalies
preprocessor stream5_global: max_tcp 8192, track_tcp yes, track_udp no
preprocessor stream5_tcp: policy first, use_static_footprint_sizes
preprocessor perfmonitor: time 300 file /nsm/sensor_data/sensor1/snort.stats pktcnt
10000
preprocessor http_inspect: global iis_unicode_map unicode.map 1252
preprocessor http_inspect_server: server default profile all ports { 80 8080 8180 }
oversize_dir_length 500
preprocessor rpc_decode: 111 32771
preprocessor bo
preprocessor ftp_telnet: global encrypted_traffic yes inspection_type stateful
preprocessor ftp_telnet_protocol: telnet normalize ayt_attack_thresh 200
preprocessor ftp_telnet_protocol: ftp server default def_max_param_len 100
alt_max_param_len 200 { CWD } cmd_validity MODE < char ASBCZ > cmd_validity
MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] string > chk_str_fmt { USER PASS RNFR
RNTO SITE MKD } telnet_cmds yes data_chan

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 50

Doug Burks, doug.burks@gmail.com

preprocessor ftp_telnet_protocol: ftp client default max_resp_len 256 bounce yes
telnet_cmds yes
preprocessor smtp: ports { 25 587 691 } inspection_type stateful normalize cmds
normalize_cmds { EXPN VRFY RCPT } alt_max_command_line_len 260 { MAIL }
alt_max_command_line_len 300 { RCPT } alt_max_command_line_len 500 { HELP
HELO ETRN } alt_max_command_line_len 255 { EXPN VRFY }
preprocessor sfportscan: proto { all } memcap { 10000000 } sense_level { low }
preprocessor dcerpc: autodetect max_frag_size 3000 memcap 100000
preprocessor dns: ports { 53 } enable_rdata_overflow
preprocessor ssl: noinspect_encrypted
output unified2: filename snort.unified2, limit 128
include classification.config
include reference.config
include $RULE_PATH/local.rules
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet.rules
include $RULE_PATH/rpc.rules
include $RULE_PATH/rservices.rules
include $RULE_PATH/dos.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/tftp.rules
include $RULE_PATH/web-cgi.rules
include $RULE_PATH/web-coldfusion.rules
include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-client.rules
include $RULE_PATH/web-php.rules
include $RULE_PATH/web-attacks.rules
include $RULE_PATH/sql.rules
include $RULE_PATH/x11.rules
include $RULE_PATH/icmp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules
include $RULE_PATH/attack-responses.rules
include $RULE_PATH/oracle.rules
include $RULE_PATH/mysql.rules
include $RULE_PATH/snmp.rules
include $RULE_PATH/smtp.rules
include $RULE_PATH/imap.rules
include $RULE_PATH/pop2.rules
include $RULE_PATH/pop3.rules

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Snort 3.0 Beta 3 for Analysts 51

Doug Burks, doug.burks@gmail.com

include $RULE_PATH/nntp.rules
include $RULE_PATH/other-ids.rules
include $RULE_PATH/icmp-info.rules
include $RULE_PATH/experimental.rules

