
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection

GIAC (GCIA) Gold Certification

Author: Yousef Bakhdlaghi, bakhdlaghi@gmail.com
Advisor: Sally Vandeven

Accepted: April 14th, 2017

Abstract

An intrusion detection system (IDS) can analyze and alert on what it can see, but
if the traffic is tunneled into an encrypted connection, the IDS cannot perform its analysis
on that traffic. The difficulty of looking into the packet payload makes the encrypted
traffic one of the challenging issues to IDS. In Snort, the encrypted traffic inspector is
available optionally and can only inspect connections’ handshakes with no further
inspection of the payload after the connection has established. However, encrypted traffic
can be entirely decrypted using the private key (decryption key), but there are some
issues associated with SSL/TLS key exchanges that could increase the difficulty of
decrypting traffic provided the private key.

This work discusses SSL/TLS protocols, and the issues of key exchange methods
in addition to providing solutions for inspecting SSL/TLS traffic with the demonstration
of two methods to inspect SSL/TLS traffic.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 2

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

Table of Contents
1.	 INTRODUCTION	..	3	

1.1.	 SNORT	IDS	...	3	

1.1.1.	 Snort	Components	..	3	

1.1.2.	 SSL	Dynamic	Pre-processor	(SSLPP)	..	4	

1.2.	 SSL/TLS	...	5	

1.2.1.	 TLS	Authentication	and	key	exchange	..	6	

1.2.2.	 SSL/TLS	Cipher	Suites	..	6	

1.3.	 WAYS	TO	INSPECT	ENCRYPTED	CONNECTIONS	...	7	

1.3.1.	 Perform	the	inspection	on	the	server	itself	...	7	

1.3.2.	 SSL/TLS	termination	proxy	(reverse-proxy)	...	7	

1.3.3.	 The	IDS	performs	the	decryption	..	7	

1.3.4.	 Standalone	tool	performs	the	decryption	...	7	

2.	 DEMONSTRATION	..	8	

2.1.	 SSL/TLS	TERMINATION	PROXY	(REVERSE-PROXY)	..	8	

2.1.1.	 Server	configuration	...	8	

2.1.2.	 Creating	a	self-signed	RSA	certificate	using	IIS	...	9	

2.1.3.	 Creating	a	self-signed	ECDSA	using	ADCS	...	9	

2.1.4.	 Binding	the	self-signed	certificate	to	the	web	site	10	

2.1.5.	 Configuring	the	SSL/TLS	termination	proxy	server	(reverse-proxy)	11	

2.1.6.	 Sniffing	the	traffic	on	the	public	and	the	internal	virtual	networks	14	

2.2.	 DECRYPTING	SSL/TLS	USING	VIEWSSLD	...	16	

2.2.1.	 Creating	a	self-signed	RSA	certificate	using	OpenSSL	16	

2.2.2.	 Setting	Windows	IIS	server	...	17	

2.2.3.	 Configuring	and	running	Viewssld	..	18	

2.2.4.	 Findings	..	19	

3.	 CONCLUSION	..	20	

REFERENCES	..	21	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 3

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

1. Introduction
An intrusion detection system (IDS) can analyze and alert on what it can see, but

if the traffic is tunneled through an encrypted connection, an IDS can only perform

limited inspection based on packet headers. The difficulty of looking into the packet

payload makes the encrypted traffic one of the challenging issues for an IDS. From Snort

point’s of view, the encrypted traffic inspector, SSL Dynamic Pre-processor (SSLPP), is

available optionally in Snort and can only inspect connections’ handshakes, but once the

encrypted connection has established, Snort will not perform any inspection on data for

that connection (Snort FAQ, 2016). However, encrypted traffic can be entirely decrypted

using the private key (decryption key) to decrypt and inspect the payloads (Juniper,

2010). But there are some issues associated with SSL/TLS key exchanges that could

increase the difficulty of decrypting traffic provided the private key. The rest of this

section briefly discusses Snort and its components as well as SSL/TLS key exchange and

the possible ways to inspect encrypted connections.

1.1. Snort IDS
Snort is a free open-source IDS solution that offers intrusion detection and

prevention capabilities (IDS/IPS) for firms as a cost-effective solution. It has the ability

to perform real-time traffic analysis that attempts to detect malicious activity, in addition

to content analysis and packet logging.

1.1.1. Snort Components
Snort consists of several components (Kannan, 2011) (Caswell, Beale, & Baker,

2007): packet sniffer, pre-processor, detection engine, and logging/alerting module as

shown in Figure 1.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 4

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

Figure 1: Snort Architecture (Caswell, Beale, & Baker, 2007)

Packet sniffer/decoder: Allows Snort to eavesdrop on the network interface and decodes

all captured network traffic to be sent to the pre-processor.

Pre-processor: It operates on the decoded packet and performs a variety of

transformations simplifying the data to be easier for Snort to process. It has several plug-

ins that have the option to be enabled or disabled. For example, frag3 pre-processor that

defragments packets prior to sending the data on to the detection engine. This allows the

detection engine to analyze the full packet stream for malicious behavior that might

otherwise go unnoticed if passed through in smaller fragments.

Detection engine: It is the most important component of Snort that utilizes the

rules/signatures to determine whether or not a packet matches a rule/signature. The rule is

divided into two parts. The first part is the rule header that has the details about the action

that Snort needs to execute for matching the incoming packets, while the second part is

the options field that has additional information for rule matching to determine which

portion of the packet should be used to fire an alert.

Logging and alerting: After detecting a malicious packet or activity, Snort triggers an

alert. Depending on the alert configuration, Snort can send the alert using a variety of

options such as: log file, database, and e-mail.

1.1.2. SSL Dynamic Pre-processor (SSLPP)
This pre-processor enables Snort to inspect SSL/TLS handshakes of each

connection with no further data inspection, which is by default disabled. It inspects the

unencrypted portion of the connection (headers) for faulty encrypted traffic to ensure two

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 5

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

things: “the last client-side handshake packet was not crafted to evade Snort, and that the

traffic is legitimately encrypted” (Snort FAQ, n.d.).

1.2. SSL/TLS
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are

cryptographic protocols that were developed to secure communications on computer

networks. Both are very similar protocols; however, TLS is the successor of SSL, which

has been deprecated by IETF (RFC6176, 2011) (RFC7568, 2015). Currently, TLS is most

commonly used to secure connections, however, many people still use the old name, SSL

to refer to TLS (Ristić, 2015). Figure 2 shows how the TLS handshake takes place to

agree on algorithms, exchange cryptographic parameters and certificates, and then start

the encrypted connection.

Client

 Server

ClientHello

 ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

ServerHelloDone

Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
Finished

 ChangeCipherSpec
 Finished

Application Data

 Application Data

* Indicates optional or situation-dependent messages that are
not always sent.

Figure 2: TLS Full Handshake (RFC5246, 2008)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 6

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

1.2.1. TLS Authentication and key exchange
The process of key exchange in a TLS handshake is to create a pre-master secret

known to both parties (client and server) and then use it to generate the master secret. Our

concern here is how this pre-master secret is shared. There are two ways to do that: RSA

key exchange and Diffie-Hellman (DH) key exchange. In RSA key exchange, the pre-

master secret is transmitted (encrypted) over the network. With DH, it is not transferred

over the network – instead it is generated on both sides so it cannot be intercepted.

However, it is possible for an analyst to decrypt TLS connections when RSA key

exchange used if he has the server’s private (decryption) key. But in the ephemeral form

of Diffie-Hellman (DHE) key exchange, different DH keypairs will be generated for

multiple handshakes, which provide the Perfect Forward Secrecy that makes the DHE

highly recommended over the simple DH (RFC5246, 2008).

1.2.2. SSL/TLS Cipher Suites
A cipher suite is a combination of cryptographic algorithms that is used for key

exchange, encryption, and message authentication in SSL/TLS connection as shown in

Figure 3. Different operating systems and servers can have different cipher suites and

different priority ordering (MSDN, n.d.).

Figure 3: Cipher Suite (MSDN, n.d.)

Examples of cipher suites that use RSA or DH for key exchange:

- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P384
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384_P521

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 7

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

1.3. Ways to Inspect Encrypted Connections
1.3.1. Perform the inspection on the server itself

The simplest way to inspect the encrypted traffic is by employing a Host-Based

IDS (HIDS) on the server itself, where the traffic belonging to that server is decrypted.

An HIDS can monitor the server’s activities and look for unusual behaviors,

modifications to databases, system files, or any critical data. Installing the HIDS could

add extra load that can negatively affect performance especially for a busy server.

1.3.2. SSL/TLS termination proxy (reverse-proxy)
A reverse-proxy is a server that acts as an intermediary between backend servers

and clients. It accepts client requests and retrieves resources effectively hiding the

backend servers from the clients (Villanueva, 2012). The reverse-proxy server can be

configured to perform SSL/TLS encryption acting as an SSL/TLS termination proxy,

which takes the load off decrypting SSL/TLS connections passing the unencrypted traffic

to the associated servers. However, using an SSL/TLS termination proxy allows us to

employ the IDS inside the internal network of the servers (Romero, 2016).

1.3.3. The IDS performs the decryption
In this case, the IDS is given the capability of performing the decryption process

provided the private key. It could be a pre-processor or plug-in that supports decrypting

and normalizing the traffic before goes to detection engine. Currently, there is no

available pre-processor for Snort to perform the decryption process although it is

theoretically possible to develop such pre-processor or plug-in (Snort FAQ, n.d.).

However, the decryption feature is available in some propriety IDS devices like Juniper

IDP (Juniper, 2013).

1.3.4. Standalone tool performs the decryption
Software or hardware that performs the SSL/TLS decryption process provided the

private key then passes the decrypted traffic to the IDS. Viewssld is an example of

standalone tool (free open-source) that can decrypt SSL/TLS traffic. It works by listening

to an interface on a particular IP address, decrypting the encrypted traffic using the

server’s private key, and outputting the decrypted traffic to the listening port of the IDS.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 8

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2. Demonstration
This section demonstrates two approaches for decrypting SSL/TLS connections:

termination proxy, and standalone tool to decrypt the connection.

2.1. SSL/TLS termination proxy (reverse-proxy)
Four virtual machines were used to conduct this demonstration: one Windows 7

(client), two Windows Server 2012 (SSL/TLS termination proxy server and backend

server), and one Ubuntu (for sniffing and detection purposes). Also, two virtual networks

were created to connect these virtual machines as shown in Figure 4.

Figure 4: Servers and virtual networks setup

2.1.1. Server configuration
The SSL/TLS termination proxy server was configured with two interfaces: one

serves clients on the public network over an SSL/TLS connection (HTTPS) and the

second is connected to the backend web server over an unencrypted connection (HTTP)

on the internal network. Both servers (r-proxy and web-main) were members of a domain

called gcia.local. The backend server was configured as a web server running Internet

Information Services (IIS) to host the site with no additional settings. In the proxy server,

there are three important settings required to act as reverse-proxy: An SSL/TLS

certificate (a self-signed certificate), URL Rewrite, and Application Request Routing

(ARR). URL Rewrite and ARR are an extension to enable IIS to function as an SSL/TLS

termination proxy (both are available through Web Platform Installer (Sfanos, 2015)).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 9

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2.1.2. Creating a self-signed RSA certificate using IIS
Creating a self-signed certificate is a built-in feature in IIS that allows issuing a

self-signed certificate as shown in Figure 5. This feature generates an RSA certificate

(2048 Bits).

Figure 5: Creating an RSA self-signed certificate

2.1.3. Creating a self-signed ECDSA using ADCS
One way to create a self-signed ECDSA certificate to be used with the DH key

exchange is through Active Directory Certificate Services (ADCS) role in Windows 2012

Server. After installing ADCS, a post-deployment configuration is required. It offers

various cryptographic options to create certificates. As illustrated in Figure 6,

ECDSA_P256#Microsoft Software Key Storage Provider was selected. At the end of this

configuration, a self-signed ECDSA certificate was generated.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 10

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

Figure 6: Creating a self-signed ECDSA certificate for DH key exchange

2.1.4. Binding the self-signed certificate to the web site
The actions column (when the website is selected) offers a bindings feature that

allows binding the website to a cryptographic certificate. Figure 7 illustrates the steps to

bind the website to a certificate.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 11

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

Figure 7: Binding the cryptographic certificate to a website

2.1.5. Configuring the SSL/TLS termination proxy server (reverse-proxy)
To add a reverse-proxy rule template, click on Add rule(s) from URL Rewrite then

select Reverse-Proxy rule template as shown in Figure 8. The final step in configuring

the reverse-proxy server is illustrated in Figure 9.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 12

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

Figure 8: Adding a reverse-proxy rule template

Figure 9: Configuring reverse-proxy rules

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 13

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

Enforcing various cipher suites

To force IIS to use specific cipher suites, the Local Group Policy Editor can be

utilized (Computer Configuration → Administrative Templates → Network → SSL

Configuration Settings). The SSL Cipher Suite Order needs to be enabled first, then the

specific cipher suite selected. Normally, the cipher suite agreed upon by the client and

server during the TLS handshake is the supported client cipher suite that ranks highest in

the server's cipher suite order. For the purposes of this demonstration, the server was

configured to support a single cipher suite at a time, cycling through all the entries in the

client’s ordered list.

Several cipher suites are tested in this demonstration; all of them are supported

and decrypted by the reverse-proxy rules in IIS:

• TLS_RSA_WITH_AES_128_CBC_SHA

• TLS_RSA_WITH_AES_256_CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 14

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2.1.6. Sniffing the traffic on the public and the internal virtual networks
Below are screenshots captured by Wireshark after the connection has been made

between the client and the reverse-proxy. Figure 10 and Figure 11 show the exchanged

messages when TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA cipher was used.

Figure 10: Part of a TLS handshake (TLS_ECDHE_RSA)

Figure 11: The HTTP response from the backend web server to the reverse-proxy (unencrypted)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 15

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

Figure 12 and Figure 13 show the exchanged messages when
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 cipher was used.

Figure 12: Part of a TLS handshake (TLS_ECDHE_ECDSA)

Figure 13: The HTTP response from the backend web server to the reverse-proxy (unencrypted)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 16

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2.2. Decrypting SSL/TLS using Viewssld
As mentioned earlier, there are two ways for key exchange: RSA key exchange

and DH key exchange. In RSA key exchange, a static keypair is used for the exchange

and could enable a standalone tool to decrypt all the encrypted connections to that server

if the private key is provided. But it is different with the ephemeral form of DH. DHE

was introduced to provide Perfect Forward Secrecy. It uses different DH keypairs for

multiple handshakes. Even if a DH keypair were provided, it would be possible to

decrypt one connection only.

In this section, the Viewssld tool was used to decrypt an SSL/TLS connection that

used RSA key exchange. Viewssld is a free open-source tool that can decrypt SSL/TLS

traffic for an IDS. It works by listening to an interface on a particular IP address,

decrypting the encrypted traffic using the server’s private key, and outputting the

decrypted traffic to the listening port of the IDS. It does not support DHE key exchange;

It only supports RSA key exchange (Plashchynski, 2015).

To illustrate the process, a self-signed RSA certificate was generated using

OpenSSL, then the certificate was bound to the website in Windows Internet Information

Services (IIS). Two virtual machines were used to conduct this demonstration: Windows

7 (server) and Ubuntu (client). Snort and Viewssld were running on the client machine.

2.2.1. Creating a self-signed RSA certificate using OpenSSL
A self-signed RSA certificate was created using the following command in

OpenSSL:

openssl req -x509 -nodes -newkey rsa:2048 -keyout pkey.pem -out

cert.pem

Then the private key and certificate were exported to pfx format to be used in Microsoft

IIS:

openssl pkcs12 -inkey pkey.pem -in cert.pem -export -out

cert.pfx

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 17

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2.2.2. Setting Windows IIS server
After installing IIS, a simple HTML page was created in the local site. Then, the

site was bound to the self-signed RSA certificate after importing it in IIS as shown in

Figure 4.

Figure 14: Binding self-signed certificate to the web site

To force Windows IIS to use specific cipher suites, the Local Group Policy Editor

can be utilized (Computer Configuration -> Administrative Templates -> Network ->

SSL Configuration Settings). The SSL Cipher Suite Order needs to be enabled first, then

the specific cipher suite selected, namely RSA (since RSA uses the public key and

private key for the key exchange). The list of the supported TLS cipher suites in

Windows 7 can be obtained from (MSDN, n.d.).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 18

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2.2.3. Configuring and running Viewssld
Viewssld uses a configuration file that contains all the necessary information to

run the command. Below are the settings used in the configuration file:

daemonize? on/off (default: off)

daemon = off

#server1 configuration

[server1]

src = en1 #the interface where the encrypted traffic can be found

dst = en2 #destination interface for passing the decrypted traffic to

ip = 192.168.100.135 #the server’s IP address to monitor

port = 443 #the port to listen on

dsslport = 80 #the destination port for the decrypted traffic

key = ~/.ssh/id_rsa/pkey.pem #provides the private key

Now, we can run Viewssld using the following command:

sudo Viewssld --config Viewssld.conf –v

What follows is a sample of the output of Viewssld when it captured an SSL/TLS

connection that could be decrypted:

=> New Session: 192.168.100.135:443<->192.168.100.133:49223

C->S: 301 bytes

S->C: 301 bytes

C->S: 302 bytes

S->C: 1382 bytes

<= Session closing: 192.168.100.135:443<->192.168.100.133:49223
pkts recv: 336 pkts drop: 0

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 19

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2.2.4. Findings
In Windows 7 IIS, several cipher suites have been tested in this experiment,

unfortunately, Viewssld was only able to decrypt one cipher suite

“TLS_RSA_WITH_RC4_128_MD5”. After checking libdssl-master (Viewssld

dependency library), only the cipher suites below were listed in the source code and are

currently supported by Viewssld.

TLS

- AES_128_CBC,SHA1
- AES_256_CBC,SHA1

SSL2
- RC4,MD5
- RC4,MD5
- RC2,MD5
- RC2,MD5
- IDEA,MD5
- DES,MD5
- SN_DES_EDE3_CBC,MD5

SSL3

- NULL,MD5
- NULL,SHA1
- RC4,MD5
- RC4,MD5
- RC4,SHA1
- RC2,MD5
- IDEA,SHA1
- DES,SHA1
- DES,SHA1
- DES3,SHA1

Unfortunately, this tool supports old cipher suites that are insecure and rarely used

by servers today. However, the capability here is limited to the tool and what it supports.

It is possible to enhance the open source tool’s cipher suite support, but that would take

development effort.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 20

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

3. Conclusion
SSL/TLS inspection is an important and desired feature for security analysts, but

it has its costs. Choose the method to decrypt traffic based on the needs and the design of

the network: on the server itself, an SSL/TLS termination proxy, or using a standalone

tool or capability added to the IDS. If the HIDS is installed on the server itself, it could

add some extra load that can negatively affect performance especially for a busy server.

The standalone tool option is limited to the tool’s ability and what it supports. It may be

possible to enhance the tool, since its open source, but it would take an effort to develop

the needed capability (cipher suite support). Also, having both encrypted and decrypted

traffic could have a serious disk utilization impact, especially if a tool like Viewssld is

used. Among the two options that are demonstrated here, the most feasible option is the

SSL/TLS termination proxy (reverse-proxy). It can terminate the encrypted connections

then pass the decrypted traffic to the associated servers over a normal HTTP connection

(on the internal network). This allows the IDS to be installed and function inside the

internal network.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 21

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

References

Caswell, B., Beale, J., & Baker, A. (2007). Snort IDS and IPS Toolkit (Jay Beale's Open

Source Security). SYNGRESS.

Juniper. (2010). Inspection of SSL Traffic Overview. Retrieved Mar 3, 2017, from Juniper

Networks:

https://www.juniper.net/techpubs/en_US/idp5.0/topics/concept/intrusion-

detection-prevention-ssl-decryption-overview.html

Juniper. (2013). Juniper TechLibrary: IDP SSL Overview. Retrieved Apr 7, 2017, from

Juniper Networks:

https://www.juniper.net/documentation/en_US/junos12.1x44/topics/concept/idp-

ssl-overview.html

Kannan, R. D. (2011). An Experimental Study of Detecting and Correlating Different

Intrusions. SANS Reading Room.

MSDN. (n.d.). Cipher Suites in TLS/SSL (Schannel SSP). Retrieved Mar 15, 2017, from

Microsoft MSDN: https://msdn.microsoft.com/en-

us/library/aa374757(VS.85).aspx

MSDN. (n.d.). TLS Cipher Suites in Windows 7. Retrieved Mar 15, 2017, from Microsoft

MSDN: https://msdn.microsoft.com/en-us/library/mt767780(v=vs.85).aspx

Plashchynski, D. (2015). viewssld README. Retrieved 3 10, 2017, from github.com:

https://github.com/plashchynski/viewssld

RFC5246. (2008). The Transport Layer Security (TLS) Protocol Version 1.2. Retrieved

Feb 14, 2017, from The Internet Engineering Task Force (IETF):

https://datatracker.ietf.org/doc/rfc5246/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection	 22

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

RFC6176. (2011). Prohibiting Secure Sockets Layer (SSL) Version 2.0. Retrieved Feb 25,

2017, from Internet Engineering Task Force (IETF):

https://tools.ietf.org/html/rfc6176

RFC7568. (2015). Deprecating Secure Sockets Layer Version 3.0. Retrieved Feb 25,

2017, from Internet Engineering Task Force (IETF):

https://tools.ietf.org/html/rfc7568

Ristić, I. (2015). BULLETPROOF SSL AND TLS: Understanding and Deploying

SSL/TLS and PKI to Secure Servers and Web Applications. Feisty Duck.

Romero, R. (2016). Scaling Open Source Network Proxy: Leveraging Hitch For Ssl/Tls

Terminations . Retrieved Mar 14, 2017, from Varnish Software:

https://info.varnish-software.com/blog/scaling-open-source-network-proxy-

leveraging-hitch-ssl-tls

Sfanos, C. (2015). Web Platform Installer Direct Downloads. Retrieved Mar 27, 2017,

from The Official Microsoft IIS Site: https://www.iis.net/learn/install/web-

platform-installer/web-platform-installer-direct-downloads

Snort FAQ. (n.d.). Retrieved Nov 7, 2016, from Snort Official Website:

https://www.snort.org/faq/readme-ssl

Villanueva, J. C. (2012, Aug 6). Forward Proxy vs Reverse Proxy. Retrieved Feb 20,

2017, from JSCAPE: http://www.jscape.com/blog/bid/87783/Forward-Proxy-vs-

Reverse-Proxy

