
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Alternate Data Streams:
Out of the Shadows
and into the Light

by

Ryan L. Means

for GCWN v3.1 (Option 3)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 2 -

Abstract
 Alternate Data Streams: Out of the Shadows and into the Light examines
alternate data streams in NTFS. It provides a thorough technical background in
alternate streams before proceeding to compare them to regular files and
directories. There is then a study of several techniques by which alternate data
streams can be exploited by malicious users. The paper then examines software
from Microsoft and third-party vendors, evaluating each application’s
effectiveness in finding and manipulating alternate data streams. Finally, the
paper presents a set of Windows shell extensions designed to make alternate
stream information an integral part of the operating system and eliminate a
loophole that malicious users can use to hide alternate data streams from current
scanners.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 3 -

What is an alternate data stream? - 4 -
Structure of the Master File Table (MFT) - 4 -

Structure of a Record in the MFT - 4 -
Structure of a Record with an Alternate Data Stream - 6 -

How are alternate data streams used legitimately? - 8 -
Services for Macintosh - 8 -
Storing “Summary” Data - 8 -
Volume Change Tracking - 8 -

How are alternate data streams handled differently from regular files or directories? - 9 -
Most applications do not appear to recognize alternate data streams - 9 -
Alternate data streams cannot be surgically removed without third-party software - 11 -
Streams and exclusive locks - 11 -

How can alternate data streams be used maliciously? - 14 -
Data can be hidden in files or directories - 14 -
Code can be executed directly from an alternate data stream - 14 -
Denial of Service attacks - 15 -

What tools are available to work with alternate data streams? - 16 -
Microsoft tools - 16 -

Notepad - 16 -
cat - 16 -

Third-Party scanners - 17 -
LADS - 17 -
Streams - 18 -
CrucialADS - 20 -
Trojan Defense Suite - 21 -

Beyond scanning: Integrating alternate data stream information into Windows - 23 -
Limitations of the shell extensions - 23 -
How do you use the Windows API to gather information about alternate streams? - 23 -

CreateFile - 24 -
BackupRead and BackupSeek - 24 -
NTQueryInformationFile - 25 -

Creating a column handler to show the size of alternate data streams in detail view - 25 -
Code walkthrough - 26 -
Usage - 31 -

Creating an additional property page to view alternate stream names and sizes and
perform tasks on them - 32 -

Code Walkthrough - 33 -
Usage - 44 -

Conclusion - 44 -
Acknowledgements - 44 -
Bibliography - 45 -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 4 -

What is an alternate data stream?
 The simplest definition of an alternate data stream in NTFS is:

The stream in any data attribute on a file or directory other than the default,
unnamed stream.

 Understanding this definition requires knowing the structure of a special
metadata file called the Master File Table (MFT). The system creates twelve
metadata files when an NFTS 5.0 partition is formatted that contain information
about the volume itself and the data stored on it. The first metadata file, the MFT,
stores all of the records and attributes that Windows needs to access any file or
directory on the volume.

Structure of the Master File Table (MFT)
 The Master File Table stores a list of records containing attributes as
illustrated in Figure 1.
Figure 1: The MFT as a list of records

 Attributes consist of distinct groupings of data in the record that conform to
a certain structure. Each attribute type stores a different piece of information
about the file or directory, ranging in scope from a single bit to indicate a read-
only document to the full content of a video file just one kilobyte shy of sixteen
exabytes, the theoretical maximum file size on NTFS1. The size of each of the
records in the MFT equals the cluster size of the volume, with a minimum of
1,024 bytes and a maximum of 4,096 bytes2. The structure of the file record
follows:

Structure of a Record in the MFT
 First, the record starts out with a header that contains, among other data-
integrity information, a pointer to the first attribute in the record. The individual
attributes immediately follow the record header. NTFS has over a dozen system

1 “Size Limitations in NTFS and FAT File Systems.” Microsoft TechNet.
2 Kozierok, Charles M. “Master File Table (MFT).”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 5 -

defined attributes and the ability to have any number of user-defined attributes,
but understanding alternate data streams requires knowledge of only the
following three:

• Standard Information Attribute (SI): Contains file creation time,
modification time, last access time, and standard DOS file permissions
(System, Hidden, Archive, Read-Only, etc.) Each record can only have
one SI attribute.

• File Name Attribute (FN): Contains a name for the file or directory. This
name can be the regular UNICODE name, the MSDOS 8.3 short filename,
or any other identifying data. Multiple file name attributes can exist in the
record to hold each of these possible names.

• Data Attribute (DATA): Contains the data for the file. There can be
multiple data attributes in each record.

Each attribute in the MFT record will be divided into two parts, the header and
the content:

Attribute Headers
 There can be four different types of headers for an attribute, depending on
whether the attribute has a name or not and whether the content part is stored
immediately following the header in the MFT (resident) or in an alternate location
on the volume (non-resident). All four header types store information including
the type of attribute (SI, FN, DATA, etc.), the attribute length, the residency of the
content portion, and in the case of DATA attributes, the compression status of
the content. Additionally, for resident content, the header contains data about the
length of the content. However, in the case of non-resident content, the header
stores information identifying the portion of the data referenced in the content as
well as its size.

Attribute Content
 The structure of the content portion depends on the size of the data. When
appropriately sized, the content exists immediately following the header in the
MFT record itself. If the amount of data to be stored exceeds the remaining size
of the record, the content portion contains a runlist of pointers to the actual
location of the data elsewhere on the disk. Every piece of data on the volume is
stored in a cluster, the smallest unit of allocation on the disk. The runlist stores a
list of elements that contain both the Logical Cluster Number (LCN), or the
starting cluster for a set of data, and the number of clusters in that particular run.
It usually takes many runs to store all of the data because of disk fragmentation,
so the number of elements in the runlist may be large. The collection of content
in the data attribute, whether resident in the MFT or non-resident in clusters
identified by the runlist, is called the stream.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 6 -

 To illustrate the structure of the file record that has been outlined so far,
see Figure 2.
Figure 2: A file record in the MFT

 Figure 2 shows a record in the MFT with the record header in red, and
each of the three attributes (Standard Information, File Name, and Data) with a
green header and blue content. This particular record contains a non-resident
stream comprised of clusters stored at various locations on the volume. Each
element of the blue runlist in the Data attribute identifies the set of yellow clusters
containing the stream data. If the stream were small enough to be resident, the
runlist would be replaced by data, immediately following the green header. On
the other hand, if the runlist gets too large to fit in the record, NTFS has a
mechanism to store it in one or more external attributes in a separate MFT
record.

Structure of a Record with an Alternate Data Stream
 In a file with an alternate data stream, the record looks exactly the same
as the one depicted in Figure 2 except instead of having only one data attribute it
has two or more. NTFS allows only one unnamed data attribute per record, so
any additional data attributes must be named. These additional named data
attributes contain the alternate data streams. The structure of a file record with
an alternate data stream is illustrated in Figure 3.
Figure 3: A file record with an alternate data stream

 This record looks very similar to the record in Figure 2, with the addition of
a second data attribute. This second data attribute has its name stored in the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 7 -

purple area, which is at the end of the attribute header. The second data stream
references its own clusters completely separate from the first.

Directories and Alternate Data Streams
 Directories are also represented within records in the MFT. Directories use
another type of attribute, the Index Root attribute, which stores an index to the
files in the particular directory very much like the way a data attribute stores a
stream as outlined above. However, just because a record contains this Index
Root attribute does not mean that it cannot also contain one or more data
streams. Because a directory record does not usually have a data attribute, any
data attribute present in a directory record is automatically an alternate data
stream. Figure 4 shows a MFT record for a small directory with a resident index
and an alternate data stream.
Figure 4: A directory record with an alternate data stream

 This directory record’s data attribute, like that of the file records in Figure 2
or 3, points to clusters elsewhere on the volume. Additionally, all data attributes
on a directory record must be named, so the purple area at the end of the data
attribute’s header indicates the presence of an attribute name.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 8 -

How are alternate data streams used legitimately?
 NTFS implemented alternate data streams with the advent of Windows NT
3.1 in May of 1993 and successive versions of Windows have utilized them more
and more. They have a host of legitimate uses on both the server and
workstation including, but not limited to, the following:

Services for Macintosh
 Alternate data streams were initially created for Windows NT 3.1 so that
NT, using NTFS, could act as a file server for Macintosh clients. The Macintosh’s
Hierarchical File System (HFS) had long stored files in two “forks”, the data fork
and the resource fork. On the Mac, the data fork stores the application data while
the resource fork contains supporting metadata like icons or locale information.
Using Services for Macintosh, a Windows file server can keep the data fork in the
primary, unnamed stream and the resource fork in an alternate data stream. This
maintains the transparency of file manipulation on a Macintosh even if it’s using
files on a Windows share.

Storing “Summary” Data
 With the introduction of Windows 2000, Microsoft began to offer a
“Summary” tab that shows up in the properties of a selected file. Some of the
summary information displayed in the tab includes title, subject, and author. This
summary metadata is stored in an alternate data stream of the selected file. In
the case of image files, a thumbnail can also be cached in the summary
metadata to speed up the display images when the Explorer is in thumbnail view.

Volume Change Tracking
 Also introduced in Windows 2000, Microsoft decided to implement volume
change tracking NTFS volumes. Volume change tracking allows an application to
monitor changes to a volume and take action if necessary. This is very useful for
virus-scanners, backup applications, and Microsoft’s File Replication Service
which is used by a Distributed File System (DFS). Rather than scanning the
entire file system to look for modifications, these applications can be notified by
NTFS on updates to the change journal. The change journal is stored in an
alternate data stream in one of the twelve special metadata files that are created
when a volume is formatted3. This metadata file stores information about the
name of the modified file along with information about what specific change was
made.

3 Russinovich, Mark. “Inside Win2K NTFS, Part 2.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 9 -

How are alternate data streams handled differently from regular
files or directories?
 Alternate data streams, though only slightly different from primary data
streams, are handled very differently both by Microsoft and third-party
applications on Windows. The biggest differences between primary and alternate
data streams have to do with whether or not an application knows alternate
streams exist, and if it does, how they are accessed. The data that exists in an
alternate stream cannot be deleted in the same manner as data in a primary
stream, rendering the standard Microsoft tools useless if the content needs to be
removed. Finally, each data stream possesses its own lock attributes, but
Windows only pays attention to the lock on the unnamed stream. This
characteristic creates a very interesting vulnerability in which alternate data
streams can be created and edited while being protected from discovery or
removal by alternate data stream scanning applications.

Most applications do not appear to recognize alternate data streams
 There are at least three groups of applications that should recognize
alternate data streams and do not. System default tools like Windows Explorer
and the command shell, virus scanners, and file integrity programs all fail to
behave appropriately when an alternate data stream is present.

Windows Tools
 The tools that Microsoft provides with their Windows operating system
would be the most obvious place that one would expect to find information about
a file’s alternate data streams. Unfortunately, this functionality has yet to
materialize. Even the latest versions of Windows still do not, by default, provide
the user any clue as to the existence or size of an alternate data stream. A
detailed file or directory listing in Windows Explorer looks exactly the same
regardless of whether a file has no alternate data streams, one five byte stream,
or eighty 600 megabyte streams. In addition to the lack of visual cue as to the
presence of another stream, there is no way to view the contents of that stream
in the GUI. The latter portion of this document will include a set of shell
extensions that fixes this, the most severe problem with the implementation of
alternate streams in Windows.
 It would be reasonable to assume that streams would be left out of
Explorer to simplify the interface for the majority of users but would be available
to power users willing to find them through the standard command-line
applications. However, this is also not the case. Regardless of the options used,
the supplied application for listing the contents of a directory, dir, will not reveal
the presence of an alternate data stream. Furthermore, dir ignores any named
streams in files or directories when calculating the total size of the file.
 Some command line tools provided with Windows and with the Windows
Resource Kit allow you to copy data into and out of a named stream on a file or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 10 -

directory. These tools, however, are of limited effectiveness due to their inability
to enumerate the streams in a file. Microsoft’s tools enable you to store data in
an alternate stream and get it back out again, but only if you can remember the
name of the stream you put it in.
 In a strange deviation from the norm, Microsoft did give their Notepad
application the ability to read and write named streams. But, like the command-
line tools above, Notepad does not have the ability to enumerate the streams that
already exist in a file or directory.

Virus Scanners
 Alternate data streams have been around since the early 1990’s, but
applications from major virus-protection vendors still fail to recognize their
presence under certain circumstances as indicated by a report from Dartmouth’s
Institute for Security Technology Studies4. Virus scanners do not enumerate the
alternate streams on a file as part of a normal on-demand scan. Virus-protection
software vendors claim that any viruses will be detected by their real-time
monitoring software, which may be true; nevertheless, this solution is far from
complete. Once a virus has been detected, a virus scanner that does not
understand named streams will not be able to disinfect the file and the user will
be forced to revert to third-party tools to remove the stream or to delete the entire
file outright.

File Integrity Software
 File integrity software is designed to create a unique value for a particular
file that is based on the data in that file. This value can then be stored or
distributed as a way of verifying that the contents of the file have not been
changed. Applications such as md5sum and cksum use Message Digest 5 (MD5)
or Cyclic Redundancy Checking (CRC) algorithms, respectively, to calculate the
unique integrity value for a given file. Windows ports of the GNU versions of
these applications obtained from http://unxutils.sourceforge.net/ yielded the
following results:

The file test.txt is a four byte file containing the word “test”, which has a four
byte alternate data stream named stream.txt that also contains the word “test”.

md5sum test.txt à 098f6bcd4621d373cade4e832627b4f6
cksum test.txt à 3076352578

After editing the alternate data stream to read “edited” instead of “test”:

md5sum test.txt à 098f6bcd4621d373cade4e832627b4f6
cksum test.txt à 3076352578

4 “Virus Scanner Inadequacies with NTFS.” Dartmouth’s Institute for Security Technology Studies.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 11 -

After removing the alternate data stream from the file:

md5sum test.txt à 098f6bcd4621d373cade4e832627b4f6
cksum test.txt à 3076352578

 These tests show that these file integrity programs do not take the
alternate data stream into account when making their calculations. This means
that while they do protect the integrity of the contents of the primary, unnamed
stream, they do not protect the integrity of alternate data streams. Indeed, these
tools must be used in conjunction with an application that identifies the presence
of alternate data streams in order to truly verify the integrity of the file and not just
the integrity of the primary data stream. It would be trivial to create an
implementation of the MD5 and/or CRC algorithms that would use the
combination of all the data streams rather than just the primary in calculating the
integrity value.
 On the other hand, the modification date and time for a file does change if
an alternate data stream is added or modified, so this can be a clue to vigilant
system administrators.

Alternate data streams cannot be surgically removed without third-
party software
 Another major difference between regular files or directories and alternate
data streams has to do with the operating system support for removing them.
The standard delete operations built into Windows Explorer and even the del
command-line application cannot remove alternate data streams. To eliminate
the stream with these utilities, it is necessary to remove the entire file. As
mentioned previously, some utilities like Notepad or the cat program from the
Windows Resource Kit are able to edit alternate data streams. So, they can
remove data from the stream, but they cannot remove the data attribute that
causes the stream to exist.
 Using the DeleteFile function from the Windows API, a programmer can
surgically remove the alternate data stream from a file, not disturbing the
contents of the unnamed stream. However, Microsoft chose not to implement this
very basic functionality in their GUI or command-line tools. One of the shell
extensions described later in this document gives the user the ability to utilize the
DeleteFile function to remove an alternate data stream.

Streams and exclusive locks
 An exclusive lock is a way for a process running on Windows to exclude
all other processes from reading or writing to a particular file. Obtained by
executing a function in the Windows API called LockFileEx, exclusive locks are
rarely used in Windows applications due to the availability of shared read and
write locking, which lock portions of a file but not the entire file. Nevertheless,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 12 -

exclusive locks are necessary for certain applications that need to insure the
integrity of a complete file for a running process.
 Each stream in a file has separate lock attributes, but very few Windows
applications distinguish between the locks on unnamed and named streams. So,
a program unaware of alternate streams and locks only looks at the primary
stream to see whether a file can be opened, while an application that
understands alternate data streams will check the lock on the stream being
referenced, primary or alternate. Furthermore, in order to enumerate the named
streams in a file, the Windows API function CreateFile must be called to open
with the correct arguments to open the primary stream. If the correct arguments
are not used and the primary stream has been locked by a running process, the
function fails and the named streams cannot be enumerated. All alternate data
stream scanners tested later in this paper fail to use the appropriate arguments
to CreateFile and are unable open the primary stream before proceeding with
enumeration. Therefore, they do not work for scanning exclusively locked files.

Unfortunately, the following scenario could occur:

1. A user could find a file with that has been exclusively locked by a system
process that they have permission to write to.

2. They can then use a stream-aware application like Notepad to add data to
a named stream. For extra security, the user will give the stream a very
complicated name.

3. Alternate data stream scanners will not be able to find the named stream
on the locked file. Furthermore, because the primary stream is locked, the
file cannot be deleted, moved, or renamed as long as the process is
running.

4. The user will be able to read and write data from the alternate stream
using the complicated name that he or she selected, even while the
primary stream remains locked, evading detection of scanners.

 To enumerate the streams in the file it would be necessary to shut down
the process that is keeping the file locked. If the process does not terminate
cleanly, the lock will remain for a certain period of time but will eventually be
cleared. At this point, the alternate data stream scanner will be able to find the
name of the stream and it can be removed.
 To help protect against this kind of exploit, it is necessary to maintain
permissions on files that are locked by system processes to prevent users from
writing to them. File permissions are set on the entire file, not each individual
stream, so read-only permissions guarantee the inability to write an alternate
stream. Also, it is important to ensure that scanning for alternate data streams is
done after terminating any non-system processes that would keep locks open.
Another solution to this problem would be the modification of the alternate stream
scanner to use CreateFile in such a way that a file handle is created but the file is
not technically opened for reading. The alternate data stream shell extensions

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 13 -

described later in this paper use CreateFile appropriately and are not subject to
the limitations described above.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 14 -

How can alternate data streams be used maliciously?
 While not inherently dangerous, the different ways that alternate data
streams are handled by Windows as compared to primary streams can make
them vulnerable to exploit by malicious users. Alternate streams can be used to
hide data, store executable code, or even perform denial of service attacks.

Data can be hidden in files or directories
 Given the inability of most Windows applications to enumerate the
alternate data streams in a file or directory, these streams make excellent
locations to hide malicious data. This vulnerability becomes very severe when
compounded by the problem of exclusive locking discussed previously that may
prevent these streams from being enumerated at all by most scanning
applications. Alternatively, depending on the amount of data that needs to be
hidden, the malicious user could use an alternate stream with a name that would
not be suspicious. A good example of this would be the small
“SummaryInformation” stream that contains summary information displayed in
the preferences tab and is common on certain Windows documents. A forensic
analyst would have to specifically search all of the hidden streams on the volume
to be confident that no data was hidden there, and they could not determine the
content of the file from the stream name alone.
 What kind of malicious data can be hidden in an alternate data stream?
Any data that can be stored in a primary unnamed stream can be stored in a
hidden named stream as well. To add and edit the data in an alternate data
stream, a user only needs a stream-aware tool like Notepad or cat. Alternate
data streams can provide a covert channel for the storage of stolen intellectual
property, like a formula for a new pharmaceutical or an archive of source code to
a proprietary operating system. Potentially even more dangerous is the ability for
executable code to be stored in an alternate data stream, creating a new vector
for malicious software, also called malware.

Code can be executed directly from an alternate data stream
 Unfortunately, data can not only be stored in alternate data streams, but
also executed directly from it. In NT4, alternate stream data could be executed
using the “start” command supplied with the operating system; however,
according to Kaspersky and Zenkin5, there are at least five ways to execute
different types of data in Windows 2000. They created three alternate streams in
a copy of the Notepad executable, one stream has an exact copy of Calculator,
the second contains a test Visual Basic script that creates a message box
containing the words “Hello World!”, and the third stores a .cmd file that echoes
“Hello World!” to the command-line. They found that each of the following five

5 Kaspersky, Eugene and Zenkin, Davis. “NTFS Alternate Data Streams”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 15 -

methods would cause at least one of the three file types to successfully execute
on Windows 2000:

1. Executing the stream from the Run window as
file:\\notepad.exe:<stream name> works for the .exe stream and
the .vbs stream

2. Executing the Visual Basic script from the command line using the
Windows Scripting Host by running wscript notepad.exe:<VB
stream name>

3. Creating a shortcut to notepad.exe:<stream name> will execute both
the .exe and .vbs streams

4. Placing a shortcut to the stream in the Windows Startup folder will cause
the .exe and .vbs streams to be executed when a user logs in.

5. Adding a test key with value “notepad.exe <stream name>” to
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run will cause
.exe and .vbs streams to be executed on system startup.

 Antivirus software vendors have claimed that they are not concerned
about searching for virus data stored in an alternate stream because it could not
be executed without a “starter” in the primary stream. The most important result
of the experiments conducted by Kaspersky and Zenkin was determining that
alternate streams can be executed directly, and they do not need any sort of
starter code in the primary stream. This fact makes alternate streams a very
viable and covert vector for many types of malware including viruses and Trojan
horses.

Denial of Service attacks
 Alternate streams also provide a very effective means to conduct a denial
of service attack on a host. Because most Windows applications cannot show the
size of any alternate streams on a file, a malicious user could easily hide an
extremely large file in a named stream so that another user could not detect its
presence. This ability to hide large amounts of data makes it almost trivial to fill
an NTFS volume to capacity, ultimately rendering it unable to hold any additional
data. A completely full system volume almost always causes severe OS and
application instability. At this point, without a third-party alternate data stream
scanner, a system administrator would be unable to track down the file that
contained the oversized stream. The severity of the problem can escalate
significantly for a stream placed on a file exclusively locked by the system,
because as mentioned previously, popular scanning applications cannot find a
named stream on an exclusively locked file. If a process vital to system operation
maintains the lock and it cannot be shut down, the only way to find the stream
currently is to mount and scan the volume on a separate machine.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 16 -

What tools are available to work with alternate data
streams?
 A variety of tools available from Microsoft and third-party vendors will find
or manipulate alternate streams.

Microsoft tools
 Microsoft distributes tools that can be used for manipulating, but not
finding or removing, alternate data streams with their Windows operating system
and with the Windows Resource Kit. Both the GUI tool Notepad and the
command-line tool cat (which comes with the Resource Kit) are very useful for
creating new streams or editing existing streams, provided the user knows the
name of the stream they wish to edit.

 Notepad
 When editing alternate data streams with Notepad, the syntax is:

notepad <filename>:<stream>

This command opens the alternate data stream named <stream> on a file
named <filename> in an editing window just like it would for a primary data
stream. If the stream does not exist, a message box will prompt the user to
create a new “file” with the syntax above. If the stream already exists, it will be
displayed in the window normally. The Notepad FileàSave operation will save
the edited text into the stream.

cat
 While Notepad works best for editing ASCII text, the cat command
combined with command-line redirection, also known as the > and < operators,
provides the user with the ability to redirect files of any type into and out of an
alternate data stream. To place a file into an alternate data stream using cat, the
syntax is:

cat <input file> > <filename>:<stream>

This command will place the file <input file> into the alternate data stream
named <stream> on a file named <filename>. If the stream already exists, it
will be overwritten, and if it does not exist it will be created. The input file can be
a text file or a binary file. Indeed, using cat in the command above would be the
best way to store executable data in an alternate stream. Conversely, to copy a
stream out of a file, use the command:

cat <filename>:<stream> > <output file>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 17 -

The alternate data stream will be copied into the file named <output file>.
This command does not delete the alternate data attribute from the original file;
therefore, it only works to copy, not move, a stream to a separate file.

Third-Party scanners
 A number of third-party alternate data stream scanners have been
available for years, including LADS, Streams, CrucialADS, and a product called
TDS-3. Each of these scanners has its own strengths and weaknesses and they
will be evaluated on their ability to find alternate data streams, speed, and
usability. For the first test, three files and directory pairs – one normal, one
encrypted, and one compressed – were created and each given the same
alternate data stream. The second test will compare the applications’ speed in
scanning an entire hard drive for alternate streams. The final evaluation is a
subjective analysis of each utility’s usability for scanning and analyzing alternate
data streams on a volume.

LADS
 The most popular alternate data stream scanner is Frank Heyne’s List
Alternate Data Streams (LADS). LADS is a freeware command-line application
and can be downloaded as a binary only from Frank’s site at
http://www.heysoft.de.

Usage
 The command-line usage for LADS is:

lads [Directory] [/S] [/D] [/A] [/Xname]

Directory is the directory to scan, but if it is left blank LADS will scan the
current directory. LADS has a few command-line switches that can be set: /S to
recursively scan subdirectories, /D to put LADS in debug mode, /A to sum all of
the bytes found in hidden streams, and /Xname to exclude alternate data
streams with a particular name. The output of LADS during a normal alternate
data stream scan appears in Figure 5:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 18 -

Figure 5: A screenshot of LADS

Evaluation
 LADS passed test one with flying colors; it found all six alternate data
streams in the normal, encrypted, and compressed files and folders. In test two,
LADS also performed rather well, taking only 18.5 minutes to scan 9GB of files
and directories for alternate data streams.
 Though it finds all alternate streams and is reasonably quick, LADS is
lacking in several respects with regard to usability. First, it only processes
absolute (i.e. C:\directory) directories as options and does not accept
relative (i.e. ..\directory) directories as valid. This makes it difficult to use
LADS to scan deeply nested directories because the user must type the entire
path to the directory being searched. In addition, LADS lacks decent reporting
capability. No option outputs the results to a file for easy analysis. If the volume is
large and has many alternate data streams (or open files, which print an error),
the output will be pages long. The output can be redirected to a file using the
command-line redirector, >, but the format of the output is not conducive to
scripted analysis. It would be nice if LADS had a switch to output to a comma-
separated value (CSV) file that could be viewed in Excel or easily processed by a
Perl script.
 This application is also only an ADS scanner, it does not give the user the
ability to view, save, or remove data in the streams themselves, though it does
report the size of the stream in its output. Also, LADS does not support the
scanning of a single file, which complicates situations in which a user wants to
find alternate streams on a file in a very large directory. LADS is vulnerable to the
exclusive file locking exploit discussed previously.

Streams
 Streams is a small, command-line based alternate data stream scanning
tool from Sysinternals. It is freeware, available in both binary and source-code

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 19 -

form, and can be downloaded directly from Sysinternals at
http://www.sysinternals.com/ntw2k/source/misc.shtml.

Usage
 The command-line usage for Streams is:

Streams [-s] <file or directory>

Streams is able to scan a single file, scan a single directory, or recursively scan
files and directories with the –s switch. The output of LADS during an alternate
data stream scan is shown in Figure 6:
Figure 6: A screenshot of Streams

Evaluation
 Streams successfully passed test one, finding all of the hidden streams in
the six test files. It also performed well in the speed test, taking only 18 minutes
to scan 9GB of files and directories.
 Streams, like LADS, is of limited usability. While it can handle absolute
and relative paths and is able to scan a single file for alternate streams, Streams
lacks a way to generate output that can be easily analyzed. Like LADS, Streams
is a command-line utility that prints out a list of alternate data streams in a non-
standard format. It does not offer any switches to give the user the ability to
request output as a CSV file or other standard format. For systems that may
have hundreds of alternate data streams, this makes analysis of the information
much more difficult.
 Also, like LADS, Streams can only scan for alternate data streams; it does
not give the user the ability to view, save, or remove an alternate data stream
from a file or directory. Streams is also vulnerable to the exclusive file locking
exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 20 -

CrucialADS
 CrucialADS is a freeware alternate data stream scanning utility with a
graphical user interface. It is available as a binary only from Crucial Security at
http://www.crucialsecurity.com.

Usage
 CrucialADS is a very easy to use program. Executing it produces a
window that lets the user select the drive to scan. The user can then control the
scan with the Start and Stop buttons. The results appear in a window with files or
directories that have alternate data streams highlighted in red. Also, there is an
option in the File menu to save the results of the scan to a file. Figure 7 shows
CrucialADS’s interface:
Figure 7: A screenshot of CrucialADS

Evaluation
 CrucialADS found all six alternate streams in the test files and directories,
receiving perfect marks for thoroughness. In addition, as an ADS scanner,
CrucialADS performed the most quickly, scanning the 9GB volume in a mere 16
minutes and 15 seconds.
 CrucialADS’s graphical user interface makes it easy to use if a user is
doing a very specific kind of scanning. Unfortunately, does not provide many
options, only giving the user the option of scanning an entire volume. This makes
it unacceptable as a general-purpose alternate data stream scanner. It is not
appropriate to force a user to scan an entire volume if they merely want to search
for an alternate data stream on a particular file; while scanning a single file may
take only a second, a full volume scan with CrucialADS takes much, much
longer.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 21 -

 CrucialADS is the first alternate stream scanner evaluated that gives the
user the option of saving the results of the scan to a file. Unfortunately, the
format of the file looks identical to the format of the data on the screen – very
unhelpful from an analysis standpoint. Like the other two products evaluated so
far, hundreds of data streams will produce pages of output, and CrucialADS does
not export the data in an easily manipulated format.
 In addition, like LADS and Streams, CrucialADS does not give the user
the ability to view, save, or remove an alternate data stream from a file or
directory, only to search for them. CrucialADS is also vulnerable to the exclusive
lock exploit.

Trojan Defense Suite
 Trojan Defense Suite (TDS-3) is a shareware Trojan scanning application
that contains an alternate data stream scanner. It is available as a binary from
Diamond Computer Systems at http://tds.diamondcs.com.au/.

Usage
 TDS-3 is a full-featured Trojan scanning application with a very broad
feature set. This evaluation, however, will focus specifically on its alternate data
stream scanning capability.
 An alternate stream scan can be set up through the System Testing à
Scan Control menu. Select the drive, directory, or file to be scanned from the left
side of the scan list and move it to the right. There are two options, “Scan NTFS
ADS Hidden Streams” and “Show all NTFS ADS Streams” that must be checked
to enable alternate data stream scanning.
 In the ADS option settings, several options control the scan. “Ignore non-
executable streams” will ignore any streams that do not contain executable data,
which could be useful if a user were searching for Trojan or virus data that has
been hidden in a stream. The next option “Ignore streams smaller than” will
cause the scan to skip over smaller files. This may be useful in some instances
(setting the size to 1 to eliminate 0 byte streams), but a user should not think that
streams below a certain size are not dangerous. Data can be fragmented among
many streams, making it much more difficult to find if this option is enabled. The
final option in that window “Ignore streams containing keyword(s)”, could be used
to ignore the little “SummaryInformation” stream that is generated by the
Summary tab in Windows Explorer. However, just because the stream is named
“SummaryInformation” does not mean that it actually contains summary
information, so this option should be used carefully.
 Once a set of streams has been found by TDS-3, the user can perform a
variety of activities on the stream. Right-clicking a stream brings up a menu of
options that let the user view the stream in Notepad, save the stream to a
separate file, delete the stream, or view stream properties. The stream properties
window includes the name and size of the primary stream as well as the name
and size of the selected alternate stream. Trojan Defense Suite’s user interface
can be seen in Figure 8:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 22 -

Figure 8: A screenshot of TDS-3

Evaluation
 Trojan Defense Suite was the only application to fail the first portion of the
test. Scanning the test files revealed only four, not six, alternate data streams.
TDS-3 was unable to see the alternate stream in the normal directory or in the
encrypted file. This deficiency makes TDS-3 a very poor scanning product.
Hiding an alternate data stream in a directory is not an uncommon thing, so it
seems very strange that this software would not be able to detect it. On the other
hand, TDS-3 completed the scan of the 9GB dataset in 17 minutes and 12
seconds, making it the second fastest scanner.
 Though the interface is a little cluttered and confusing, TDS-3 otherwise
gets high marks for usability. It allows a user to select a volume, directory, or file
for scanning, and even provides the ability to scan multiple unique files in
different directories with a single scan. When it can find an alternate stream on a
file or directory, it gives the user the option to view it, save it to a separate file, or
remove it. TDS-3 is the only scanning application with this functionality. One of
the few limitations of Trojan Defense Suite is its inability to save the scan in a
format that can be shared among other applications and scripting languages.
 Because TDS-3 did not find all of the alternate streams in the test, it is not
an appropriate product to use to search for malicious data hidden in named
streams, but may be sufficient for other purposes. Trojan Defense Suite also fails
to find streams in files that have been exclusively locked.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 23 -

Beyond scanning: Integrating alternate data stream
information into Windows
 The biggest problem with alternate data streams is their lack of visibility in
the operating system. They are supported by some applications and not by
others, but there is no piece of software shipped with Windows that gives the
user the ability to see that an alternate data stream exists on a file without
knowledge of the stream name. A number of third-party solutions find alternate
data streams and in some cases allow them to be manipulated; however, the
lack of this functionality in the operating system gives malicious users the edge.
An administrator will have to know that alternate data streams exist and will have
to use a third-party tool specifically designed to search for them to bring them out
“into the open”. The remainder of this paper will discuss a set of Windows shell
extensions that integrate alternate data streams into the typical user
environment. By doing this, alternate streams will no longer be a “trick” or
something that is scanned for, but rather a part of the file system that the user
becomes accustomed to seeing, giving them the edge in identifying irregularities
the usage of these streams. These extensions also use the Windows API in a
way that lets them scan files and directories that have been exclusively locked,
giving them a unique edge.
 No tool is perfect, so it is essential to understand the limitations of the
shell extensions as they are implemented. After a discussion of these limitations,
there will be an introduction to the few function calls necessary to enumerate and
access data from alternate streams in the API and then an in-depth walkthrough
of each extension.

Limitations of the shell extensions
 Shell extensions are inherently limited by the power of the user running
the shell. To that end, these extensions are not able to bypass Windows security
and find alternate data streams on files that the user does not have read
permission on. It follows that these streams can also not be deleted if the user
does not have access to write to the file. In addition, these particular extensions
use API calls that are specific to Windows NT-based systems only, so they will
not work on Windows 95/98, only on NT, 2000, and XP.

How do you use the Windows API to gather information about
alternate streams?
 A certain collection of functions in the Windows API is capable of
understanding alternate data streams and should be used when writing an
application that intends on handling them.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 24 -

CreateFile
 According to Microsoft’s MSDN library, “The CreateFile function creates or
opens a file, directory, physical disk, volume, console buffer, tape drive,
communications resource, mailslot, or pipe. The function returns a handle that
can be used to access the object.” In layman’s terms, this means that CreateFile
is the function that you use to access data. A programmer tells the function what
he wants to access and how and it gives him back a “handle” that can be used to
read, write, or do dozens of other operations with the data. For the purpose of
accessing alternate data streams, it is very important to note that the CreateFile
function does understand alternate stream syntax. It will open a handle to a file or
directory using the “<file or directory name>:<stream name>” naming convention.
Therefore, it can be used to access the alternate data stream information
programmatically, and the handle for an alternate stream can be passed to any
other function just as the handle for a primary stream would be.
 The exact syntax of the CreateFile command is available in the MSDN
Library, but because it will be relevant later the basic usage will be outlined.
CreateFile accepts a set of arguments including the file or directory name to be
created or opened, the action to be taken (create or open), and the sharing mode
of the access. There are other arguments that can be used to control other
aspects of the open, but they are not relevant to this paper. For example, look at
the following function call:

HANDLE hfile = CreateFile((LPCTSTR) “test.txt:stream.txt”,
 GENERIC_READ, FILE_SHARE_READ |
 FILE_SHARE_WRITE, NULL,
 OPEN_EXISTING, NULL, NULL);

In this case the function opens the alternate stream named stream.txt on the
file named test.txt for reading (GENERIC_READ). The file is opened allowing
read sharing and write sharing (FILE_SHARE_READ | FILE_SHARE_WRITE),
and there is a flag (OPEN_EXISTING) to indicate that the function should only
open the file only if it already exists, rather than creating it and then opening it.
The function returns the file handle into the variable hfile, which can then be
passed to another function. This is just one example of the many uses of the
CreateFile function, several of which will be seen in the source code
walkthrough.

BackupRead and BackupSeek
 The documented way to enumerate the alternate data streams given a file
handle is to use the BackupRead and BackupSeek functions. Microsoft provides
them for backup programs to use when reading whole files to tape or to another
backup device. These functions can, however, be exploited scan a file for
alternate data stream headers. Think of them as manipulating a finger that points
to a word in a line of text. BackupRead reads the word (byte) under the finger

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 25 -

(pointer), while BackupSeek moves the finger ahead a certain number of words
(bytes) without reading. Without going into the details of the code, they work to
read alternate data stream names by doing the following:

1. Use BackupRead to read the header of the stream, which tells us the
length of the data that follows (D) and the length of the name of the stream
(N), if it has a name.

2. The name information always immediately follows the header, so use
BackupRead to read N bytes of data. This is the name, so store it in a
variable.

3. Use BackupSeek to skip over D bytes of data until you reach the next
header, if there is one. Start back over at one with the pointer at the start
of the next stream header.

By proceeding in this fashion, a program can eventually read all of the names of
all of the streams in a file or directory. Unfortunately, this function requires that
the file be opened for reading, so it cannot be used on files that have been
exclusively locked. Also, because it involves moving a pointer all the way through
a file, it could be very slow, depending on the length of the file being accessed.
However, there is another way!

NTQueryInformationFile
 NTQueryInformationFile is the best function to use to find the names of an
alternate data stream in a file or directory. It is a very fast function, and it does
not require opening a read handle to obtain attribute information. This means that
NTQueryInformationFile can be used on files that are exclusively locked!
Unfortunately, NTQueryInformationFile is hardly documented at all. It resides in
the NTDLL.DLL file that ships with all versions of Windows NT/2000/XP, but
there is limited information about it on the MSDN Library. Nevertheless,
information about the data structures that the function uses is available from
various sources online. Essentially, it takes a file handle and a file information
structure as arguments and writes the requested information into a file stream
information buffer. This is much more efficient than the loop used by the
BackupRead-BackupSeek method because it is implemented directly by the
system-level function and the data can be easily read out of the file stream
structure by the programmer.

Creating a column handler to show the size of alternate data
streams in detail view
 Column handlers are shell extensions that allow certain information about
a file or directory to be displayed in a column in the detail view of Windows
Explorer. Default column handlers include name, size, type, and date modified,
though there are many other column handlers supplied with Windows. The
column handler is an excellent place to show alternate data stream information

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 26 -

because it can be read at first glance and the view can even be sorted by the
new size column. The column handler shell extension will produce the column
illustrated in Figure 9.
Figure 9: A folder with several files and folders and a stream size column

Code walkthrough
 A column handler is a column provider object that exports the
IColumnProvider interface. IColumnProvider is a way for a programmer to
interact with the Windows Shell and create their own columns. The
IColumnProvider interface has three member functions:

 Initialize – initializes the IColumnProvider interface
 GetColumnInfo – requests information about a particular column
 GetItemData – requests information about a particular file

Initialize
 So to create a new column, an initialize function must be defined. In the
case of this column, there is no initialization that needs to be done, so the
Initialize function returns S_OK, which means “initialization done”.

GetColumnInfo
 The GetColumnInfo provides information to the shell about how the
column will be laid out, what kind of data is kept in it, and what it’s name and
description is. Here is the source code for the GetColumnInfo function:

HRESULT CStreamColInfo::GetColumnInfo(DWORD dwIndex,
 SHCOLUMNINFO *psci)
{
 if (dwIndex > 0)
 return S_FALSE;

The function takes an index as an argument, if a single IColumnProvider
interface is providing multiple columns, dwIndex will identify each column, with

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 27 -

column 1 being dwIndex 0, column 2 having dwIndex 1, etc. This interface only
provides one column, so return false if the shell asks for more than that.

 // Use the object's CLSID
 psci->scid.fmtid = *_Module.pguidVer;
 psci->scid.pid = 0;
 // The data is a string
 psci->vt = VT_LPSTR;
 // The column will be right aligned
 psci->fmt = LVCFMT_RIGHT;
 // The column is a string and may return slowly
 psci->csFlags = SHCOLSTATE_TYPE_STR|SHCOLSTATE_SLOW;
 // Default width in characters
 psci->cChars = STREAMCH_DEFWIDTH;

This code sets up the characteristics of the column. A unique identifier is
assigned to the column, it is set to hold string data, and it is right aligned like the
default size column. Then, the next statement indicates that the column will store
strings and that it may return slowly. Finally, the default width of the column is
set.

 // Caption and description
 wcsncpy(psci->wszTitle, L"Stream Size", MAX_COLUMN_NAME_LEN);
 wcsncpy(psci->wszDescription,
 L"Provides the total size of the streams in the object",
 MAX_COLUMN_DESC_LEN);

 return S_OK;
}

These functions copy the string “Stream Size” into the title of the column and the
string “Provides the total size of the streams in the object” into the description,
truncating them each if necessary. The function then returns S_OK to indicate
that the column information has been set up.

GetItemData
 GetItemData is called for each file or directory in the detail view. It decides
whether to display a value in the column or not and if so, what value to display.
This function is the part of the code that determines whether we need to
enumerate the alternate data streams on the file or directory. Here is the source
code:

HRESULT CStreamColInfo::GetItemData(LPCSHCOLUMNID pscid,
 LPCSHCOLUMNDATA pscd,
 VARIANT *pvarData)
{
 USES_CONVERSION;
 // Convert filename to other string types
 LPCTSTR szFilename = OLE2CT(pscd->wszFile);
 LPTSTR szFilenameNTFS = OLE2T(pscd->wszFile);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 28 -

Convert the filename of the file or directory, stored in pscd->wszFile into other
formats so it can be used later.

 // Check if the object is stored on an NFTS volume
 if (! IsNTFS(szFilenameNTFS))
 return S_FALSE;

 // Do not look for streams in an offline file
 if (pscd->dwFileAttributes & FILE_ATTRIBUTE_OFFLINE)
 return S_FALSE;

The first statement checks to make sure that this file or directory is actually on an
NTFS volume, because alternate data streams only exist in NTFS. The next
statement returns false if the file or directory is offline. An offline file is not stored
on disk, so it does not need to be checked for alternate streams.

 TCHAR szBuf[STREAMCH_MAXSIZE];
 ZeroMemory(szBuf, STREAMCH_MAXSIZE);

 // Get the size of the stream and put it in szBuf
 if (GetStreamSize(szFilename, szBuf) == S_OK) {
 CComVariant cv(szBuf);
 cv.Detach(pvarData);
 return S_OK;
 } else {
 return S_FALSE;
 }
}

Several storage variables are created and then the GetStreamSize function is
called to find the size of the streams in a particular file or directory. This is the
workhorse function of the column handler implementation. If it successfully
returns a size, the size is stored in szBuf as the column data; otherwise, the
column is left blank.

GetStreamSize
 GetStreamSize is the primary function of the column handler. It uses the
information from NTQueryInformationFile to enumerate the streams, summing up
the sizes of every named stream and returning a total file size in kilobytes. Here
is the source code for GetStreamSize:

HRESULT CStreamColInfo::GetStreamSize(LPCTSTR szFileName,
 LPTSTR p)
{
 USES_CONVERSION;

 // Retrieve NtQueryInformationFile function location
 // from NTDLL.DLL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 29 -

 static class ListFileContext {
 private:
 HINSTANCE hDll;
 public:
 NtQueryInformationFileFunc *pQIF;
 ListFileContext() {
 hDll = LoadLibrary ("NTDLL.DLL");
 pQIF = (NtQueryInformationFileFunc *)
 GetProcAddress (hDll, "NtQueryInformationFile");
 }
 ~ListFileContext() {
 FreeLibrary (hDll);
 }
 } Context;

This class declaration grabs the location of the NTQueryInformationFile function
from NTDLL.DLL and stores it internally for later use.

 // Setup variables for NtQueryinformation File
 IO_STATUS_BLOCK Iosb;
 unsigned char Buffer[2048];
 FILE_INFORMATION_CLASS eClass;
 FILE_STREAM_INFORMATION *pFsi;

 // Open a file handle, with 0 for desiredAccess to
 // bypass exclusivity checking
 HANDLE hFile = CreateFile(szFileName, 0,
 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
 OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, 0);
 // If the file handle is invalid, return (unknown)
 if (hFile == INVALID_HANDLE_VALUE) {
 wsprintf(p, _T("(unknown)"));
 return S_OK;
 }

The first block of code declares a set of variables that will be used later to
retrieve stream names and sizes. The second block of code opens a file handle
using the value “0” for the second argument. This allows CreateFile to open a
handle on an object that has been exclusively locked, giving this column handler
the ability to see streams that have been hidden on locked files. The last
statement returns the value “(unknown)” which will be displayed in the column in
the instance that a handle cannot be opened. This will happen when a user does
not have permission to read the file or if the file is for any other reason
unreadable. Also, the flag FILE_FLAG_BACKUP_SEMANTICS must be set to
allow CreateFile to return the handle of a directory.

 // Get stream information into Buffer
 eClass = FileStreamInformation;
 NTSTATUS rc = (Context.pQIF) (hFile, &Iosb,
 (PVOID) Buffer, sizeof(Buffer), eClass);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 30 -

This statement calls NTQueryInformationFile on the handle named hFile,
returning the stream information into a structure in Buffer.

 // If there is no information in the status block,
 // we are looking at a directory with no stream
 if (! Iosb.Information) {
 CloseHandle(hFile);
 return S_FALSE;
 }

If the handle is to a directory with no stream, the Iosb.Information variable
will be NULL, so the handler can immediately return false and save computing
cycles.

 // Setup variables for stream summing loop
 WCHAR wszStreamName[MAX_PATH];
 LARGE_INTEGER totalStreamSize;
 totalStreamSize.QuadPart = 0;

 // For each stream in the file
 for (pFsi = (FILE_STREAM_INFORMATION *) Buffer;
 1;
 pFsi = (FILE_STREAM_INFORMATION *)
 ((BYTE *) pFsi + pFsi->NextEntryOffset) {

The first block of code sets up the variables that will be used in this summing
loop. The second iterates through the streams, putting the stream information
structure into the pFsi variable.

 // Pull the stream name out so we can make sure
 // that it's a named stream that we're summing
 ZeroMemory(wszStreamName, MAX_PATH);
 memcpy(wszStreamName,
 pFsi->StreamName,
 pFsi->StreamNameLength);
 wszStreamName[pFsi->StreamNameLength/2] = 0;

The handler grabs the name of the stream from the stream information structure
and copies it into wszStreamName so it can be checked later.

 // Is it a named stream?
 if(wcsicmp(wszStreamName, L"::$DATA")) {
 totalStreamSize.QuadPart =
 totalStreamSize.QuadPart + pFsi->StreamSize.QuadPart;
 }

This statement checks to see that the stream we are looking at is not the default,
unnamed stream (“::$DATA”). The handler should only sum the sizes of the
alternate streams. If the stream is named, the handler increments the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 31 -

totalStreamSize variable by the size of the stream (pFsi-
>StreamSize.QuadPart).

 // Move to the next stream
 if (! pFsi->NextEntryOffset)
 break;
 }
 CloseHandle(hFile);

Continue iterating through the streams as long as there are streams to iterate
through. When there are no more streams, break out of the loop and then close
the file handle that was opened.

 if (totalStreamSize.QuadPart > 0) {
 // If the file is smaller than 1KB, make it 1KB
 if (totalStreamSize.QuadPart < 1024)
 totalStreamSize.QuadPart = 1024;
 wsprintf(p, _T("%s KB"),
 Commify((unsigned int) totalStreamSize.QuadPart / 1024));
 } else {
 return S_FALSE;
 }
 return S_OK;
}

This block of code checks to make sure there is a file size to display, makes sure
that the minimum file size is 1KB, and formats the size string, writing it to p. The
Commify function takes an integer and places commas in every three digits out
so that it looks nice. The GetItemData function reads the variable p and inserts it
into the column. If GetStreamSize returns false at any point, GetItemData does
not print anything in the Stream Size column.

Usage
 The column handler is very easy to install and use. After installing the
package by running Setup.msi, the additional column will appear in the list of
more columns in Windows Explorer. Right click on the column headers at the top
of Detail view and select the option at the bottom of the list labeled “More…” and
the window in Figure 10 will appear.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 32 -

Figure 10: The Choose Details window

In this list will be a new column called “Stream Size”. Checking the box for the
new column and clicking OK will cause it to appear in the Details view of
Windows Explorer. The column can be moved around with drag and drop or it
can be resized on its edges. In addition, clicking the column once will cause it to
sort ascending and clicking it again will cause it to sort descending. Even sorted,
folders and files remain separate, so the sorting will occur internally to each
group as illustrated on Figure 9. Also, it is important to note that if the file cannot
be read for some reason, the column handler will display ”(unknown)”. The cause
of this message is most likely a permissions conflict. Changing the file
permissions so the column handler user has read access, if appropriate, will
solve the problem.

Creating an additional property page to view alternate stream
names and sizes and perform tasks on them
 Property pages are displayed on files or directories when a user right
clicks on the icon and selects “Properties”. A tab under the properties screen is
the perfect place to store information about the streams in the file because it is
consistent and easily accessed. From this property page, the user should be able
to see the names of the alternate data streams in the file and their sizes.
Additionally, the user can save an alternate data stream to another file or remove
it from the record without removing any other data. The property page shell
extension will display the page illustrated in Figure 11.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 33 -

Figure 11: The alternate stream data property page

Code Walkthrough
 A property page handler is a property sheet provider object that exports
the IShellPropSheetExt interface. The alternate data stream property page
implementation only uses the AddPages method of this interface, which creates
a property page using a property page data structure.

AddPages
The AddPages method sets up the graphical layout of the page, sets the title,
and provides a pointer to the function that will accept input (mouse clicks) from
the page. Here is the source code for the AddPages function:

HRESULT CEnumStreams::AddPages(LPFNADDPROPSHEETPAGE lpfnAddPage,
 LPARAM lParam)
{
 PROPSHEETPAGE psp;
 HPROPSHEETPAGE hPage;

 ZeroMemory(&psp, sizeof(PROPSHEETPAGE));
 psp.dwSize = sizeof(PROPSHEETPAGE);
 psp.dwFlags = PSP_USETITLE|PSP_DEFAULT;
 psp.hInstance = _Module.GetModuleInstance();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 34 -

The code block above sets up the property page structure by clearing memory
space for it, setting its size, indicating that the property page will have a default
layout and use the psp.pszTitle variable as the name of the tab.

 psp.pszTemplate = MAKEINTRESOURCE(IDD_ENUMSTREAMS);
 psp.pszTitle = _T("Streams");

The template for the layout of the page is specified in IDD_ENUMSTREAMS, and
the first statement loads that template as a resource. IDD_ENUMSTREAMS
determines the location of the text, list box, and buttons on the page. The second
statement titles the tab of the property page.

 psp.pfnDlgProc = (DLGPROC) PropPage_DlgProc;
 psp.lParam = (LPARAM) this;
 hPage = ::CreatePropertySheetPage(&psp);

This code identifies the PropPage_DlgProc function as the event processor for
the page. So, when a user clicks on objects in the page, these events will be
passed along to the aforementioned function for processing.

 // add the page to the property sheet
 if (hPage != NULL)
 if (!lpfnAddPage(hPage, lParam))
 ::DestroyPropertySheetPage(hPage);

 return NOERROR;
}

The last bit of code adds the page that has been created so far into the list of
property pages. If for some reason this is unsuccessful, it destroys what has
been created so far to free memory.

PropPage_DlgProc
 PropPage_DlgProc is the function that obtains event messages from the
user as they click on elements of the page. Here is the source code:

BOOL CALLBACK CEnumStreams::PropPage_DlgProc(HWND hwnd,
 UINT uiMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 switch(uiMsg)

This switch statement acts as flow control for the function. Switch compares the
value of uiMsg to one of the cases below. If the value is equal to
WM_INITDIALOG, it will execute the first block of code. If the value is equal to
WM_COMMAND, it will execute the second.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 35 -

 {
 case WM_INITDIALOG:
 RefreshStreams(hwnd);
 return TRUE;

The code above is executed when the property page is first displayed. The
function executes the RefreshStreams function to populate the list box with the
names and sizes of the alternate data streams in the file, or to display an error
message if it cannot.

 case WM_COMMAND:
 if (LOWORD(wParam) == IDC_DELETE)
 DeleteStream(hwnd);
 if (LOWORD(wParam) == IDC_REFRESH)
 RefreshStreams(hwnd);
 if (LOWORD(wParam) == IDC_SAVESTREAM)
 SaveStream(hwnd);
 if (HIWORD(wParam) == LBN_SELCHANGE)
 SelectionChanged(hwnd);
 break;
 }
 return FALSE;
}

This code block is executed when a user clicks on any of the buttons in the page.
It links the delete, refresh, save stream, and list box selection change events to
their corresponding functions: DeleteStream, RefreshStreams,
SaveStream, SelectionChanged. Each of these functions will be explained
below.

RefreshStreams
 The RefreshStreams function is the primary function of the property page.
It is called when the page is first created to populate the list box with the names
of the alternate data streams. It also populates the first line of the page which
shows the total size of all of the alternate streams in the file. The source code for
Refresh Streams is:

void RefreshStreams(HWND hwnd)
{
 static class ListFileContext {
 private:
 HINSTANCE hDll;
 public:
 NtQueryInformationFileFunc *pQIF;
 ListFileContext() {
 hDll = LoadLibrary ("NTDLL.DLL");
 pQIF = (NtQueryInformationFileFunc *)
 GetProcAddress (hDll, "NtQueryInformationFile");
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 36 -

 ~ListFileContext() {
 FreeLibrary (hDll);
 }
 } Context;

As in the column handler, this code grabs the location of the
NTQueryInformationFile function from NTDLL.DLL and stores it internally for later
use.

 HWND hwndList = GetDlgItem(hwnd, IDC_LIST);
 SendMessageW(hwndList, LB_RESETCONTENT, 0, 0);
 TCHAR wszStreamCount[100];

This code pulls the handle for the list box into the hwndList variable for later use
and then clears the list box so new entries can be added. The last statement
clears the variable that holds the text of the first line of the page, which normally
displays the count and total size of the alternate streams

 IO_STATUS_BLOCK Iosb;
 unsigned char Buffer[2048];
 FILE_INFORMATION_CLASS eClass;
 FILE_STREAM_INFORMATION *pFsi;

 HANDLE hFile = CreateFile(g_szFile, 0,
 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
 OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, 0);

These code blocks initialize some variables that will be used later and open a file
handle to the file or directory. It is important to use the value “0” for the
DesiredAccess argument to CreateFile so that the stream names can be viewed
regardless of file lock status. Also, the flag FILE_FLAG_BACKUP_SEMANTICS
must be set to allow CreateFile to return the handle of a directory.

 if (hFile == INVALID_HANDLE_VALUE) {
 LoadString(_Module.GetModuleInstance(),
 IDS_FILELOCKED, wszStreamCount, 100);
 SetDlgItemText(hwnd, IDC_STREAMCOUNT, wszStreamCount);
 SendMessageW(hwndList, LB_SETCURSEL, 0, 0);
 SelectionChanged(hwnd);
 return;
 }

This code checks to see if the file handle that has been returned is valid. If it is
not, the resource IDS_FILELOCKED is loaded into the wszStreamCount variable
that is then written to the first line of the page. In this case, IDS_FILELOCKED
reads, “This object is unreadable, probably due to insufficient access.” If the file
handle is invalid, execution is terminated at this point.

 eClass = FileStreamInformation;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 37 -

 NTSTATUS rc = (Context.pQIF) (hFile, &Iosb,
 (PVOID) Buffer, sizeof(Buffer), eClass);

 if (! Iosb.Information) {
 LoadString(_Module.GetModuleInstance(),
 IDS_NOSTREAM, wszStreamCount, 100);
 SetDlgItemText(hwnd, IDC_STREAMCOUNT, wszStreamCount);
 SendMessageW(hwndList, LB_SETCURSEL, 0, 0);
 SelectionChanged(hwnd);
 return;
 }

The first code block executes the NTQueryInformationFile function on the file
handle that has been opened, returning the results into the stream information
structure in Buffer. The second block tests to see that the
Iosb.Information variable exists. If it does not, the handle is to a directory
with no streams. In this case, the code writes the value of the resource
IDS_NOSTREAM to the wszStreamCount variable that is written to the first line
of the page. The IDS_NOSTREAM resource reads, “This object contains no
alternate streams.” If the handle is to a directory without a stream, the execution
is terminated after the first line is written.

 WCHAR wszStreamName[MAX_PATH];
 LARGE_INTEGER totalStreamSize;
 totalStreamSize.QuadPart = 0;
 int streamCount = 0;
 for (pFsi = (FILE_STREAM_INFORMATION *) Buffer;
 1;
 pFsi = (FILE_STREAM_INFORMATION *)
 ((BYTE *) pFsi + pFsi->NextEntryOffset)) {

Here the variables are initialized to store the name and size of a stream and the
running count of alternate data streams found so far. The for loop will iterate
through every stream in the file or directory, loading the stream information into
the pFsi variable.

 ZeroMemory(wszStreamName, MAX_PATH);
 memcpy(wszStreamName,
 pFsi->StreamName,
 pFsi->StreamNameLength);
 wszStreamName[pFsi->StreamNameLength/2] = 0;

The stream name variable space (wszStreamName) is cleared and then the
name of the stream is copied out of pFsi->StreamName.

 if(wcsicmp(wszStreamName, L"::$DATA")) {
 totalStreamSize.QuadPart =
 totalStreamSize.QuadPart + pFsi->StreamSize.QuadPart;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 38 -

If the stream is not an unnamed stream (“::$DATA”), then the code should
display it on the list box and include it in the total alternate stream size. The first
statement after the if adds the stream size to the sum.

 LPWSTR pwsz = new WCHAR[MAX_PATH];
 lstrcpyW(pwsz, wszStreamName + sizeof(CHAR));
 LPWSTR wp = wcsstr(pwsz, L":");
 pwsz[wp-pwsz] = 0;
 lstrcpyW(wszStreamName, pwsz);
 delete [] pwsz;

The actual name of a stream is “:<stream name>:$DATA”. The list box should
only show the stream name and not the additional data, so this code trims out the
stream name and stores it in wszStreamName.

 streamCount++;
 SendMessageW(hwndList,
 LB_ADDSTRING, 0, (LPARAM)wszStreamName);
 }
 if (! pFsi->NextEntryOffset)
 break;
 }
 CloseHandle(hFile);

This code block increments the counter of alternate data streams in the file or
directory and then writes the name of the string into the list box. It then jumps
back to the top of the for loop for the next stream and continues until all the
streams are read. After all of the stream information has been copied to the list
box, the file handle is closed.

 char plurality[50] = {0};
 char truncbytes[100] = {0};
 char bytes[100] = {0};

 if (streamCount == 1) {
 sprintf(plurality, "1 alternate stream");
 } else {
 sprintf(plurality, "%lu alternate streams", streamCount);
 }

When the code prints the first line of the page, it is important that the grammar is
correct, so the code above selects the correct plurality of the word “stream”
depending on whether there is one or more than one. It then stores either “1
alternate stream” or “<number> alternate streams” in the variable plurality.

 if (totalStreamSize.QuadPart < 1024) {
 sprintf(truncbytes, "%s bytes:",
 Commify((double)totalStreamSize.QuadPart));
 } else {
 sprintf(bytes, " (%s bytes):",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 39 -

 Commify((double)totalStreamSize.QuadPart));
 if (totalStreamSize.QuadPart < 1048576) {
 sprintf(truncbytes, "%.2f KB",
 (double)totalStreamSize.QuadPart / 1024);
 } else if (totalStreamSize.QuadPart < 1073741824) {
 sprintf(truncbytes, "%.2f MB",
 (double)totalStreamSize.QuadPart / 1048576);
 } else {
 sprintf(truncbytes, "%.2f GB",
 (double)totalStreamSize.QuadPart / 1073741824);
 }
 }

The unattractive code block above insures that the total size of the streams is
printed correctly. If the alternate stream is smaller than 1 kilobyte it should read
“<number> bytes”, between 1 kilobyte and one megabyte it should read
“<number> KB”, etc. The code also uses the Commify function like the column
handler to ensure that the byte count is appropriately formatted.

 if (streamCount > 0) {
 sprintf(wszStreamCount,
 "This object contains %s using %s%s",
 plurality, truncbytes, bytes);
 } else {
 LoadString(_Module.GetModuleInstance(),
 IDS_NOSTREAM, wszStreamCount, 100);
 }

 SetDlgItemText(hwnd, IDC_STREAMCOUNT, wszStreamCount);
 SendMessageW(hwndList, LB_SETCURSEL, 0, 0);
 SelectionChanged(hwnd);
}

Here the code finally prints either the string that has been assembled so far
(“This object contains n alternate stream(s) using m bytes”) or the
IDS_NOSTREAM resource, depending on whether an alternate stream has been
found in the file. The last statement calls the SelectionChanged function to
update the line of text under the list box that displays the size of the currently
selected stream.

DeleteStream
 The DeleteStream function is called when the user selects a stream from
the list box and then clicks the “Delete Stream” button. The function prompts the
user with the confirmation dialog box in Figure 12 and then deletes the stream if
appropriate.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 40 -

Figure 12: The delete confirmation dialog box

The source code for DeleteStream follows:

void DeleteStream(HWND hwnd)
{
 TCHAR szStreamName[MAX_PATH];
 HWND hwndList = GetDlgItem(hwnd, IDC_LIST);
 int nCurSel = SendMessage(hwndList, LB_GETCURSEL, 0, 0);
 SendMessage(hwndList, LB_GETTEXT, nCurSel, (LPARAM)szStreamName);

This code block finds out which alternate data stream the user has selected and
stores the stream name in the variable szStreamName.

 // Prepare the fully-qualified stream name
 TCHAR szFileName[MAX_PATH*2];
 wsprintf(szFileName, _T("%s:%s"), g_szFile, szStreamName);

The filename szFileName for the stream is created from the combination of the
path to the file and the name of the stream, separated by a colon.

 TCHAR szBuf[1024];
 LoadString(_Module.GetModuleInstance(), IDS_DELETE, szBuf, 1024);

 if (MessageBox(hwnd, szBuf, _T("Streams"), MB_YESNO)==IDYES) {
 DeleteFile(szFileName);
 RefreshStreams(hwnd);
 }
 return;
}

The string from the IDS_DELETE resource (“You are about to delete the currently
selected stream. Do you want to continue?”) is loaded into szBuf and displayed
in a dialog box. If the user clicks Yes, the code will execute the DeleteFile
function with the stream filename as the argument, deleting the stream without
removing the file itself. The code then calls the RefreshStreams function to
update the display.

SaveStream
 SaveStream is called when the user clicks on the Save Stream button. It
allows an alternate data stream to be saved to another file for analysis by
programs that do not understand alternate data streams. This capability is
extremely useful for forensic analysts that may want to save the stream to a non-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 41 -

NTFS device or scan it with a virus or Trojan scanner. The SaveStream function
pops up a standard Windows Save As box so the user can select the filename
that they wish to save the stream to. The source code for SaveStream follows:

void SaveStream(HWND hwnd)
{
 TCHAR szStreamName[MAX_PATH];
 HWND hwndList = GetDlgItem(hwnd, IDC_LIST);
 int nCurSel = SendMessage(hwndList, LB_GETCURSEL, 0, 0);
 SendMessage(hwndList, LB_GETTEXT, nCurSel, (LPARAM)szStreamName);

This code block finds out which alternate data stream the user has selected and
stores the stream name in the variable szStreamName.

 // Prepare the fully-qualified stream name
 TCHAR szFileName[MAX_PATH*2];
 wsprintf(szFileName, _T("%s:%s"), g_szFile, szStreamName);

Just like in the DeleteStream function, the filename szFileName for the stream
is created from the combination of the path to the file and the name of the
stream, separated by a colon.

 OPENFILENAME ofn={0};
 TCHAR filename[MAX_PATH];
 filename[0]= 0;

 ofn.lStructSize = sizeof(OPENFILENAME);
 ofn.lpstrFile = filename;
 ofn.lpstrFilter = "All Files (*.*)\0*.*\0\0";
 ofn.nMaxFile = MAX_PATH;
 ofn.lpstrTitle = TEXT("Save Stream As...\0");
 ofn.Flags = OFN_READONLY |
 OFN_PATHMUSTEXIST |
 OFN_NOTESTFILECREATE |
 OFN_OVERWRITEPROMPT;

This code sets up the parameters of the Save As box that is displayed to let the
user choose the filename to save the alternate stream in. Some of the properties
set above include the filter (in this case, All Files), the title of the save dialog, and
a few flags to ensure that the save dialog performs as expected.

 if(GetSaveFileName((LPOPENFILENAME)&ofn))
 {
 DWORD nread, nwrite;
 TCHAR szBuf[1024];

If the user enters a valid filename into the dialog box, the GetSaveFileName
function will store the name of the file selected in the filename variable. This
code block also initializes some variables that will be used below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 42 -

 HANDLE infile = CreateFile(szFileName, GENERIC_READ,
 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING,
 FILE_FLAG_BACKUP_SEMANTICS, NULL);
 if (infile == INVALID_HANDLE_VALUE)
 return;

 HANDLE outfile = CreateFile(filename, GENERIC_WRITE, 0,
 NULL, CREATE_ALWAYS, NULL, NULL);
 if (outfile == INVALID_HANDLE_VALUE)
 return;

Two file handles are opened, one for reading and one for writing. The filename
for the reading handle is szFileName, which was assembled above, and the
filename for the writing handle is filename, which was returned by the Save As
dialog box.

 while (ReadFile(infile, szBuf, sizeof(szBuf), &nread, NULL) &&
 nread > 0) {
 WriteFile(outfile, szBuf, nread, &nwrite, NULL);
 }

 CloseHandle(infile);
 CloseHandle(outfile);
 }
 return;
}

The last bit of code here reads the data from the input handle and writes to the
output handle, effectively copying the alternate data stream to the specified file.
This method must be used because the standard copy functions do not
understand the alternate stream syntax. The last statements make sure the file
handles have been closed and then terminate execution.

SelectionChanged
 The SelectionChanged function is called when the user selects a stream
from the list box on the property page. The purpose of this function is to update
the text below the list box to reflect the size of the selected stream. The source
code is presented below:

void SelectionChanged(HWND hwnd)
{
 TCHAR szStreamName[MAX_PATH];
 HWND hwndList = GetDlgItem(hwnd, IDC_LIST);
 int nCurSel = SendMessage(hwndList, LB_GETCURSEL, 0, 0);
 SendMessage(hwndList, LB_GETTEXT, nCurSel, (LPARAM)szStreamName);

 // Prepare the fully-qualified stream name
 TCHAR szFileName[MAX_PATH*2];
 wsprintf(szFileName, _T("%s:%s"), g_szFile, szStreamName);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 43 -

 // Read the stream
 HANDLE hfile = CreateFile(szFileName, GENERIC_READ,
 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING,
 FILE_FLAG_BACKUP_SEMANTICS, NULL);
 if (hfile == INVALID_HANDLE_VALUE) {
 SetDlgItemText(hwnd, IDC_STREAMSIZE, "");
 return;
 }

As in the previous two functions, the code above opens a file handle to the
stream that is selected by the user. If the file handle does not exist, the function
immediately places an empty string into the area below the list box and
terminates.

 DWORD fileSize;
 TCHAR fileSizePrint[200] = {0};
 CHAR fileSizeChange[100] = {0};
 fileSize = GetFileSize (hfile, NULL);

This code initializes a set of variables and uses the GetFileSize Windows API call
to retrieve the size of the stream referenced by the handle. This size is returned
into the variable fileSize.

 sprintf(fileSizePrint, "The size of the selected stream is ");
 if (fileSize < 1024) {
 sprintf(fileSizeChange, "%s bytes", Commify(fileSize));
 } else if (fileSize < 1048576) {
 sprintf(fileSizeChange, "%.2f KB (%s bytes)",
 (double)fileSize / 1024, Commify(fileSize));
 } else if (fileSize < 1073741824) {
 sprintf(fileSizeChange, "%.2f MB (%s bytes)",
 (double)fileSize / 1048576, Commify(fileSize));
 } else {
 sprintf(fileSizeChange, "%.2f GB (%s bytes)",
 (double)fileSize / 1073741824, Commify(fileSize));
 }
 strcat (fileSizePrint, fileSizeChange);
 CloseHandle(hfile);

This code works like the code from RefreshStreams, properly formatting the size
of the stream and writing it into the variable fileSizePrint, which is then
concatenated with the string “The size of the selected stream is”.

 // display the content
 SetDlgItemText(hwnd, IDC_STREAMSIZE, fileSizePrint);
 return;
}

Finally, the function displays the line of text below the list box, which changes
every time this function is called with a new argument.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 44 -

Usage
 Upon installation, an additional “Streams” tab will be added to the property
page lists of every directory or file. If there is an alternate stream in the file or
directory, it will appear in the list as illustrated in Figure 10. If there are no
alternate streams in the file, the tab will still appear but the list box will be blank
and the top text will read “This object contains no alternate streams.” The
Refresh button still refreshes the list of streams in case one is added to the file
while the property page is still open.

Conclusion
 Alternate data streams play an important role in NTFS and should be
utilized as a tool for more efficient data structuring. With new functionality comes
new ways to use that functionality maliciously, but alternate data streams are not
inherently dangerous. Using the shell extensions from this paper, a user or
system administrator can integrate the usage of alternate data streams with
everyday file browsing. Hopefully, this will bring alternate data streams out of the
shadows and into the light.

Acknowledgements
 I would like to thank Dino Esposito and Thomas Vogler for providing me
with their source code to help put together the column handler and property page
extensions. Dino’s article on NTFS provided a great resource with examples of
implementing a stream-aware property page, and Thomas posted some excellent
code to the NTDEV mailing list that showed me how to use the
NTQueryInformationFile function correctly.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 45 -

Bibliography

Esposito, Dino. “A Programmer’s Perspective on NTFS 2000 Part 1: Stream and
Hard Link.” MSDN Library. March 2000.
URL: http://msdn.microsoft.com/library/en-us/dnfiles/html/ntfs5.asp

Kaspersky, Eugene and Zenkin, Davis. “NTFS Alternate Data Streams.” Storage
Admin, Windows and .NET Magazine. Spring 2001.
URL: http://www.storageadmin.com/Articles/Index.cfm?ArticleID=19878

Kozierok, Charles M. “Master File Table (MFT).” PC Guide. 17 April, 2001.
URL: http://www.pcguide.com/ref/hdd/file/ntfs/archMFT-c.html

LeBlanc, David. “Detecting Alternate Data Streams.” Security Administrator,
Windows and .NET Magazine. 30 November, 2000.
URL: http://www.secadministrator.com/Articles/Index.cfm?ArticleID=16189

MSDN Library. URL: http://msdn.microsoft.com

“NTFS Documentation.” 11 February, 1999.
URL: http://www.scit.wlv.ac.uk/~cm1924/cp3025/filesys/reading/ntfs6/index.html

Russinovich, Mark. “Inside Win2K NTFS, Part 2.” Windows and .NET Magazine.
Winter 2000.
URL: http://www.win2000mag.net/Articles/Index.cfm?ArticleID=15900

Russinovich, Mark. “Inside NTFS.” Windows and .NET Magazine. January 1998.
URL: http://www.winntmag.com/Articles/Index.cfm?ArticleID=3455

 “Size Limitations in NTFS and FAT File Systems.” Microsoft TechNet.
URL:
http://www.microsoft.com/technet/prodtechnol/winxppro/reskit/prkc_fil_tdrn.asp

“Virus Scanner Inadequacies with NTFS.” Dartmouth’s Institute for Security
Technology Studies. 18 August, 2000.
URL: http://www.ists.dartmouth.edu/IRIA/knowledge_base/NTFS_Advisory.htm

Vogler, Thomas. “somewhat working sample to enumerate ntfs file streams.”
NTDEV Mailing List. 15 January, 1998.
URL: http://www.ntdev.org/archive/ntdev9801/msg0216.html

