
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of
Software Components

GIAC (GSEC) Gold Certification

Author: Steven M. Launius, SteveLaunius@gmail.com

Advisor: Clay Risenhoover

Accepted: August 4, 2020

Abstract

Organizations developing software need pragmatic risk management practices to prevent
malicious code from contaminating their software. Traditional security tools for Static
Code Analysis identify vulnerabilities, not the presence of backdoors exhibiting
unintended actions. Application Inspector is a Microsoft tool released to the open source
community that identifies risky features and characteristics of source code libraries. This
research will evaluate the accuracy of feature detection in the Application Inspector tool
and construct a risk model for automating decisions based on feature analysis of source
code.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

2	

Steven M. Launius, SteveLaunius@gmail.com

1. Introduction

Nefarious contributors can insert malicious source code at various steps in the

production of software. An organization’s developers, or third-party library

dependencies, are potential avenues for introducing malicious code or backdoors.

Security consultants, software development managers, and developers need practical

solutions to address threats from insiders and within the supply chain. Many

organizations prioritize new functionality over manual reviews of source code from third-

party suppliers. Therefore, vetting source code for backdoors is not a common practice.

Software security architecture focuses on reducing vulnerabilities in the fast-paced

continuous delivery model known as DevOps: software development (Dev) and IT

Operations (Ops).

Modern development methodologies and security practices are increasing the

attack surface for backdoors. In DevOps, developers deploy small portions of code

frequently by reusing source code from internal teams or third-party libraries, such as

open source software (OSS), frameworks, or software development kits. The efficiency

increase from this DevOps model comes at the expense of understanding how the code

base operates (Flores, 2019). Additionally, DevOps provides little time for security

reviews. A recent SANS Institute survey shows that many organizations use automated

and manual application security practices, but most rely on manual testing and reviews

(Bird, 2017). A similar Ponemon Institute survey found that most organizations in the

financial services industry conduct an assessment after the software’s release.

Furthermore, even though respondents are concerned with the security of third-party

software suppliers, most do not inventory or manage OSS (Ponemon Institute, 2019). The

respondents from both surveys use security practices designed to identify vulnerabilities

rather than undesirable behavior in their software. For example, automation tools for

software component analysis target known flaws in third-party software libraries

(Springett, 2020). Of all the security practices, manual source code review is one of the

most effective means to identify malicious behavior in code, but it is also the most

resource intensive. Insertion of backdoors into a software development lifecycle is a

tactic that adversaries employ with damaging effects.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

3	

Steven M. Launius, SteveLaunius@gmail.com

Malicious code inserted into an organization’s software product can have tragic

consequences. One of the most devastating supply chain attacks, which exploited a trust

relationship between an organization and a third-party software supplier, occurred in

2017 when a nation-state was blamed for inserting a backdoor into a Ukrainian

company’s software update to distribute a destructive malware named NotPetya. The

resulting global damages are estimated at $10 billion (Greenberg, 2018). Cyber-criminals

and nation-states also target OSS in supply chain attacks. A recent attack on a common

OSS JavaScript package named conventional-changelog tricked organizations into

unwittingly including crypto-mining source code in their products. The attackers inserted

their malicious code by compromising the credentials for the developer’s code repository

(Howard, 2018). In another attack on OSS, adversaries added cryptocurrency stealing

code into a popular Python package named Colourama. Developers unintentionally

contaminated their software products after downloading this trojan source code from a

typo-squatting website (Bennett, 2018). Insider threats come from developers

intentionally or unintentionally altering functionality requirements of the software. In

2016, an OSS developer became upset and removed a widely-used JavaScript module

breaking a massive number of other projects that depended on it (Tung, 2016). More

recently, a disgruntled contract developer used a backdoor on an NHL-affiliated

smartphone app to demand unpaid wages from his former boss using the app’s messaging

system that was viewable by all customers (Elliot, 2019). Whether backdoors are

surreptitiously inserted into the supply chain by an adversary or unintentionally placed

there by a developer, understanding the functionality of software through source code

analysis can help organizations reduce risk.

An automated tool for analyzing source code features can help organizations

implement a practical risk management process to prevent unintended effects from the

features in their software products. Application Inspector is a Microsoft tool released to

the open source community that identifies risky features and characteristics of source

code libraries for many programming languages. This tool’s primary use cases identify

high-risk components or unexpected features and changes in a component’s feature set

over time (Acosta & Scovetta, Introducing Microsoft Application Inspector, 2020). This

research will evaluate the accuracy of feature detection in the Application Inspector tool

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

4	

Steven M. Launius, SteveLaunius@gmail.com

and construct a risk model for automating decisions based on feature analysis of source

code.

2. Application Inspector

On January 16, 2020, Microsoft publicly introduced the Application Inspector

tool as an OSS project. Like other organizations employing DevOps, Microsoft’s

development teams reuse source code from different internal developers and third parties.

Source code reuse comes with an inherent risk of trust in the supplier of the code. While

employees arguably deserve more confidence due to Human Resource practices and

incentives, there may be no way to have similar screening for third-party suppliers.

Microsoft produced Application Inspector to reduce this risk with a new static code

analysis tool. The tool’s source code analyzer identifies features and metadata that could

be abused to perform undesirable actions in the software development lifecycle. A person

manually reviewing the code could analyze and conclude its intentions. However, the tool

provides analysis capabilities at scale for libraries with many files and millions of lines of

code. The source code’s characteristics are reported without judgment. The tool’s use

cases include identifying feature set changes between library versions and identifying

high-risk features that should receive additional review (Acosta & Scovetta, Introducing

Microsoft Application Inspector, 2020).

Application Inspector is a command-line tool with characteristics indicative of its

maker. The principal Microsoft developers, Guy Acosta and Michael Scovetta, wrote this

cross-platform tool for the .NET open source developer platform using the C#

programming language. Microsoft publishes Application Inspector on the public code

repository GitHub and NuGet, a Microsoft-supported mechanism for sharing .NET code.

The tool’s GitHub project site contains a Contributors section showing four developers,

including the principals, actively supporting it. A wiki in the project site contains

thorough documentation of the tool’s features and underlying structures (Acosta, Home ·

microsoft/ApplicationInspector Wiki, 2020). The tool supports scanning a variety of

programming languages, in similar or mixed language files, including: C, C++, C#, Java,

JavaScript, Hypertext Markup Language (HTML), Python, PowerShell, and many more.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

5	

Steven M. Launius, SteveLaunius@gmail.com

The output formats for reporting include HTML, JavaScript Object Notation (JSON), or

plain text. The tool’s architecture and features relevant to this research will be explored in

the following sections.

2.1. Key Features & Structures

The analyze command is the primary functionality of interest in this research as it

enables the identification of high-risk features. This command recursively scans a given

directory for supported programming language files, which may be in TGZ or ZIP

compression and archival formats. There is a default set of over 400 rules defining search

patterns to detect features within the source code of each file and characterize them using

recognizable tag names.

Rules use a simple structure for analysis to identify features and assign them to

tag names. A rule is defined in JSON formatted files with one or more string patterns to

search, as shown in Figure 1. Each search pattern creates a regular expression (regex) that

will match the string in the source code. Each pattern can have modifiers, conditions, or

scopes to alter the regex behavior. Rules associate with an identifier, name, and tag. Tag

names have a naming convention with common terms and a hierarchical structure to

systematically identify generic and specific features of well-known programming

language components.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

6	

Steven M. Launius, SteveLaunius@gmail.com

Figure 1. Example Application Inspector Rule in JSON Format

The tool can format reports in HTML, JSON, or plain text. Opening the HTML

output in a web browser provides an excellent visual representation of results with a

variety of default graphs and analytics. The JSON format is useful in automation

environments like DevOps. Humans can read and write the JSON format, as shown

above in Figure 1, as easily as computers can generate and parse it. The ability to quickly

parse the results enables continuous deployment activities to incorporate this tool.

Organizations wishing to establish security requirements for source code libraries can

map detected features to them.

2.1.1. Command-Line Options
This research uses several options with the Application Inspector’s analyze

command for analysis. The -s option takes the full path to the directory containing the

files for the targeted library. A custom rule file in JSON format can limit the tool’s

analyze command to specific rules when providing the file’s full path in the -r or --

custom-rules-path options. The -i , --ignore-default-rules options will exclude the default

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

7	

Steven M. Launius, SteveLaunius@gmail.com

rules from the analysis. The -c, --confidence-filters options with a value of

‘high,medium,low’ includes all pattern matches regardless of its confidence rating. The

author of a rule should set the confidence level of a pattern according to its precision or

granularity. The -o , --output-file-path options take the full path and file name of the

output file. The -d , --allow-dup-tags option and -f , --output-file-format option with a

value of ‘json’ work together to list duplicate pattern matches for the same rule in a JSON

formatted file. The --single-threaded option disables parallel processing.

2.2. Automated Tool Comparison

Using automated tools for static analysis of code is common during the

implementation phase of the software development lifecycle. Static analysis tools

integrate into an automated build process or a programmer’s development environment

(Bird, 2017). These tools use various techniques to catch mistakes in the code before

execution occurs. Static analysis excels at identifying code errors and specific types of

vulnerabilities as well as enforcing coding standards at scale (Morgan, 2018). There are

dozens of either commercial or open source tools that can improve a developer’s code

quality.

Software Component Analysis tools address specific software supply chain risks

from OSS and other third-party libraries. This type of analysis begins with an inventory

of subcomponents, which is the first control in the 20 prioritized security controls from

the Center for Internet Security and is vital to understanding the organization’s assets that

require protection. The focus of automated tools for software component analysis is on

identifying and managing software composition, licenses, known vulnerabilities, and

outdated components of third-party software. While understanding each component‘s

purpose or function should be part of a Component Analysis strategy, a review of some

of the available tools found this capability was missing (Springett, 2020).

2.2.1. Differences in Application Inspector
The Application Inspector tool disregards errors and flaws; instead, it provides an

objective feature analysis of code libraries. The tool reports the presence of a feature and

requires the user to determine whether it is expected. The principal developers proclaim

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

8	

Steven M. Launius, SteveLaunius@gmail.com

their tool is not a replacement for manual security code review or static analyzer tools

(Acosta, Home · microsoft/ApplicationInspector Wiki, 2020). However, automated

validation of a code library’s claimed objectives integrates well into DevOps’ continuous

delivery model.

3. Accuracy Testing

For security practitioners and developers to gain trust in the Application Inspector

tool, this research will test the precision of its analysis feature. DevOps teams need

assurance that the tool will detect features correctly before integrating a tool that could

stop an automated process when identifying an unexpected or risky feature. This research

will count the true and false positive results as well as true and false negative results from

the analyze command for various code libraries. This type of quantitative testing is well-

suited for accuracy tests since all possible outcomes are considered for a sample set of

libraries.

3.1. Lab Environment

The simulation of a DevOps environment is achieved through a virtual machine

(VM) lab environment. The host system specifications include ample hardware resources

to support running at least one guest system with VMware’s Workstation Pro v15. The

guest system configuration represents either a developer’s workstation or a build server

for continuous deployment. The guest’s specifications include one 64-bit CPU with two

cores, 4GB of RAM, and 20GB of hard drive space running the Ubuntu v20.04 operating

system. The Ubuntu installation includes its default packages for the Linux 5.4.0-29-

generic kernel. The selection of Linux as the lab operating system is based on the

popularity of this platform in a DevOps environment and the Application Inspector’s

cross-platform support.

Testing requires installing the Application Inspector tool, its dependencies, and a

programming language on the guest system. Simple installation instructions in the

justRunIt.md file on the tool’s GitHub repository recommends downloading the tool and

installing the .NET Core pre-requisites (Acosta, GitHub -

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

9	

Steven M. Launius, SteveLaunius@gmail.com

microsoft/ApplicationInspector, 2020). The latest version at the time of testing the

Application Inspector tool v1.2.11 was selected for this research. Downloading from

GitHub repositories requires installing the git package. The pre-requisite .NET Core

runtime v3.1.4 instructions for Ubuntu v20.04 from Microsoft’s documentation page

were followed to complete the installation (De Gorge, 2020). Finally, as the selected

programming language for testing, Python v3.8.2 requires installing the python package.

The Ubuntu administrative account, root, is needed for the installation of system-wide

packages.

3.2. Testing Methodology

Accuracy testing for binary results from pattern matching lends itself to analysis

with a confusion matrix. The confusion matrix is a data science tool for calculating the

accuracy of a classification algorithm (pratz, 2019) (like pattern matching) that is based

on the error matrix (Stehman, 1996). This experiment defines the two classifications as

positive when a pattern matches on either an identifier name or stored data or negative

when a pattern does not match on either an identifier name or stored data. A manual

code review will determine whether the predicted pattern match from the tool’s results is

true or false. Accuracy will be calculated for each pattern as the sum of true positives and

negatives divided by the sum of all possible outcomes:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

The testing scope will consist of a sample of rules based on a common tag name. The

OS.Networking.Connection tag is associated with a set of seven rules, summarized in

Appendix A, and a total of ten regex patternsAppendix AAppendix AAppendix

AAppendix AAppendix AAppendix AAppendix AAppendix AAppendix AAppendix

AAppendix AAppendix A. Manual review of the tool’s analyze output for each test will

confirm a positive or negative of each rule match in all of the library files. This analysis

method marks a rule as true positive as long as one match was a true positive, even if

other duplicate matches are false positives.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

10	

Steven M. Launius, SteveLaunius@gmail.com

3.2.1. OSS Test Libraries
The selection criteria of OSS libraries for testing in this experiment use the above

methodology and scope. Library candidates will have primary features for the

OS.Networking.Connection tag and, to minimize manual code review time, will contain a

dozen or less Python source code files. Three OSS libraries were selected by searching

GitHub for strings from the rules of the OS.Networking.Connection tag. Then filtering

those results by the programming language type. The TFTPY, HRShell, and Human_curl

libraries establish various network connections and contain less than twelve source code

files. An additional custom script was created to test a possible false negative result,

where its full source code is listed in

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

11	

Steven M. Launius, SteveLaunius@gmail.com

Appendix B.

3.2.2. Test procedures
This experiment tests each OSS library twice with Application Inspector’s

analyze command. The first test analyzes the project’s files without alteration. The

second test analyzes the project’s files after pre-processing them with pyminifier. The

pyminifier tool minimizes Python source code files by removing non-executable code

and unnecessary white space. Additionally, pyminifier can obfuscate individual identifier

names by altering the original characters to make the names illegible (McDougall, 2014).

Both minimization and obfuscation simulate attackers’ techniques designed to make their

malicious code more difficult to identify and review. The second test will evaluate the

impact attackers’ obfuscation techniques may have on the tool’s accuracy.

The experiment will test the tool’s analyze command with these options based on

the following testing procedure:

1. Download OSS Library from GitHub.

2. Analyze the OSS library with Application Inspector.

3. Manually review JSON results file to determine rule classification in the

confusion matrix.

4. Minimize and obfuscate the OSS library’s source code with pyminifier.

5. Analyze the altered OSS library with Application Inspector.

6. Manually review JSON results file to determine rule classification in the

confusion matrix.

git clone <URL to GitHub project file>

dotnet ~/ApplicationInspector_1.2.11/ApplicationInspector.CLI.d
ll analyze -s <path to OSS library directory> -d -f json -i -r
<path to custom rules file> -o <path to JSON output file> --
single-threaded

pyminifier --obfuscate <path to OSS library directory>

dotnet ~/ApplicationInspector_1.2.11/ApplicationInspector.CLI.d
ll analyze -s <path to OSS library directory> -d -f json -i -r
<path to custom rules file> -o <path to JSON output file> --
single-threaded

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

12	

Steven M. Launius, SteveLaunius@gmail.com

3.3. Results

The overall test results show the tool has mostly high accuracy that can easily be

improved with minor changes, but one false negative reveals a limitation. The results in

Table 1 below show accurate results for all tested tag names except one,

OS.Network.Connection.HTTP. This tag consists of two rules with three patterns, each

with a different confidence rating of low, medium, or high. The pattern with a string of

"https*:\/" and a low confidence rating is responsible for all false positive matches from

this rule. In the first TFTPY test, this pattern matches an HTTP Uniform Resource

Locator (URL) in a multiline comment. Pre-processing the TFTPY library with

pyminifier in the second test (see Table 1) removes this false positive because pyminifier

removes all comments from Python source code. However, the test results for the

HRShell library pre-processed with pyminifier do not remove the false positive for this

rule. This match resulted from an HTTP URL in a string for a Python function that

displays it as output. Since HRShell is not requesting this URL, it is classified as a false

positive match. This result is expected as the pyminifier tool does not alter strings

assigned to a variable or passed as a parameter to functions.

Library Name

O
S.N

etw
ork.C

onnection.M
iscellaneous

O
S.N

etw
ork.C

onnection.Socket

O
S.N

etw
ork.C

onnection.H
ttp

O
S.N

etw
ork.C

onnection.R
PC

O
S.N

etw
ork.C

onnection.G
eneral

Accuracy

TFTPY TP TP FP TN TN 80%

TFTPY (pyminifier) TP TP TN TN TN 100%

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

13	

Steven M. Launius, SteveLaunius@gmail.com

HRShell TN TP FP TN TN 80%

HRShell (pyminifier) TN TP FP TN TN 80%

Human_curl TN TN TP TN TP 100%

Human_curl (pyminifier) TN TN TP TN TP 100%

Custom Script TN TN FN TN TN 80%

Custom Script (pyminifier) TN TN FN TN TN 80%

Table 1. Accuracy Test Results

Note: The abbreviation definitions in the above table are true positive (TP), true negative

(TN), false positive (FP), false negative (FN).

Of the ten regex patterns tested, only the pattern assigned a low confidence rating

produced false positives for all the tested rules. More than 400 default rules exist in this

tool with over 800 pattern matches, and only 12 are assigned a low confidence rating.

Therefore, analysis with Application Inspector should use the default confidence filters of

high and medium and exclude the low confidence patterns. However, the false negative

results represent a more severe limitation with Application Inspector.

3.3.1. Known limitations
Besides matching on multiline comments in Python, the false negative test results

for patterns in the OS.Network.Connection.Http rule demonstrates a limitation of

Application Inspector. A true positive pattern match for the string “import parse_http”

was found during a manual review of the results from Human_curl, but no identifier

names with “curl”. The OS.Network.Connection.Http rules contain a string pattern for

“curl”, but only matches on word boundaries. Therefore, this pattern never matches even

though there are dozens of identifier names containing the string “curl” in the source code

for this library. The Human_curl library depends on the pycurl library, but it was not

included during analysis because it is a standard Python library. This observation

identified a possible false negative scenario where an HTTP connection is made, but the

tool may not detect it.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

14	

Steven M. Launius, SteveLaunius@gmail.com

A test was devised to create a false negative scenario for an HTTP connection using a

Python standard library. The rules in Application Inspector for HTTP connections do not

contain patterns to match the urllib library, which is a standard Python library. A Custom

Script (see

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

15	

Steven M. Launius, SteveLaunius@gmail.com

Appendix B) was designed to create an HTTP connection using urllib. The HTTP

URL string was broken into multiple strings and concatenated to avoid matching the

regex pattern "https*:\/". This script was tested using the same process as the other OSS

libraries. The output from Application Inspector found no matches for any of the

OS.Network.Connection.Http rules. A summary of the known Application Inspector

limitations is as follows:

1. Multiline comments are not ignored.

2. Rule patterns do not consider all standard libraries in the Python programming

language.

3. Obfuscation of identifier names and strings can avoid pattern matching in custom

libraries.

There are solutions to overcome each of these limitations. The first limitation is

easily resolved by pre-processing source code files to strip comments. Second,

contributing new rules with patterns that match more standard libraries for a particular

programming language will improve the tool’s accuracy. For example, the rule with ID

AI032500 and tag of OS.Network.Connection.Http could be enhanced by changing the

regex pattern to "import .*(http|requests|urllib)" or creating a new rule with a similar

regex, which addresses not only the second limitation but also the third. A standard

library call must be invoked somewhere in the source code regardless of obfuscation

techniques. Therefore, additional rules identifying more standard libraries will increase

accuracy.

3.3.2. Anomaly
Application Inspector’s parallel processing capabilities produced different results.

During this experiment, tests are run twice on the same OSS library. Once with the files

unaltered and then again with source code files pre-processed by pyminifier. When a

pattern match is not identified in comments of the source code, the match count for

unchanged and pre-processed tests should be the same. The TFTPY library exhibits this

characteristic. However, a manual review of both tests on the TFTPY library resulted in

different match counts. This flaw was reproduced by testing the same OSS library

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

16	

Steven M. Launius, SteveLaunius@gmail.com

multiple times. Adding the --single-threaded option for subsequent analysis tests

produced consistent results.

4. Risk Modeling

This research will develop a use case and test a risk model for a practical

implementation of Application Inspector. The use case consists of a security assessment

for new libraries that developers create for an organization’s internal web application.

The web application is necessary for critical processing but does not contain customer or

employee confidential information. The programming language of the web application is

not significant as this research focuses on feature analysis. The developers are internal

employees or contractors creating their code and reusing code from OSS or commercially

licensed third-party sources to complete tasks on time. Application Inspector analysis

could be performed by the developers, but should be performed by an independent,

automated process. This process would automatically analyze new sets of source code to

identify high-risk feature sets that should then have an independent manual review before

deployment. Analysis results that are not high-risk should be trusted for automatic

deployment.

The greatest impact in this use case will come from threats incorporating

malicious code into the web application. Since new code is incorporated as sets of new

source code files, Application Inspection will demonstrate analysis on a group of files to

identify a feature set based on a threat model. Threat modeling will identify the most

likely features necessary to accomplish the adversary’s goal. Finally, testing of the model

will demonstrate whether the risk model is useful for deciding when to perform a manual

review.

4.1. Threat Model

Based on the risk model use case above, threat modeling will identify the most

likely attack vectors and the techniques necessary for it to be successful. These

techniques will be mapped to features in source code through Application Inspector’s

feature analysis of OSS libraries that simulate the same techniques. The primary features

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

17	

Steven M. Launius, SteveLaunius@gmail.com

of the analysis will be grouped together to form a threat model for a particular technique.

This research will focus on one attack vector and the most dangerous techniques for

accomplishing an adversary’s goal.

Common adversary objectives include preventing system operations or obtaining

sensitive information that can lead to monetary compensation. The following malware

types enable these objectives, and the organizational impact for the above use case is

given for each:

• Ransom/wiper malware (high impact)

Disabling a critical business web application can cost organizations thousands of

dollars per day.

• Credential stealing (moderate impact)

This type of malware is one step of a larger attack, often paired with

Ransom/wiper malware to spread the infection.

• Data theft (low impact)

The use case focuses on business-critical operations that do not involve sensitive

data; therefore, the impact is low.

• Crypto mining (low impact)

An increase in resource utilization will add up over time, but the system still

functions, and data is not lost or stolen.

This research will use the NotPetya wiper malware as the example threat for modeling as

it represents ransom/wiper malware that has the highest impact in this use case.

The MITRE ATT&CK framework is a knowledge base of adversary tactics and

techniques. The ATT&CK Enterprise matrix will be useful in developing the threat

model for this research (MITRE, 2020). More than 400 software tools and malware have

been modeled by MITRE to capture known malicious techniques (MITRE, 2020).

MITRE’s NotPetya malware threat model has 13 unique techniques from the Enterprise

ATT&CK matrix. Nine example OSS projects, listed in Table 2 below, can demonstrate

all but one of the NotPetya techniques.

Technique Name Example OSS Projects

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

18	

Steven M. Launius, SteveLaunius@gmail.com

Credential Dumping https://github.com/gentilkiwi/mimikatz.git

Data Encrypted for Impact https://github.com/goliate/hidden-tear.git

Exploitation of Remote

Services

https://github.com/ElevenPaths/Eternalblue-Doublep

ulsar-Metasploit.git

Indicator Removal on Host https://github.com/limbenjamin/Invoke-LogClear.git

Masquerading https://github.com/malcomvetter/CSExec.git

Rundll32 https://github.com/p3nt4/PowerShdll.git

Scheduled Task https://github.com/NukelearGhost/SleepWake.git

Service Execution https://github.com/malcomvetter/CSExec.git

Supply Chain Compromise N/A

System Shutdown/Reboot https://github.com/risoflora/system_shutdown.git

Valid Accounts https://github.com/malcomvetter/CSExec.git

Windows Admin Shares https://github.com/malcomvetter/CSExec.git

Windows Management

Instrumentation

https://github.com/Robinatus/Windows-Network-

Spy.git

Table 2. Example OSS Projects for Each NotPetya Technique

The Application Inspector tool analyzed each of the nine OSS projects to identify

their feature sets. The characteristics across all projects that represent high-risk threat

features are Authentication.General and OS.Process.Dynamic.Execution. However, a

model with only two common functions would identify a large percentage of libraries as

high-risk. Therefore, several threat models of the significant techniques modeled from

example OSS projects will be more useful. These techniques from NotPetya are

Credential Dumping, Data Encryption, and Exploitation of Remote Services. The

following is a model of each technique with a unique set of features identified as tag

names by the tool’s analyze command of the corresponding OSS project:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

19	

Steven M. Launius, SteveLaunius@gmail.com

Credential Dumping

Mimikatz by gentilkiwi

• Authentication

• Authorization

• Microsoft.DLL

• Cryptography

• Data.DBMS

• Data.Deserialization

• Data.Sensitive.Credentials

• OS.ACL.Impersonation

• OS.FileOperation

• OS.Network.Connection

• OS.Process.DynamicExecution

• OS.SystemRegistry

Data Encryption

hidden-tear by goliate

• Authentication

• Authorization

• Cryptography

• Data.DBMS

• Data.Parsing

• Data.Sensitive.Credentials

• Data.Zipfile

• OS.FileOperation

• OS.Network.Connection

• OS.Process.DynamicExecution

Exploitation of Remote Services

EternalBlue by ElevenPaths

• Authentication

• Authorization

• Cryptography

• Data.DBMS

• Data.Parsing

• Data.Sensitive.Credentials

• Data.Zipfile

• OS.Process.DynamicExecution

Masquerading/Service Execution/Windows Admin Shares

CSExec by malcomvetter

• Authentication

• Authorization

• Microsoft.DLL

• Cryptography

• Data.DBMS

• Data.Parsing

• Data.Sensitive.Credentials

• Data.Zipfile

• OS.FileOperation.Delete

• OS.Network.Connection

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

20	

Steven M. Launius, SteveLaunius@gmail.com

• OS.Process.DynamicExecution

Note: Tag names have been shortened to a substring that matches similar feature

components of the same type, where possible, to group them.

Each of the four OSS projects produces a unique set of features for the NotPetya

techniques. Mimikatz has a collection of thirteen features that model the Credential

Dumping technique. Hidden-tear has a collection of ten features that model the

Ransomware technique. EternalBlue has the smallest set of features, with eight, that

model Exploitation of Remote Services. The CSExec project has a collection of eleven

features that model Masquerading, Service Execution, and Windows Admin Shares

(shown as Masquerading).

4.2. Risk Model Testing

4.2.1. Lab Environment
The same lab configuration, from the Accuracy Testing section above, is used to

test the threat model on a selected set of OSS project libraries from GitHub. A sample of

20 OSS projects will represent library components that may be created or reused by

developers for the web application from the use case. The selected samples will include

various programming languages with an API, framework, or other functionality to aid a

developer in completing an application. The complete set of samples can be found in

Appendix C.

This test requires modification of the Application Inspector preferences to

identifying the threat model feature sets in a custom HTML report. The custom report

shows matching features (see Figure 2) as blue icons and non-matching features as grey

icons. A sample of the HTML results is shown below in Figure 2.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

21	

Steven M. Launius, SteveLaunius@gmail.com

Figure 2. Sample of a Custom Application Inspector HTML Report

4.2.2. Testing Methodology
The number of matching tag names for each threat technique modeled will be

analyzed and compared across the OSS projects. The configuration of the Application

Inspector analysis options will output HTML and JSON files with results and use single

threading to prevent anomalies identified in the Accuracy Testing section above. The

following procedures will be followed for each of the OSS projects:

1. Download OSS project from GitHub.

git clone <URL to GitHub project file>

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

22	

Steven M. Launius, SteveLaunius@gmail.com

2. Link the ‘html’ directory from Application Inspector’s source to enable the

correct display of the HTML report.

3. Record the project size.

4. Change directory into the OSS project.

5. Analyze the OSS library with Application Inspector.

6. Manually review the HTML report in Firefox to count the features matching in

each technique modeled.

4.3. Results

The test results will identify the error rate of each threat model. Tests showing a

100% error rate indicate all features in a model’s set matched, and represents a negative

result since each of these projects are assumed not to contain malicious code. The useful

models will have few if any, negative results. The size of each OSS project was

calculated to correlate any trends in the volume of code analyzed. The percentage for

each outcome is calculated as X of Y, where X is the number of matching features and Y

is the total number of features in each model’s set. The features were manually counted

by reviewing the features for each OSS project in a custom HTML report created to

display the threat model results. In Figure 3 below, the Credential Dumping results are

given as an example.

ln -s ../html/ <OSS project directory name>

du -h --max-depth==1 ./<OSS project directory name>

cd <OSS project directory name>

dotnet ~/ApplicationInspector_1.2.11/ApplicationInspector.CLI.d

ll analyze -s . --single-threaded

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

23	

Steven M. Launius, SteveLaunius@gmail.com

Figure 3. Sample HTML Report of Features in the Credential Dumping Threat
Model.

The error rate for each threat models’ results, as tested against all OSS projects, is

displayed in Table 3 below.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

24	

Steven M. Launius, SteveLaunius@gmail.com

OSS Project Size

(MB)

Credential

Dumping

Ransom-

ware

Exploitation of

Remote Services

Masquer-

ading

ui_components 4.9 46% 80% 100% 73%

Hazel 11 54% 90% 100% 82%

zphiser 120 62% 90% 100% 82%

tabler 127 54% 80% 100% 73%

thingsboard 134 54% 100% 100% 82%

trilium 96 69% 100% 100% 82%

redash 37 62% 100% 100% 82%

livewire 12 54% 90% 100% 82%

PhpSpreadsheet 46 62% 90% 100% 82%

airflow 108 77% 100% 100% 91%

websockets 2.7 69% 100% 100% 91%

calculator 58 62% 100% 100% 82%

Ooui 6.9 69% 100% 100% 91%

redux.NET 8.6 46% 80% 100% 73%

fastapi 17 54% 90% 100% 82%

sheetjs 75 62% 100% 100% 90%

card 2.1 46% 80% 100% 73%

flask 11 62% 100% 100% 82%

autobahn-python 26 82% 100% 100% 82%

skatejs 15 70% 100% 100% 91%

Total Negative 0 11 20 0

Table 3. Error Rate in Risk Modeling Analysis

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

25	

Steven M. Launius, SteveLaunius@gmail.com

The test results for two of the four threat models are entirely positive. The

Credential Dumping and Masquerading models show that none of the 20 tested known-

good projects matched all the features in their sets. Indicating these models would be

useful to identify source code libraries that include features similar to the malicious

software they were modeled after. Ransomware’s model shows a little more than half of

the projects contain the same feature set as the model. This model would produce many

false positives if incorporated into a continuous deployment pipeline that could

unnecessarily waste resources. There are no positive results for the Exploitation of

Remote Services model, indicating this model would never be useful for identifying high-

risk libraries. There was no correlation between the project’s size and the percentage of

features found in any model.

5. Recommendations and Implications

The Application Inspector is a unique static code analysis tool that can reduce risk

in a DevOps environment by identifying features in source code. Feature analysis

provides a summary of functionality found within millions of lines of code to quickly and

automatically identify high-risk features. Threat modeling of adversaries targeting an

organization can produce high-risk feature sets. Organizations employing many

developers as contractors and incorporating third-party libraries can decrease the risk of

malicious backdoors with this tool.

5.1. Practical Use

The accuracy testing results for Application Inspector’s analysis are encouraging,

but there is an opportunity for improvement. As a newer tool, Application Inspector has a

reasonably high accuracy rate for the Python language. However, this research shows

there are standard Python libraries unmatched during analysis that have features the tool

is designed to identify. Additional rules to match all of the standard library features for

Python, and other programming languages, will increase the tool’s accuracy.

Organizations can concentrate on creating rules for the programming languages found in

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

26	

Steven M. Launius, SteveLaunius@gmail.com

their DevOps environment. Sharing these rules with the open source community would

be a public service that benefits an organization’s reputation in the DevOps community.

The test results from risk modeling indicate that the more features in a model’s

set, the more likely it is to identify malicious code. The more specific a threat model is

for a particular adversary’s malware, the larger is the set of features in the model. The test

results indicate models with more features perform better and benefit organizations

modeling threats targeting them or their industry. Models with more than ten features of

Application Inspector’s tags are more likely to catch the malicious code. Feature analysis

can be a useful automated technical control to reduce the risk of deploying malicious

code when incorporated into deployment pipelines or manually run by developers or

auditors.

Threat models for feature analysis require testing and risk management.

Information security professionals can develop specific threat models targeting an

organization and test the error rate. The test results for ambiguous models, like

Ransomware, is risk that leadership will decide to accept. Management must decide

whether or not a model’s resulting error ratio outweighs the likelihood an adversary will

use this attack vector on their organization. Automated implementation of the threat

model is more practical than performing manual code review.

When personnel resources limit manual code review, the Application Inspector

tool provides automated capabilities for managing the risk of the source code features.

The tool’s JSON reporting lends itself to implementation through scripting in a

continuous deployment pipeline. The tool enables DevOps teams to adhere to strict

feature requirements from initial development that only permit authorized features to be

deployed into a production environment. Additionally, this research presents a risk model

for the tool to identify a specific threat technique from a set of features that DevOps

teams can implement in a deployment pipeline or code versioning system. Developers or

auditors could also run the tool, as necessary, with this risk model to identify specific

threats within a set of source code files from a third-party library or other internal

developers.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

27	

Steven M. Launius, SteveLaunius@gmail.com

6. Conclusion

Adversaries are taking advantage of third-party libraries and DevOps’ speed to

insert malicious code inside of software that an organization develops. Organizations

often trust their third-party suppliers and internal developers to produce software that

meet their required features. Therefore, management may choose to accept the risk from

backdoors so they can compete in their industry. The Application Inspector tool can

provide a practical method for reducing this risk. The tool’s accuracy is good but it can

be improved with additional rules to detect more standard libraries from the programming

language version used by an organization. Additionally, the creation of threat models

from adversary techniques can provide a set of high-risk features, if enough exists, that

can uniquely identify the same technique in source code libraries. Organizations can

implement the tool at scale within continuous deployment pipelines or use ad hoc to vet

source code libraries.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

28	

Steven M. Launius, SteveLaunius@gmail.com

References

Acosta, G. (2020, April 10). GitHub - microsoft/ApplicationInspector. Retrieved April

20, 2020, from GitHub: https://github.com/microsoft/ApplicationInspector

Acosta, G. (2020, March 8). Home · microsoft/ApplicationInspector Wiki. Retrieved June

11, 2020, from GitHub: https://github.com/microsoft/ApplicationInspector/wiki

Acosta, G., & Scovetta, M. (2020, January 2020). Introducing Microsoft Application

Inspector. Retrieved April 19, 2020, from Microsoft:

https://www.microsoft.com/security/blog/2020/01/16/introducing-microsoft-

application-inspector/

Bennett, J. (2018, October 31). When Good Software Goes Bad: Malware In Open

Source. Retrieved April 19, 2020, from Hack A Day:

https://hackaday.com/2018/10/31/when-good-software-goes-bad-malware-in-

open-source/

Bird, J. (2017, October 24). 2017 State of Application Security: Balancing Speed and

Risk. Retrieved April 19, 2020, from SANS Institue:

https://www.sans.org/reading-room/whitepapers/application/paper/38100

De Gorge, A. (2020, June 4). Install .NET Core on Ubuntu - .NET Core. Retrieved June

12, 2020, from Microsoft Docs: https://docs.microsoft.com/en-

us/dotnet/core/install/linux-ubuntu

Elliot, J. K. (2019, July 11). Disgruntled employee hijacks AHL hockey app to settle an

office score. Retrieved June 9, 2020, from Global News:

https://globalnews.ca/news/5484145/ahl-push-notifications-throat-punch/

Flores, B. (2019, June 20). The looming threat of malicious backdoors in software source

code. Retrieved April 19, 2020, from SC Magazine:

https://www.scmagazine.com/home/opinion/executive-insight/the-looming-threat-

of-malicious-backdoors-in-software-source-code/

Greenberg, A. (2018, August 22). The Untold Story of NotPetya, the Most Devastating

Cyberattack in History. Retrieved June 9, 2020, from Wired:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

29	

Steven M. Launius, SteveLaunius@gmail.com

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-

the-world/

Howard, M. (2018, October 9). Who Cares if Supermicro Happened. Supply Chain

Attacks are Real and It’s Time to Pay Attention. Retrieved April 19, 2020, from

Sonatype: https://blog.sonatype.com/is-supermicro-real-who-cares.-supply-chain-

attacks-are-happening-and-its-time-to-talk-about-it

McDougall, D. (2014, May 31). pyminifier - Minify, obfuscate, and compress Python

code. Retrieved June 13, 2020, from GitHub: http://liftoff.github.io/pyminifier/

Migues, S., Steven, J., & Ware, M. (2019, September 18). Building Security In Maturity

Model (BSIMM). Retrieved April 19, 2020, from BSIMM:

https://www.bsimm.com/download.html

MITRE. (2020, June 10). ATT&CK. Retrieved June 16, 2020, from MITRE:

https://attack.mitre.org/

MITRE. (2020, June 17). Software. Retrieved June 20, 2020, from MITRE ATT&CK:

https://attack.mitre.org/software/

Morgan, L. (2018, September 5). 5 ways static code analysis can save you. Retrieved

June 11, 2020, from SD Times: https://sdtimes.com/test/5-ways-static-code-

analysis-can-save-you/

Ponemon Institute. (2019). The State of Software Security in the Financial Services

Industry. Mountain View: Synopsys. Retrieved June 8, 2020, from Synopsys:

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/software-

security-financial-services-ponemon.pdf

pratz. (2019, September 8). Decoding the Confusion Matrix. Retrieved June 12, 2020,

from KeyToDataScience: https://keytodatascience.com/confusion-matrix/

Security Current. (2017, November 19). 11 CISOs Say Open Source Software Can Be As

or More Secure Than Commercial Software, With a Potential for Savings.

Retrieved April 19, 2020, from Security Current: https://securitycurrent.com/10-

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

30	

Steven M. Launius, SteveLaunius@gmail.com

cisos-say-open-source-software-can-be-as-or-more-secure-than-commercial-

software-with-a-potential-for-cost-savings/

Springett, S. (2020, January 16). Component Analysis. Retrieved April 19, 2020, from

OWASP: https://owasp.org/www-community/Component_Analysis

Stehman, S. V. (1996, October). Selecting and interpreting measures of thematic

classification accuracy. Remote Sensing of Environment, 62(1), 77-89.

doi:10.1016/S0034-4257(97)00083-7

Tung, L. (2016, March 23). Disgruntled developer breaks thousands of JavaScript,

Node.js apps. Retrieved June 9, 2020, from ZDNet:

https://www.zdnet.com/article/disgruntled-developer-breaks-thousands-of-

javascript-node-js-apps/

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

31	

Steven M. Launius, SteveLaunius@gmail.com

Appendix A
OS.Networking.Connection Rules

The most pertinent attributes for each of the patterns associated with rules that have the

OS.Networking.Connection tag name are summarized in the table below.

ID Tag Name Applies
To

Pattern Pattern
Type

Mod-
ifier

Confi-
dence

AI031600 OS.Network.Con
nection.Miscella
neous

 tftp|ntp\\.org|ntpupdat
e|imap|snmp|ftps|sftp|
ftp|nntp|smtp|telnet|ss
h|pop3|gopher

regex-word i high

AI032000 OS.Network.Con
nection.Socket

python .bind(string high

AI032100 OS.Network.Con
nection.Socket

 socket string i high

AI032500 OS.Network.Con
nection.Http

python import .*(http|requests) regex high

AI032600 OS.Network.Con
nection.Http

 https*:/ regex low

AI032600 OS.Network.Con
nection.Http

 curl|wpget regex-word medi
um

AI032900 OS.Network.Con
nection.RPC

python fastrpc|xmlrpc|SimpleX
MLRPCServer|jsonrpc|rp
c\\.server|client\\.rpc

regex high

AI033410 OS.Network.Con
nection.General

 send.*message regex high

AI033410 OS.Network.Con
nection.General

 send\\(regex medi
um

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

32	

Steven M. Launius, SteveLaunius@gmail.com

Appendix B
Custom Script for Accuracy Tests

The following script was created in a Python file to exhibit a false negative for

Application Inspector rules.

import urllib.request

req = urllib.request.Request("htt" + "ps://www.google.com/")

result = urllib.request.urlopen(req)

print(result.read())

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Risk Management with Automated Feature Analysis of Software Components

33	

Steven M. Launius, SteveLaunius@gmail.com

Appendix C
Selected OSS Projects for Risk Model Testing

The table below contains OSS projects used in the risk model testing.

OSS Project Primary Language GitHub URL

ui_components JavaScript https://github.com/bradtraversy/ui_components

Hazel C++ https://github.com/TheCherno/Hazel

zphiser PHP https://github.com/htr-tech/zphisher.git

tabler Java https://github.com/tabler/tabler

thingsboard Java https://github.com/thingsboard/thingsboard

trilium JavaScript https://github.com/zadam/trilium

redash JavaScript https://github.com/getredash/redash

livewire PHP https://github.com/livewire/livewire

PhpSpreadsheet PHP https://github.com/PHPOffice/PhpSpreadsheet

airflow Python https://github.com/apache/airflow

websockets Python https://github.com/aaugustin/websockets

calculator C# https://github.com/microsoft/calculator

Ooui C# https://github.com/praeclarum/Ooui

redux.NET C# https://github.com/GuillaumeSalles/redux.NET

fastapi Python https://github.com/tiangolo/fastapi

sheetjs JavaScript https://github.com/SheetJS/sheetjs

card JavaScript https://github.com/jessepollak/card

flask Python https://github.com/tensorflow/tensorflow

autobahn-
python Python https://github.com/crossbario/autobahn-python

skatejs JavaScript https://github.com/skatejs/skatejs

