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Abstract 

Organizations developing software need pragmatic risk management practices to prevent 
malicious code from contaminating their software. Traditional security tools for Static 
Code Analysis identify vulnerabilities, not the presence of backdoors exhibiting 
unintended actions. Application Inspector is a Microsoft tool released to the open source 
community that identifies risky features and characteristics of source code libraries. This 
research will evaluate the accuracy of feature detection in the Application Inspector tool 
and construct a risk model for automating decisions based on feature analysis of source 
code. 
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1. Introduction 

Nefarious contributors can insert malicious source code at various steps in the 

production of software. An organization’s developers, or third-party library 

dependencies, are potential avenues for introducing malicious code or backdoors. 

Security consultants, software development managers, and developers need practical 

solutions to address threats from insiders and within the supply chain. Many 

organizations prioritize new functionality over manual reviews of source code from third-

party suppliers. Therefore, vetting source code for backdoors is not a common practice. 

Software security architecture focuses on reducing vulnerabilities in the fast-paced 

continuous delivery model known as DevOps: software development (Dev) and IT 

Operations (Ops).  

Modern development methodologies and security practices are increasing the 

attack surface for backdoors. In DevOps, developers deploy small portions of code 

frequently by reusing source code from internal teams or third-party libraries, such as 

open source software (OSS), frameworks, or software development kits. The efficiency 

increase from this DevOps model comes at the expense of understanding how the code 

base operates (Flores, 2019). Additionally, DevOps provides little time for security 

reviews. A recent SANS Institute survey shows that many organizations use automated 

and manual application security practices, but most rely on manual testing and reviews 

(Bird, 2017). A similar Ponemon Institute survey found that most organizations in the 

financial services industry conduct an assessment after the software’s release. 

Furthermore, even though respondents are concerned with the security of third-party 

software suppliers, most do not inventory or manage OSS (Ponemon Institute, 2019). The 

respondents from both surveys use security practices designed to identify vulnerabilities 

rather than undesirable behavior in their software. For example, automation tools for 

software component analysis target known flaws in third-party software libraries 

(Springett, 2020). Of all the security practices, manual source code review is one of the 

most effective means to identify malicious behavior in code, but it is also the most 

resource intensive. Insertion of backdoors into a software development lifecycle is a 

tactic that adversaries employ with damaging effects. 
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Malicious code inserted into an organization’s software product can have tragic 

consequences. One of the most devastating supply chain attacks, which exploited a trust 

relationship between an organization and a third-party software supplier, occurred in 

2017 when a nation-state was blamed for inserting a backdoor into a Ukrainian 

company’s software update to distribute a destructive malware named NotPetya. The 

resulting global damages are estimated at $10 billion (Greenberg, 2018). Cyber-criminals 

and nation-states also target OSS in supply chain attacks. A recent attack on a common 

OSS JavaScript package named conventional-changelog tricked organizations into 

unwittingly including crypto-mining source code in their products. The attackers inserted 

their malicious code by compromising the credentials for the developer’s code repository 

(Howard, 2018). In another attack on OSS, adversaries added cryptocurrency stealing 

code into a popular Python package named Colourama. Developers unintentionally 

contaminated their software products after downloading this trojan source code from a 

typo-squatting website (Bennett, 2018). Insider threats come from developers 

intentionally or unintentionally altering functionality requirements of the software. In 

2016, an OSS developer became upset and removed a widely-used JavaScript module 

breaking a massive number of other projects that depended on it (Tung, 2016). More 

recently, a disgruntled contract developer used a backdoor on an NHL-affiliated 

smartphone app to demand unpaid wages from his former boss using the app’s messaging 

system that was viewable by all customers (Elliot, 2019). Whether backdoors are 

surreptitiously inserted into the supply chain by an adversary or unintentionally placed 

there by a developer, understanding the functionality of software through source code 

analysis can help organizations reduce risk. 

An automated tool for analyzing source code features can help organizations 

implement a practical risk management process to prevent unintended effects from the 

features in their software products. Application Inspector is a Microsoft tool released to 

the open source community that identifies risky features and characteristics of source 

code libraries for many programming languages. This tool’s primary use cases identify 

high-risk components or unexpected features and changes in a component’s feature set 

over time (Acosta & Scovetta, Introducing Microsoft Application Inspector, 2020). This 

research will evaluate the accuracy of feature detection in the Application Inspector tool 
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and construct a risk model for automating decisions based on feature analysis of source 

code.  

2. Application Inspector 

On January 16, 2020, Microsoft publicly introduced the Application Inspector 

tool as an OSS project. Like other organizations employing DevOps, Microsoft’s 

development teams reuse source code from different internal developers and third parties. 

Source code reuse comes with an inherent risk of trust in the supplier of the code. While 

employees arguably deserve more confidence due to Human Resource practices and 

incentives, there may be no way to have similar screening for third-party suppliers. 

Microsoft produced Application Inspector to reduce this risk with a new static code 

analysis tool. The tool’s source code analyzer identifies features and metadata that could 

be abused to perform undesirable actions in the software development lifecycle. A person 

manually reviewing the code could analyze and conclude its intentions. However, the tool 

provides analysis capabilities at scale for libraries with many files and millions of lines of 

code. The source code’s characteristics are reported without judgment. The tool’s use 

cases include identifying feature set changes between library versions and identifying 

high-risk features that should receive additional review (Acosta & Scovetta, Introducing 

Microsoft Application Inspector, 2020).  

Application Inspector is a command-line tool with characteristics indicative of its 

maker. The principal Microsoft developers, Guy Acosta and Michael Scovetta, wrote this 

cross-platform tool for the .NET open source developer platform using the C# 

programming language. Microsoft publishes Application Inspector on the public code 

repository GitHub and NuGet, a Microsoft-supported mechanism for sharing .NET code. 

The tool’s GitHub project site contains a Contributors section showing four developers, 

including the principals, actively supporting it. A wiki in the project site contains 

thorough documentation of the tool’s features and underlying structures (Acosta, Home · 

microsoft/ApplicationInspector Wiki, 2020). The tool supports scanning a variety of 

programming languages, in similar or mixed language files, including: C, C++, C#, Java, 

JavaScript, Hypertext Markup Language (HTML), Python, PowerShell, and many more. 
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The output formats for reporting include HTML, JavaScript Object Notation (JSON), or 

plain text. The tool’s architecture and features relevant to this research will be explored in 

the following sections. 

2.1. Key Features & Structures 

The analyze command is the primary functionality of interest in this research as it 

enables the identification of high-risk features. This command recursively scans a given 

directory for supported programming language files, which may be in TGZ or ZIP 

compression and archival formats. There is a default set of over 400 rules defining search 

patterns to detect features within the source code of each file and characterize them using 

recognizable tag names.  

Rules use a simple structure for analysis to identify features and assign them to 

tag names. A rule is defined in JSON formatted files with one or more string patterns to 

search, as shown in Figure 1. Each search pattern creates a regular expression (regex) that 

will match the string in the source code. Each pattern can have modifiers, conditions, or 

scopes to alter the regex behavior. Rules associate with an identifier, name, and tag. Tag 

names have a naming convention with common terms and a hierarchical structure to 

systematically identify generic and specific features of well-known programming 

language components.  
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Figure 1. Example Application Inspector Rule in JSON Format 

The tool can format reports in HTML, JSON, or plain text. Opening the HTML 

output in a web browser provides an excellent visual representation of results with a 

variety of default graphs and analytics. The JSON format is useful in automation 

environments like DevOps. Humans can read and write the JSON format, as shown 

above in Figure 1, as easily as computers can generate and parse it. The ability to quickly 

parse the results enables continuous deployment activities to incorporate this tool. 

Organizations wishing to establish security requirements for source code libraries can 

map detected features to them. 

2.1.1. Command-Line Options 
This research uses several options with the Application Inspector’s analyze 

command for analysis. The -s option takes the full path to the directory containing the 

files for the targeted library. A custom rule file in JSON format can limit the tool’s 

analyze command to specific rules when providing the file’s full path in the -r or --

custom-rules-path options. The -i , --ignore-default-rules options will exclude the default 
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rules from the analysis. The -c, --confidence-filters options with a value of 

‘high,medium,low’ includes all pattern matches regardless of its confidence rating. The 

author of a rule should set the confidence level of a pattern according to its precision or 

granularity. The -o , --output-file-path options take the full path and file name of the 

output file. The -d , --allow-dup-tags option and -f , --output-file-format option with a 

value of ‘json’ work together to list duplicate pattern matches for the same rule in a JSON 

formatted file. The --single-threaded option disables parallel processing. 

2.2. Automated Tool Comparison 

Using automated tools for static analysis of code is common during the 

implementation phase of the software development lifecycle. Static analysis tools 

integrate into an automated build process or a programmer’s development environment 

(Bird, 2017). These tools use various techniques to catch mistakes in the code before 

execution occurs. Static analysis excels at identifying code errors and specific types of 

vulnerabilities as well as enforcing coding standards at scale (Morgan, 2018). There are 

dozens of either commercial or open source tools that can improve a developer’s code 

quality.  

Software Component Analysis tools address specific software supply chain risks 

from OSS and other third-party libraries. This type of analysis begins with an inventory 

of subcomponents, which is the first control in the 20 prioritized security controls from 

the Center for Internet Security and is vital to understanding the organization’s assets that 

require protection. The focus of automated tools for software component analysis is on 

identifying and managing software composition, licenses, known vulnerabilities, and 

outdated components of third-party software. While understanding each component‘s 

purpose or function should be part of a Component Analysis strategy, a review of some 

of the available tools found this capability was missing (Springett, 2020).  

2.2.1. Differences in Application Inspector 
The Application Inspector tool disregards errors and flaws; instead, it provides an 

objective feature analysis of code libraries. The tool reports the presence of a feature and 

requires the user to determine whether it is expected. The principal developers proclaim 
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their tool is not a replacement for manual security code review or static analyzer tools 

(Acosta, Home · microsoft/ApplicationInspector Wiki, 2020). However, automated 

validation of a code library’s claimed objectives integrates well into DevOps’ continuous 

delivery model.  

3. Accuracy Testing 

For security practitioners and developers to gain trust in the Application Inspector 

tool, this research will test the precision of its analysis feature. DevOps teams need 

assurance that the tool will detect features correctly before integrating a tool that could 

stop an automated process when identifying an unexpected or risky feature. This research 

will count the true and false positive results as well as true and false negative results from 

the analyze command for various code libraries. This type of quantitative testing is well-

suited for accuracy tests since all possible outcomes are considered for a sample set of 

libraries. 

3.1. Lab Environment 

The simulation of a DevOps environment is achieved through a virtual machine 

(VM) lab environment. The host system specifications include ample hardware resources 

to support running at least one guest system with VMware’s Workstation Pro v15. The 

guest system configuration represents either a developer’s workstation or a build server 

for continuous deployment. The guest’s specifications include one 64-bit CPU with two 

cores, 4GB of RAM, and 20GB of hard drive space running the Ubuntu v20.04 operating 

system. The Ubuntu installation includes its default packages for the Linux 5.4.0-29-

generic kernel. The selection of Linux as the lab operating system is based on the 

popularity of this platform in a DevOps environment and the Application Inspector’s 

cross-platform support.  

Testing requires installing the Application Inspector tool, its dependencies, and a 

programming language on the guest system. Simple installation instructions in the 

justRunIt.md file on the tool’s GitHub repository recommends downloading the tool and 

installing the .NET Core pre-requisites (Acosta, GitHub - 
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microsoft/ApplicationInspector, 2020). The latest version at the time of testing the 

Application Inspector tool v1.2.11 was selected for this research. Downloading from 

GitHub repositories requires installing the git package. The pre-requisite .NET Core 

runtime v3.1.4 instructions for Ubuntu v20.04 from Microsoft’s documentation page 

were followed to complete the installation (De Gorge, 2020). Finally, as the selected 

programming language for testing, Python v3.8.2 requires installing the python package. 

The Ubuntu administrative account, root, is needed for the installation of system-wide 

packages.  

3.2. Testing Methodology 

Accuracy testing for binary results from pattern matching lends itself to analysis 

with a confusion matrix. The confusion matrix is a data science tool for calculating the 

accuracy of a classification algorithm (pratz, 2019) (like pattern matching) that is based 

on the error matrix (Stehman, 1996). This experiment defines the two classifications as 

positive when a pattern matches on either an identifier name or stored data or negative 

when a pattern does not match on either an identifier name or stored data. A manual 

code review will determine whether the predicted pattern match from the tool’s results is 

true or false. Accuracy will be calculated for each pattern as the sum of true positives and 

negatives divided by the sum of all possible outcomes:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

The testing scope will consist of a sample of rules based on a common tag name. The 

OS.Networking.Connection tag is associated with a set of seven rules, summarized in 

Appendix A, and a total of ten regex patternsAppendix AAppendix AAppendix 

AAppendix AAppendix AAppendix AAppendix AAppendix AAppendix AAppendix 

AAppendix AAppendix A. Manual review of the tool’s analyze output for each test will 

confirm a positive or negative of each rule match in all of the library files. This analysis 

method marks a rule as true positive as long as one match was a true positive, even if 

other duplicate matches are false positives. 
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3.2.1. OSS Test Libraries 
The selection criteria of OSS libraries for testing in this experiment use the above 

methodology and scope. Library candidates will have primary features for the 

OS.Networking.Connection tag and, to minimize manual code review time, will contain a 

dozen or less Python source code files. Three OSS libraries were selected by searching 

GitHub for strings from the rules of the OS.Networking.Connection tag. Then filtering 

those results by the programming language type. The TFTPY, HRShell, and Human_curl 

libraries establish various network connections and contain less than twelve source code 

files. An additional custom script was created to test a possible false negative result, 

where its full source code is listed in  

  



© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights. 

Risk Management with Automated Feature Analysis of Software Components 
  
11	

 

Steven M. Launius, SteveLaunius@gmail.com 

Appendix B. 

3.2.2. Test procedures 
This experiment tests each OSS library twice with Application Inspector’s 

analyze command. The first test analyzes the project’s files without alteration. The 

second test analyzes the project’s files after pre-processing them with pyminifier. The 

pyminifier tool minimizes Python source code files by removing non-executable code 

and unnecessary white space. Additionally, pyminifier can obfuscate individual identifier 

names by altering the original characters to make the names illegible (McDougall, 2014). 

Both minimization and obfuscation simulate attackers’ techniques designed to make their 

malicious code more difficult to identify and review. The second test will evaluate the 

impact attackers’ obfuscation techniques may have on the tool’s accuracy.  

The experiment will test the tool’s analyze command with these options based on 

the following testing procedure: 

1. Download OSS Library from GitHub. 

 

2. Analyze the OSS library with Application Inspector. 

 
3. Manually review JSON results file to determine rule classification in the 

confusion matrix. 

4. Minimize and obfuscate the OSS library’s source code with pyminifier. 

 
5. Analyze the altered OSS library with Application Inspector. 

 
6. Manually review JSON results file to determine rule classification in the 

confusion matrix. 

git clone <URL to GitHub project file> 

dotnet ~/ApplicationInspector_1.2.11/ApplicationInspector.CLI.d 
ll analyze -s <path to OSS library directory> -d -f json -i -r 
<path to custom rules file> -o <path to JSON output file> --
single-threaded 

pyminifier --obfuscate <path to OSS library directory> 

dotnet ~/ApplicationInspector_1.2.11/ApplicationInspector.CLI.d 
ll analyze -s <path to OSS library directory> -d -f json -i -r 
<path to custom rules file> -o <path to JSON output file> --
single-threaded 
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3.3. Results 

The overall test results show the tool has mostly high accuracy that can easily be 

improved with minor changes, but one false negative reveals a limitation. The results in 

Table 1 below show accurate results for all tested tag names except one, 

OS.Network.Connection.HTTP. This tag consists of two rules with three patterns, each 

with a different confidence rating of low, medium, or high. The pattern with a string of 

"https*:\/" and a low confidence rating is responsible for all false positive matches from 

this rule. In the first TFTPY test, this pattern matches an HTTP Uniform Resource 

Locator (URL) in a multiline comment. Pre-processing the TFTPY library with 

pyminifier in the second test (see Table 1) removes this false positive because pyminifier 

removes all comments from Python source code. However, the test results for the 

HRShell library pre-processed with pyminifier do not remove the false positive for this 

rule. This match resulted from an HTTP URL in a string for a Python function that 

displays it as output. Since HRShell is not requesting this URL, it is classified as a false 

positive match. This result is expected as the pyminifier tool does not alter strings 

assigned to a variable or passed as a parameter to functions.  

Library Name 

O
S.N

etw
ork.C

onnection.M
iscellaneous  

O
S.N

etw
ork.C

onnection.Socket 

O
S.N

etw
ork.C

onnection.H
ttp 

O
S.N

etw
ork.C

onnection.R
PC

 

O
S.N

etw
ork.C

onnection.G
eneral 

Accuracy 

TFTPY TP TP FP  TN TN 80% 

TFTPY (pyminifier) TP TP TN TN TN 100% 
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HRShell TN TP FP  TN TN 80% 

HRShell (pyminifier) TN TP FP  TN TN 80% 

Human_curl TN TN TP TN TP 100% 

Human_curl (pyminifier) TN TN TP TN TP 100% 

Custom Script TN TN FN TN TN 80% 

Custom Script (pyminifier) TN TN FN TN TN 80% 

Table 1. Accuracy Test Results 

Note: The abbreviation definitions in the above table are true positive (TP), true negative 

(TN), false positive (FP), false negative (FN).  

Of the ten regex patterns tested, only the pattern assigned a low confidence rating 

produced false positives for all the tested rules. More than 400 default rules exist in this 

tool with over 800 pattern matches, and only 12 are assigned a low confidence rating. 

Therefore, analysis with Application Inspector should use the default confidence filters of 

high and medium and exclude the low confidence patterns. However, the false negative 

results represent a more severe limitation with Application Inspector. 

3.3.1. Known limitations 
Besides matching on multiline comments in Python, the false negative test results 

for patterns in the OS.Network.Connection.Http rule demonstrates a limitation of 

Application Inspector. A true positive pattern match for the string “import parse_http” 

was found during a manual review of the results from Human_curl, but no identifier 

names with “curl”. The OS.Network.Connection.Http rules contain a string pattern for 

“curl”, but only matches on word boundaries. Therefore, this pattern never matches even 

though there are dozens of identifier names containing the string “curl” in the source code 

for this library. The Human_curl library depends on the pycurl library, but it was not 

included during analysis because it is a standard Python library. This observation 

identified a possible false negative scenario where an HTTP connection is made, but the 

tool may not detect it. 
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A test was devised to create a false negative scenario for an HTTP connection using a 

Python standard library. The rules in Application Inspector for HTTP connections do not 

contain patterns to match the urllib library, which is a standard Python library. A Custom 

Script (see  
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Appendix B) was designed to create an HTTP connection using urllib. The HTTP 

URL string was broken into multiple strings and concatenated to avoid matching the 

regex pattern "https*:\/". This script was tested using the same process as the other OSS 

libraries. The output from Application Inspector found no matches for any of the 

OS.Network.Connection.Http rules. A summary of the known Application Inspector 

limitations is as follows: 

1. Multiline comments are not ignored. 

2. Rule patterns do not consider all standard libraries in the Python programming 

language. 

3. Obfuscation of identifier names and strings can avoid pattern matching in custom 

libraries. 

There are solutions to overcome each of these limitations. The first limitation is 

easily resolved by pre-processing source code files to strip comments. Second, 

contributing new rules with patterns that match more standard libraries for a particular 

programming language will improve the tool’s accuracy. For example, the rule with ID 

AI032500 and tag of OS.Network.Connection.Http could be enhanced by changing the 

regex pattern to "import .*(http|requests|urllib)" or creating a new rule with a similar 

regex, which addresses not only the second limitation but also the third. A standard 

library call must be invoked somewhere in the source code regardless of obfuscation 

techniques. Therefore, additional rules identifying more standard libraries will increase 

accuracy.  

3.3.2. Anomaly 
Application Inspector’s parallel processing capabilities produced different results. 

During this experiment, tests are run twice on the same OSS library. Once with the files 

unaltered and then again with source code files pre-processed by pyminifier. When a 

pattern match is not identified in comments of the source code, the match count for 

unchanged and pre-processed tests should be the same. The TFTPY library exhibits this 

characteristic. However, a manual review of both tests on the TFTPY library resulted in 

different match counts. This flaw was reproduced by testing the same OSS library 
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multiple times. Adding the --single-threaded option for subsequent analysis tests 

produced consistent results.  

4. Risk Modeling 

This research will develop a use case and test a risk model for a practical 

implementation of Application Inspector. The use case consists of a security assessment 

for new libraries that developers create for an organization’s internal web application. 

The web application is necessary for critical processing but does not contain customer or 

employee confidential information. The programming language of the web application is 

not significant as this research focuses on feature analysis. The developers are internal 

employees or contractors creating their code and reusing code from OSS or commercially 

licensed third-party sources to complete tasks on time. Application Inspector analysis 

could be performed by the developers, but should be performed by an independent, 

automated process. This process would automatically analyze new sets of source code to 

identify high-risk feature sets that should then have an independent manual review before 

deployment. Analysis results that are not high-risk should be trusted for automatic 

deployment. 

The greatest impact in this use case will come from threats incorporating 

malicious code into the web application. Since new code is incorporated as sets of new 

source code files, Application Inspection will demonstrate analysis on a group of files to 

identify a feature set based on a threat model. Threat modeling will identify the most 

likely features necessary to accomplish the adversary’s goal. Finally, testing of the model 

will demonstrate whether the risk model is useful for deciding when to perform a manual 

review.  

4.1. Threat Model 

Based on the risk model use case above, threat modeling will identify the most 

likely attack vectors and the techniques necessary for it to be successful. These 

techniques will be mapped to features in source code through Application Inspector’s 

feature analysis of OSS libraries that simulate the same techniques. The primary features 
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of the analysis will be grouped together to form a threat model for a particular technique. 

This research will focus on one attack vector and the most dangerous techniques for 

accomplishing an adversary’s goal.  

Common adversary objectives include preventing system operations or obtaining 

sensitive information that can lead to monetary compensation. The following malware 

types enable these objectives, and the organizational impact for the above use case is 

given for each: 

• Ransom/wiper malware (high impact) 

Disabling a critical business web application can cost organizations thousands of 

dollars per day. 

• Credential stealing (moderate impact) 

This type of malware is one step of a larger attack, often paired with 

Ransom/wiper malware to spread the infection. 

• Data theft (low impact) 

The use case focuses on business-critical operations that do not involve sensitive 

data; therefore, the impact is low. 

• Crypto mining (low impact) 

An increase in resource utilization will add up over time, but the system still 

functions, and data is not lost or stolen.  

This research will use the NotPetya wiper malware as the example threat for modeling as 

it represents ransom/wiper malware that has the highest impact in this use case. 

The MITRE ATT&CK framework is a knowledge base of adversary tactics and 

techniques. The ATT&CK Enterprise matrix will be useful in developing the threat 

model for this research (MITRE, 2020). More than 400 software tools and malware have 

been modeled by MITRE to capture known malicious techniques (MITRE, 2020). 

MITRE’s NotPetya malware threat model has 13 unique techniques from the Enterprise 

ATT&CK matrix. Nine example OSS projects, listed in Table 2 below, can demonstrate 

all but one of the NotPetya techniques.  

Technique Name Example OSS Projects 



© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights. 

Risk Management with Automated Feature Analysis of Software Components 
  
18	

 

Steven M. Launius, SteveLaunius@gmail.com 

Credential Dumping https://github.com/gentilkiwi/mimikatz.git 

Data Encrypted for Impact https://github.com/goliate/hidden-tear.git 

Exploitation of Remote 

Services 

https://github.com/ElevenPaths/Eternalblue-Doublep 

ulsar-Metasploit.git 

Indicator Removal on Host https://github.com/limbenjamin/Invoke-LogClear.git 

Masquerading https://github.com/malcomvetter/CSExec.git 

Rundll32 https://github.com/p3nt4/PowerShdll.git 

Scheduled Task https://github.com/NukelearGhost/SleepWake.git 

Service Execution https://github.com/malcomvetter/CSExec.git 

Supply Chain Compromise N/A 

System Shutdown/Reboot https://github.com/risoflora/system_shutdown.git 

Valid Accounts https://github.com/malcomvetter/CSExec.git 

Windows Admin Shares https://github.com/malcomvetter/CSExec.git 

Windows Management 

Instrumentation 

https://github.com/Robinatus/Windows-Network-

Spy.git 

Table 2. Example OSS Projects for Each NotPetya Technique 

The Application Inspector tool analyzed each of the nine OSS projects to identify 

their feature sets. The characteristics across all projects that represent high-risk threat 

features are Authentication.General and OS.Process.Dynamic.Execution. However, a 

model with only two common functions would identify a large percentage of libraries as 

high-risk. Therefore, several threat models of the significant techniques modeled from 

example OSS projects will be more useful. These techniques from NotPetya are 

Credential Dumping, Data Encryption, and Exploitation of Remote Services. The 

following is a model of each technique with a unique set of features identified as tag 

names by the tool’s analyze command of the corresponding OSS project: 
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Credential Dumping 

Mimikatz by gentilkiwi 

• Authentication 

• Authorization 

• Microsoft.DLL 

• Cryptography 

• Data.DBMS 

• Data.Deserialization 

• Data.Sensitive.Credentials 

• OS.ACL.Impersonation 

• OS.FileOperation 

• OS.Network.Connection 

• OS.Process.DynamicExecution 

• OS.SystemRegistry 

Data Encryption 

hidden-tear by goliate 

• Authentication 

• Authorization 

• Cryptography 

• Data.DBMS 

• Data.Parsing 

• Data.Sensitive.Credentials 

• Data.Zipfile 

• OS.FileOperation 

• OS.Network.Connection 

• OS.Process.DynamicExecution 

Exploitation of Remote Services 

EternalBlue by ElevenPaths 

• Authentication 

• Authorization 

• Cryptography 

• Data.DBMS 

• Data.Parsing 

• Data.Sensitive.Credentials 

• Data.Zipfile 

• OS.Process.DynamicExecution 

Masquerading/Service Execution/Windows Admin Shares 

CSExec by malcomvetter 

• Authentication 

• Authorization 

• Microsoft.DLL 

• Cryptography 

• Data.DBMS 

• Data.Parsing 

• Data.Sensitive.Credentials 

• Data.Zipfile 

• OS.FileOperation.Delete 

• OS.Network.Connection 
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• OS.Process.DynamicExecution 

Note: Tag names have been shortened to a substring that matches similar feature 

components of the same type, where possible, to group them. 

Each of the four OSS projects produces a unique set of features for the NotPetya 

techniques. Mimikatz has a collection of thirteen features that model the Credential 

Dumping technique. Hidden-tear has a collection of ten features that model the 

Ransomware technique. EternalBlue has the smallest set of features, with eight, that 

model Exploitation of Remote Services. The CSExec project has a collection of eleven 

features that model Masquerading, Service Execution, and Windows Admin Shares 

(shown as Masquerading). 

4.2. Risk Model Testing 

4.2.1. Lab Environment 
The same lab configuration, from the Accuracy Testing section above, is used to 

test the threat model on a selected set of OSS project libraries from GitHub. A sample of 

20 OSS projects will represent library components that may be created or reused by 

developers for the web application from the use case. The selected samples will include 

various programming languages with an API, framework, or other functionality to aid a 

developer in completing an application. The complete set of samples can be found in 

Appendix C. 

This test requires modification of the Application Inspector preferences to 

identifying the threat model feature sets in a custom HTML report. The custom report 

shows matching features (see Figure 2) as blue icons and non-matching features as grey 

icons. A sample of the HTML results is shown below in Figure 2. 
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Figure 2. Sample of a Custom Application Inspector HTML Report 

4.2.2. Testing Methodology 
The number of matching tag names for each threat technique modeled will be 

analyzed and compared across the OSS projects. The configuration of the Application 

Inspector analysis options will output HTML and JSON files with results and use single 

threading to prevent anomalies identified in the Accuracy Testing section above. The 

following procedures will be followed for each of the OSS projects: 

1. Download OSS project from GitHub. 

 
git clone <URL to GitHub project file> 
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2. Link the ‘html’ directory from Application Inspector’s source to enable the 

correct display of the HTML report. 

 
3. Record the project size. 

 
4. Change directory into the OSS project. 

 
5. Analyze the OSS library with Application Inspector. 

 
6. Manually review the HTML report in Firefox to count the features matching in 

each technique modeled. 

4.3. Results 

The test results will identify the error rate of each threat model. Tests showing a 

100% error rate indicate all features in a model’s set matched, and represents a negative 

result since each of these projects are assumed not to contain malicious code. The useful 

models will have few if any, negative results. The size of each OSS project was 

calculated to correlate any trends in the volume of code analyzed. The percentage for 

each outcome is calculated as X of Y, where X is the number of matching features and Y 

is the total number of features in each model’s set. The features were manually counted 

by reviewing the features for each OSS project in a custom HTML report created to 

display the threat model results. In Figure 3 below, the Credential Dumping results are 

given as an example. 

ln -s ../html/ <OSS project directory name> 

du -h --max-depth==1 ./<OSS project directory name> 

cd <OSS project directory name> 

dotnet ~/ApplicationInspector_1.2.11/ApplicationInspector.CLI.d 

ll analyze -s . --single-threaded 
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Figure 3. Sample HTML Report of Features in the Credential Dumping Threat 
Model. 

The error rate for each threat models’ results, as tested against all OSS projects, is 

displayed in Table 3 below. 
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OSS Project Size 

(MB) 

Credential 

Dumping 

Ransom-

ware 

Exploitation of 

Remote Services 

Masquer-

ading 

ui_components 4.9 46% 80% 100% 73% 

Hazel 11 54% 90% 100% 82% 

zphiser 120 62% 90% 100% 82% 

tabler 127 54% 80% 100% 73% 

thingsboard 134 54% 100% 100% 82% 

trilium 96 69% 100% 100% 82% 

redash 37 62% 100% 100% 82% 

livewire 12 54% 90% 100% 82% 

PhpSpreadsheet 46 62% 90% 100% 82% 

airflow 108 77% 100% 100% 91% 

websockets 2.7 69% 100% 100% 91% 

calculator 58 62% 100% 100% 82% 

Ooui 6.9 69% 100% 100% 91% 

redux.NET 8.6 46% 80% 100% 73% 

fastapi 17 54% 90% 100% 82% 

sheetjs 75 62% 100% 100% 90% 

card 2.1 46% 80% 100% 73% 

flask 11 62% 100% 100% 82% 

autobahn-python 26 82% 100% 100% 82% 

skatejs 15 70% 100% 100% 91% 

Total Negative   0 11 20 0 

Table 3. Error Rate in Risk Modeling Analysis 
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The test results for two of the four threat models are entirely positive. The 

Credential Dumping and Masquerading models show that none of the 20 tested known-

good projects matched all the features in their sets. Indicating these models would be 

useful to identify source code libraries that include features similar to the malicious 

software they were modeled after. Ransomware’s model shows a little more than half of 

the projects contain the same feature set as the model. This model would produce many 

false positives if incorporated into a continuous deployment pipeline that could 

unnecessarily waste resources. There are no positive results for the Exploitation of 

Remote Services model, indicating this model would never be useful for identifying high-

risk libraries. There was no correlation between the project’s size and the percentage of 

features found in any model. 

5. Recommendations and Implications 

The Application Inspector is a unique static code analysis tool that can reduce risk 

in a DevOps environment by identifying features in source code. Feature analysis 

provides a summary of functionality found within millions of lines of code to quickly and 

automatically identify high-risk features. Threat modeling of adversaries targeting an 

organization can produce high-risk feature sets. Organizations employing many 

developers as contractors and incorporating third-party libraries can decrease the risk of 

malicious backdoors with this tool.  

5.1. Practical Use 

The accuracy testing results for Application Inspector’s analysis are encouraging, 

but there is an opportunity for improvement. As a newer tool, Application Inspector has a 

reasonably high accuracy rate for the Python language. However, this research shows 

there are standard Python libraries unmatched during analysis that have features the tool 

is designed to identify. Additional rules to match all of the standard library features for 

Python, and other programming languages, will increase the tool’s accuracy. 

Organizations can concentrate on creating rules for the programming languages found in 
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their DevOps environment. Sharing these rules with the open source community would 

be a public service that benefits an organization’s reputation in the DevOps community.  

The test results from risk modeling indicate that the more features in a model’s 

set, the more likely it is to identify malicious code. The more specific a threat model is 

for a particular adversary’s malware, the larger is the set of features in the model. The test 

results indicate models with more features perform better and benefit organizations 

modeling threats targeting them or their industry. Models with more than ten features of 

Application Inspector’s tags are more likely to catch the malicious code. Feature analysis 

can be a useful automated technical control to reduce the risk of deploying malicious 

code when incorporated into deployment pipelines or manually run by developers or 

auditors. 

Threat models for feature analysis require testing and risk management. 

Information security professionals can develop specific threat models targeting an 

organization and test the error rate. The test results for ambiguous models, like 

Ransomware, is risk that leadership will decide to accept. Management must decide 

whether or not a model’s resulting error ratio outweighs the likelihood an adversary will 

use this attack vector on their organization. Automated implementation of the threat 

model is more practical than performing manual code review.  

When personnel resources limit manual code review, the Application Inspector 

tool provides automated capabilities for managing the risk of the source code features. 

The tool’s JSON reporting lends itself to implementation through scripting in a 

continuous deployment pipeline. The tool enables DevOps teams to adhere to strict 

feature requirements from initial development that only permit authorized features to be 

deployed into a production environment. Additionally, this research presents a risk model 

for the tool to identify a specific threat technique from a set of features that DevOps 

teams can implement in a deployment pipeline or code versioning system. Developers or 

auditors could also run the tool, as necessary, with this risk model to identify specific 

threats within a set of source code files from a third-party library or other internal 

developers.  
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6. Conclusion 

Adversaries are taking advantage of third-party libraries and DevOps’ speed to 

insert malicious code inside of software that an organization develops. Organizations 

often trust their third-party suppliers and internal developers to produce software that 

meet their required features. Therefore, management may choose to accept the risk from 

backdoors so they can compete in their industry. The Application Inspector tool can 

provide a practical method for reducing this risk. The tool’s accuracy is good but it can 

be improved with additional rules to detect more standard libraries from the programming 

language version used by an organization. Additionally, the creation of threat models 

from adversary techniques can provide a set of high-risk features, if enough exists, that 

can uniquely identify the same technique in source code libraries. Organizations can 

implement the tool at scale within continuous deployment pipelines or use ad hoc to vet 

source code libraries. 
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Appendix A 
OS.Networking.Connection Rules 

The most pertinent attributes for each of the patterns associated with rules that have the 

OS.Networking.Connection tag name are summarized in the table below. 

ID Tag Name Applies 
To 

Pattern Pattern 
Type 

Mod-
ifier 

Confi- 
dence 

AI031600 OS.Network.Con
nection.Miscella
neous 

  tftp|ntp\\.org|ntpupdat
e|imap|snmp|ftps|sftp|
ftp|nntp|smtp|telnet|ss
h|pop3|gopher 

regex-word i high 

AI032000 OS.Network.Con
nection.Socket 

python .bind( string   high 

AI032100 OS.Network.Con
nection.Socket 

  socket string i high 

AI032500 OS.Network.Con
nection.Http 

python import .*(http|requests) regex   high 

AI032600 OS.Network.Con
nection.Http 

  https*:/ regex   low 

AI032600 OS.Network.Con
nection.Http 

  curl|wpget regex-word   medi
um 

AI032900 OS.Network.Con
nection.RPC 

python fastrpc|xmlrpc|SimpleX
MLRPCServer|jsonrpc|rp
c\\.server|client\\.rpc 

regex   high 

AI033410 OS.Network.Con
nection.General 

  send.*message regex   high 

AI033410 OS.Network.Con
nection.General 

  send\\( regex   medi
um 
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Appendix B 
Custom Script for Accuracy Tests 

The following script was created in a Python file to exhibit a false negative for 

Application Inspector rules. 

 

 

 

 

 

  

import urllib.request 

 

req = urllib.request.Request("htt" + "ps://www.google.com/") 

result = urllib.request.urlopen(req) 

print(result.read()) 
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Appendix C 
Selected OSS Projects for Risk Model Testing 

The table below contains OSS projects used in the risk model testing. 

OSS Project Primary Language GitHub URL 

ui_components JavaScript https://github.com/bradtraversy/ui_components 

Hazel C++ https://github.com/TheCherno/Hazel 

zphiser PHP https://github.com/htr-tech/zphisher.git 

tabler Java https://github.com/tabler/tabler 

thingsboard Java https://github.com/thingsboard/thingsboard 

trilium JavaScript https://github.com/zadam/trilium 

redash JavaScript https://github.com/getredash/redash 

livewire PHP https://github.com/livewire/livewire 

PhpSpreadsheet PHP https://github.com/PHPOffice/PhpSpreadsheet 

airflow Python https://github.com/apache/airflow 

websockets Python https://github.com/aaugustin/websockets 

calculator C# https://github.com/microsoft/calculator 

Ooui C# https://github.com/praeclarum/Ooui 

redux.NET C# https://github.com/GuillaumeSalles/redux.NET 

fastapi Python https://github.com/tiangolo/fastapi 

sheetjs JavaScript https://github.com/SheetJS/sheetjs 

card JavaScript https://github.com/jessepollak/card 

flask Python https://github.com/tensorflow/tensorflow 

autobahn-
python Python https://github.com/crossbario/autobahn-python 

skatejs JavaScript https://github.com/skatejs/skatejs 

 

 


